Please wait a minute...
Journal of Integrative Agriculture  2022, Vol. 21 Issue (2): 316-325    DOI: 10.1016/S2095-3119(20)63563-8
Special Issue: 水稻遗传育种合辑Rice Genetics · Breeding · Germplasm Resources
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Characterization and fine mapping of RTMS10, a semi-dominant reverse thermo-sensitive genic male sterile locus in rice
NI Jin-long1, 2, WANG De-zheng2, NI Da-hu2, SONG Feng-shun2, YANG Jian-bo2, YAO Da-nian1
1 College of Agronomy, Anhui Agricultural University, Hefei 230036, P.R.China 
2 Rice Genetics and Breeding Key Laboratory of Anhui Province/Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

环境敏感型水稻雄性不育资源的发现与利用,大大便捷了杂交水稻育种,且为杂交水稻生产做出了重要贡献。在两系杂交水稻系统中,光敏和温敏核不育系大多表现为长日高温雄性不育,短日低温育性恢复。然而,反温敏核不育系YnS表现为低温(<29)雄性不育,高温(>29.5)可育。本研究报道了YnS反温敏核不育性状(rTGMS)的遗传规律及基因定位。YnS与正常可育材料L422杂交F1在低温22℃表现为雄性不育,在27℃条件下育性完全恢复。在YnS/L422 F2群体中,可育单株与不育单株的分离比随环境逐渐升高由1:3.05转变为2.95:1,表明rTGMS呈半显性遗传。通过BSA法分析,在第10号染色体上定位到1个与rTGMS紧密关联的主效位点,命名为RTMS10。利用YnS/L422 BC6F2L422为轮回亲本)群体,将RTMS10精细定位在标记ID13116ID1318之间~68kb的物理区间内。结合分子标记辅助选择,在YnS/L422 BC6F3世代获得1L422背景的携带RTMS10的近等基因系,NL1。组织细胞学切片和扫描电镜分析发现,在低温(22℃)条件下,NL1花粉发育在减数分裂期发生明显异常。上述结果有助于对rTGMS性状和机制的理解。本研究还报道了该基因的共分离标记,将为加速反温敏核不育系的分子选育提供技术依据。



Abstract  The discovery and application of environment-sensitive genic male sterile (EGMS) rice germplasm provide an easy method for hybrid rice breeding and have made great contributions to hybrid rice production.  Typically, the photoperiod- and thermo-sensitive GMS (P/TGMS) lines utilized in two-line hybrid systems are male sterile under long day or/and high temperature but fertile under short day or/and low temperature conditions.  However, YannongS (YnS), a reverse TGMS (rTGMS) line, is sterile under low temperature (<29°C) and fertile under high temperature (>29.5°C).  Here, we report a genetic study on the rTGMS trait in YnS.  Interestingly, the F1 plants of the cross between YnS and a cultivar, L422, were male sterile at 22°C and completely fertile at 27°C.  Moreover, the segregation ratio of fertile and sterile individuals in YnS/L422 F2 populations changed from 1:3.05 to 2.95:1 when the ambient temperature increased, showing that the rTGMS trait exhibits semi-dominance in YnS.  We further found a locus on chromosome 10, termed RTMS10, which controls the rTGMS trait in YnS.  We then finely mapped RTMS10 to a ~68 kb interval between markers ID13116 and ID1318 by YnS/L422 BC6F2 populations.  A near iso-genic line (NIL) NL1 from the BC6F3 generation was developed and the pollen of NL1 became abnormal from the meiosis stage under low temperature.  In summary, we identified an rTGMS locus, RTMS10, and provided co-segregated markers, which could help to accelerate molecular breeding of rTGMS lines and better understand the rTGMS trait in rice.

Keywords:  rice       photoperiod- and thermo-sensitive genic male sterile (P/TGMS)       reverse TGMS (rTGMS)       gene mapping       RTMS10  
Received: 23 May 2020   Accepted: 24 November 2020
Fund: This research was funded by the Key Research and Development Program of Anhui Province, China (201904a06020016 and 202104g01020013), the National Natural Science Foundation of China (31101204) and the Program of Rice Genetic Breeding Key Laboratory of Anhui Province, China (SDKF-201903).  
About author:  Received 23 May, 2020 Accepted 24 November, 2020 Correspondence NI Jin-long, Tel: +86-551-65160535, E-mail: jlni09@163.com; YANG Jian-bo, Tel: +86-551-65160535, E-mail: yjianbo@263.net; YAO Da-nian, E-mail: dnyao@163.com

Cite this article: 

NI Jin-long, WANG De-zheng, NI Da-hu, SONG Feng-shun, YANG Jian-bo, YAO Da-nian. 2022. Characterization and fine mapping of RTMS10, a semi-dominant reverse thermo-sensitive genic male sterile locus in rice. Journal of Integrative Agriculture, 21(2): 316-325.

Chen H Q, Zhang Z G, Ni E D, Lin J W, Peng G Q, Huang J L, Zhu L Y, Deng L, Yang F F, Luo Q, Sun W, Liu Z L, Zhuang C X, Liu Y G, Zhou H. 2020. HMS1 interacts with HMS1I to regulate very-long-chain fatty acid biosynthesis and the humidity-sensitive genic male sterility in rice (Oryza sativa). New Phytologist, 225, 2077–2093.
Cheng S H. 2000. Current status and prospect in the development of breeding materials and breeding methodology of hybrid rice. Chinese Rice Science, 14, 165–169. (in Chinese)
Ding J H, Lu Q, Ouyang Y D, Mao H L, Zhang P B, Yao J L, Xu C G, Li X H, Xiao J H, Zhang Q F. 2012. A long noncoding RNA regulates photoperiod-sensitive male sterility, and an essential component of hybrid rice. Proceedings of the National Academy of Sciences of the United States of America, 109, 2654–2659.
Dong N V, Subudhi P K, Luong P N, Quang V D, Quy T D, Zheng H G, Wang B, Nguyen H T. 2000. Molecular mapping of a rice gene conditioning thermo-sensitive genic male sterility using AFLP, RFLP and SSR techniques. Theoretical and Applied Genetics, 100, 727–734.
Fan Y R, Yang J Y, Mathioni S M, Yu J S, Shen J Q, Yang X F, Wang L, Zhang Q H, Cai Z X, Xu C G, Li X H, Xiao J H, Meyers B C, Zhang Q F. 2016. PMS1T, producing phased small-interfering RNAs, regulates photoperiod-sensitive male sterility in rice. Proceedings of the National Academy of Sciences of the United States of America, 113, 15144–15149.
Hussain A J, Ali J, Siddiq E A, Gupta V S, Reddy U K, Ranjekar P K. 2011. Mapping of tms8 gene for temperature-sensitive genic male sterility (TGMS) in rice (Oryza sativa L.). Plant Breeding, 131, 42–47.
Jia J H, Zhang D S, Li C Y, Qu X P, Wang S W, Chamarerk V, Nguyen H T, Wang B Y. 2001. Molecular mapping of the reverse thermosensitive genic male sterile gene (rtms1) in rice. Theoretical and Applied Genetics, 103, 607–612.
Joseph C A, Chen Z, Ma D, Zeng H. 2011. Analysis of short photo-periodic sensitive genic male sterility and molecular mapping of rmps3(t) gene in rice (Oryza sativa L.) using SSR markers. Molecular Genetics and Genomics, 33, 513–519.
Khlaimongkhon S, Muangprom A, Chakhonkaen S, Pitngam K, Ditthab K, Sangarwut N, Panyawut N, Wasinanon T. 2019. Molecular markers and candidate genes for thermo-sensitive genic male sterile in rice. Rice Science, 26, 147–156.
Lei D Y, Lin Y, Chen L Y. 2019. The research progress and countermeasures of dual-purpose genic male sterile line. Journal of Hunan Agriculture University (Natural Science), 45, 225–230. (in Chinese) 
Li J K, Li Z Y, Wang Z X, Chen G H. 1998. Fertility performance of the low temperature induced sterility rice line go543S in Liaoning. Hybrid Rice, 13, 37–38. (in Chinese)
Li S G, Zhou K D, Zhu L H. 1999. Genetic study and molecular mapping of a dominant thermo-sensitive genic male sterile gene TMS in rice. Chinese Science Bulletin, 44, 955–958. (in Chinese) 
Liu N, Shan Y, Wang P, Xu C G, Peng K M, Li X H, Zhang Q F. 2001. Identification of an 85-kb DNA fragment containing pms1 a locus for photoperiod-sensitive genic male sterility in rice. Molecular Genetics and Genomics, 266, 271–275.
Liu X, Li X, Zhang X, Wang S. 2010. Genetic analysis and mapping of a thermo-sensitive genic male sterility gene, tms6(t), in rice (Oryza sativa L.). Genome, 53, 119–124.
Lu Q, Li X H, Guo D, Xu C G, Zhang Q F. 2005. Localization of pms3, a gene for photoperiod-sensitive genic male sterility, to a 28.4-kb DNA fragment. Molecular Genetics and Genomics, 273, 507–511.
Mei M H, Dai X K, Xu C G, Zhang Q F. 1999. Mapping and genetic analysis of genes for photoperiod-sensitive genic male sterility in rice using the original mutant Nongken58S. Crop Science, 39, 1711–1715. 
Mou T M. 2016. The research progress and prospects of two-line hybrid rice in China. Chinese Science Bulletin, 61, 3761–3769. (in Chinese)
Peng H F, Zhang Z F, Wu B, Chen X H, Zhang G Q, Zhang Z M, Wan B H, Lu Y P. 2008. Molecular mapping of two reverse photoperiod-sensitive genic male sterility genes (rpms1 and rpms2) in rice (Oryza sativa L.). Theoretical and Applied Genetics, 118, 77–83.
Qi Y, Liu Q, Zhang L, Mao B, Yan D, Jin Q, He Z. 2014. Fine mapping and candidate gene analysis of the novel thermo-sensitive genic male sterility tms9-1 gene in rice. Theoretical and Applied Genetics, 127, 1173–1182.
Reddy O K, Siddiq E A, Sarma N P, Ali J, Hussain A J, Nimmakayala P, Ramasamy P, Pammi S, Reddy A S. 2000. Genetic analysis of temperature-sensitive male sterility in rice. Theoretical and Applied Genetics, 100, 794–801.
Sheng Z, Wei X, Shao G, Chen M, Song J, Tang S, Luo J, Hu P, Chen L. 2013. Genetic analysis and fine mapping of tms9, a novel thermo-sensitive genic male-sterile gene in rice (Oryza sativa L.). Plant Breeding, 132, 159–164.
Subudhi P K, Borkakati R K, Virmani S S, Huang N. 1997. Molecular mapping of a thermosensitive genic male sterility gene in rice using bulked segregant analysis. Genome, 40, 188–194.
Wang B, Xu W W, Wang J Z, Wu W, Zheng H G, Yang Z Y, Ray J D, Nguyen H T. 1995. Tagging and mapping the thermo-sensitive genic male-sterile gene in rice (Oryza sativa L.) with molecular markers. Theoretical and Applied Genetics, 91, 1111–1114.
Wang C H, Zhang P, Ma Z R, Zhang M Y, Sun G C, Ling D H. 2004. Development of a genetic marker linked to a new thermo-sensitive male sterile gene in rice (Oryza sativa L.). Euphytica, 140, 217–222. 
Wu H X, Li B H, Xiang Y, Liang M Z, Xu M L, Chen L B. 2003. Effects of temperature and photoperiod on fertility of low temperature sensitive genic male sterile rice. Acta Ecologica Sinica, 23, 463–470. (in Chinese)
Xu J J, Wang B H, Wu Y H, Du P N, Wang J, Wang M, Yi C D, Gu M H, Liang G H. 2011. Fine mapping and candidate gene analysis of ptgms2-1, the photoperiod-thermo-sensitive genic male sterile gene in rice (Oryza sativa L.). Theoretical and Applied Genetics, 122, 365–372.
Xue Z Y, Xu X, Zhou Y, Wang X N, Zhang Y C, Liu D, Zhao B, Duan L X, Qi X Q. 2018. Deficiency of a triterpene pathway results in humidity-sensitive genic male sterility in rice. Nature Communications, 9, 604.
Yamaguchi Y, Ikeda R, Hirasawa H, Minami M, Ujihara A. 1997. Linkage analysis of thermo-sensitive genic male sterility gene tms-2 in rice (Oryza sativa L.). Breeding Science, 47, 371–373.
Yang H Q, Zhu J. 1996. Breeding of go543S, an indica PTGMS rice with its sterility induced by short daylength and low temperature. Hybrid Rice, 1, 9–10. (in Chinese)
Yang Q K, Liang C Y, Zhuang W, Li J, Deng H B, Deng Q Y, Wang B. 2007. Characterization and identification of the candidate gene of rice thermo-sensitive genic male sterile gene tms5 by mapping. Planta, 225, 321–330.
Yu J P, Han J J, Kim Y J, Song M, Yang Z, He Y, Fu R F, Luo Z J, Hu J P, Liang W Q, Zhang D B. 2017. Two rice receptor-like kinases maintain male fertility under changing temperatures. Proceedings of the National Academy of Sciences of the United States of America, 114, 12327–12332.
Zhang Q F, Shen B Z, Dai X K, Mei M H, Saghai M A, Li Z B. 1994. Using bulked extremes and recessive classes to map genes for photoperiod-sensitive genic male sterility in rice. Proceedings of the National Academy of Sciences of the United States of America, 91, 8675–8679.
Zhou H, Liu Q J, Li J, Jiang D G, Zhou L Y, Wu P, Lu S, Li F, Zhu L Y, Liu Z L, Chen L T, Liu Y G, Zhuang C X. 2012. Photoperiod- and thermo-sensitive genic male sterility in rice are caused by a point mutation in a novel noncoding RNA that produces a small RNA. Cell Research, 22, 649–660.
Zhou H, Zhou M, Yang Y Z, Li J, Zhu L Y, Jiang D G, Dong J F, Liu Q J, Gu L F, Zhou L Y, Feng M J, Qin P, Hu X C, Song C L, Shi J F, Song X W, Ni E D, Wu X J, Deng Q Y, Liu Z L, et al. 2014. RNase ZS1 processes UbL40 mRNAs and controls thermosensitive genic male sterility in rice. Nature Communications, 5, 4884.
[1] HAN Rui-cai, LI Chen-yan, Adnan Rasheed, PAN Xiao-hua, SHI Qing-hua, WU Zi-ming. Reducing phosphorylation of nitrate reductase improves nitrate assimilation in rice[J]. >Journal of Integrative Agriculture, 2022, 21(1): 15-25.
[2] FENG Zhi-ming, GAO Peng, ZHAO Jian-hua, WANG Guang-da, ZHANG Hui-min, CAO Wen-lei, XUE Xiang, ZHANG Ya-fang, Ma Yu-yin, Hua Rong, CHEN Zong-xiang, CHEN Xi-jun, HU Ke-ming, ZUO Shi-min. iTRAQ-based quantitative proteomics analysis of defense responses triggered by the pathogen Rhizoctonia solani infection in rice[J]. >Journal of Integrative Agriculture, 2022, 21(1): 139-152.
[3] LI Hui-juan, JIAO Zhi-xin, NI Yong-jing, JIANG Yu-mei, LI Jun-chang, PAN Chao, ZHANG Jing, SUN Yu-long, AN Jun-hang, LIU Hong-jie, LI Qiao-yun, NIU Ji-shan. Heredity and gene mapping of a novel white stripe leaf mutant in wheat[J]. >Journal of Integrative Agriculture, 2021, 20(7): 1743-1752.
[4] ZHU Mao-di, CHEN Xin-long, ZHU Xiao-yan, XING Ya-di, DU Dan, ZHANG Ying-ying, LIU Ming-ming, ZHANG Qiu-li, LU Xin, PENG Sha-sha, HE Guang-hua, ZHANG Tian-quan. Identification and gene mapping of the starch accumulation and premature leaf senescence mutant ossac4 in rice[J]. >Journal of Integrative Agriculture, 2020, 19(9): 2150-2164.
[5] ZHANG Ting, YOU Jing, YU Guo-ling, ZHANG Yi, CHEN Huan, LI Yi-dan, YE Li, YAO Wan-yue, TU Yu-jie, LING Ying-hua, HE Guang-hua, LI Yun-feng. Gene mapping and candidate gene analysis of aberrant-floral spikelet 1 (afs1) in rice (Oryza sativa L.)[J]. >Journal of Integrative Agriculture, 2020, 19(4): 921-930.
[6] ZHENG Hao, ZHANG Jun, ZHUANG Hui, ZENG Xiao-qin, TANG Jun, WANG Hong-lei, CHEN Huan, LI Yan, LING Ying-hua, HE Guang-hua, LI Yun-feng. Gene mapping and candidate gene analysis of multi-floret spikelet 3 (mfs3) in rice (Oryza sativa L.)[J]. >Journal of Integrative Agriculture, 2019, 18(12): 2673-2681.
[7] XIAO Gui-qing, ZHANG Hai-wen, LU Xiang-yang, HUANG Rong-feng. Characterization and mapping of a novel light-dependent lesion mimic mutant lmm6 in rice (Oryza sativa L.)[J]. >Journal of Integrative Agriculture, 2015, 14(9): 1687-1696.
[8] WANG Jun, WANG Zhi-lan, YANG Hui-qing, YUAN Feng, GUO Er-hu, TIAN Gang, AN Yuan. Genetic Analysis and Preliminary Mapping of a Highly Male-Sterile Gene in Foxtail Millet (Setaria italica L. Beauv.) Using SSR Markers[J]. >Journal of Integrative Agriculture, 2013, 12(12): 2143-2148.
[9] HE Wen-ai, HUANG Da-hui, LI Rong-bai, YANG Hai-ning, HUANG Yue-yue, LIU Chi, MA Zeng-feng, YANG Yong . Identification of a Resistance Gene bls1 to Bacterial Leaf Streak in Wild Rice Oryza rufipogon Griff.[J]. >Journal of Integrative Agriculture, 2012, 12(6): 962-969.
[10] REN De-yong*, LI Yun-feng*, WANG Zeng, XU Fang-fang, GUO Shuang, ZHAO Fang-ming, SANG Xianchun, LING ing-hua, HE Guang-hua. Identification and Gene Mapping of a multi-floret spikelet 1 (mfs1) Mutant Associated with Spikelet Development in Rice[J]. >Journal of Integrative Agriculture, 2012, 12(10): 1574-1579.
No Suggested Reading articles found!