Please wait a minute...
Journal of Integrative Agriculture  2012, Vol. 11 Issue (2): 281-292    DOI: 10.1016/S1671-2927(00)8545
SECTION 3: MOLECULAR CHARACTERIZATION OF Bemisia tabaci Advanced Online Publication | Current Issue | Archive | Adv Search |
Next Generation Transcriptome Sequencing and Quantitative Real-Time PCR Technologies for Characterisation of the Bemisia tabaci Asia 1 mtCOI Phylogenetic Clade
 Susan Seal, Mitulkumar V Patel, Carl Collins, John Colvin , David Bailey
1.Natural Resources Institute, University of Greenwich, Chatham Maritime Kent ME4 4TB, United Kingdom
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  A programme of functional genomics research is underway at the University of Greenwich, UK, to develop and apply genomics technologies to characterise an economically-important but under-researched Bemisia tabaci (Hemiptera: Aleyrodidae), the Asia 1 mtCOI phylogenetic group. A comparison of this putative species from India with other important B. tabaci populations and insect species may provide targets for the development of more effective whitefly control strategies. As a first step, next-generation sequencing (NGS) has been used to survey the transcriptome of adult female whitefly, with high quality RNA preparations being used to generate cDNA libraries for NGS using the Roche 454 Titanium DNA sequencing platform. Contig assemblies constructed from the resultant sequences (301 094 reads) using the software program CLC Genomics Workbench generated 3 821 core contigs. Comparison of a selection of these contigs with related sequences from other B. tabaci genetic groups has revealed good alignment for some genes (e.g., HSP90) but misassemblies in other datasets (e.g., the vitellogenin gene family), highlighting the need for manual curation as well as collaborative international efforts to obtain accurate assemblies from the existing next generation sequence datasets. Nevertheless, data emerging from the NGS has facilitated the development of accurate and reliable methods for analysing gene expression based on quantitative real-time RT-PCR, illustrating the power of this approach to enable rapid expression analyses in an organism for which a complete genome sequence is currently lacking.

Abstract  A programme of functional genomics research is underway at the University of Greenwich, UK, to develop and apply genomics technologies to characterise an economically-important but under-researched Bemisia tabaci (Hemiptera: Aleyrodidae), the Asia 1 mtCOI phylogenetic group. A comparison of this putative species from India with other important B. tabaci populations and insect species may provide targets for the development of more effective whitefly control strategies. As a first step, next-generation sequencing (NGS) has been used to survey the transcriptome of adult female whitefly, with high quality RNA preparations being used to generate cDNA libraries for NGS using the Roche 454 Titanium DNA sequencing platform. Contig assemblies constructed from the resultant sequences (301 094 reads) using the software program CLC Genomics Workbench generated 3 821 core contigs. Comparison of a selection of these contigs with related sequences from other B. tabaci genetic groups has revealed good alignment for some genes (e.g., HSP90) but misassemblies in other datasets (e.g., the vitellogenin gene family), highlighting the need for manual curation as well as collaborative international efforts to obtain accurate assemblies from the existing next generation sequence datasets. Nevertheless, data emerging from the NGS has facilitated the development of accurate and reliable methods for analysing gene expression based on quantitative real-time RT-PCR, illustrating the power of this approach to enable rapid expression analyses in an organism for which a complete genome sequence is currently lacking.
Keywords:  Bemisia tabaci      whitefly      transcriptome      next generation sequencing      quantitative real-time (QRT)-PCR      Asia 1 mtCOI  
Received: 15 April 2011   Accepted:
Fund: 

Funding for the studies described was provided by the University of Greenwich Proof of Concept and Research Funds, UK (E0162/RAE-NRI-009/09 and K0070).

Corresponding Authors:  Correspondence Susan Seal, Tel: +44-1634-883602, Fax: +44-1634-883379, E-mail: s.e.seal@gre.ac.uk     E-mail:  s.e.seal@gre.ac.uk
About author:  Susan Seal, Tel: +44-1634-883602, Fax: +44-1634-883379, E-mail: s.e.seal@gre.ac.uk

Cite this article: 

Susan Seal, Mitulkumar V Patel, Carl Collins, John Colvin , David Bailey. 2012. Next Generation Transcriptome Sequencing and Quantitative Real-Time PCR Technologies for Characterisation of the Bemisia tabaci Asia 1 mtCOI Phylogenetic Clade. Journal of Integrative Agriculture, 11(2): 281-292.

[1]Alon M, Alon F, Nauen R, Morin S. 2008. Organophosphates’ resistance in the B-biotype of Bemisia tabaci (Hemiptera: Aleyrodidae) is associated with a point mutation in an ace1-type acetylcholinesterase and overexpression of carboxylesterase. Insect Biochemistry and Molecular Biology, 38, 940-949.

[2]Altschul S F, Gish W, Miller W, Myers E W, Lipman D J. 1990. Basic local alignment search tool. Journal of Molecular Biology, 215, 403-410.

[3]Bass C, Hebsgaard M B, Hughes J. 2011. Genomic resources for the brown planthopper, Nilaparvata lugens: pyrosequencing the transcriptome and microarray design. Insect Science. doi: 10.1111/j.1744-7917.2011. 01440.x

[4]Bradeen J M, Timmermans, M C, Messing J. 1997. Dynamic genome organization and gene evolution by positive selection in geminivirus (Geminiviridae). Molecular Biology and Evolution, 14, 1114-1124.

[5]Brown J K, Czosnek H. 2002. Whitefly transmitted viruses. In: Advances in Botanical Research. Academic Press, N Y, USA. pp. 65-100.

[6]Brown J K, Frohlich D R, Rosell R C. 1995. The sweetpotato/ silverleaf whiteflies: biotypes of Bemisia tabaci (Genn.), or a species complex? Annual Review of Entomology, 40, 511-534.

[7]Bustin S A, Beaulieu J F, Huggett J, Jaggi R, Kibenge F S B, Olsvik P A, Penning L C, Toegel S. 2010. MIQE précis: Practical implementation of minimum standard guidelines for fluorescence-based quantitative real-time PCR experiments. BMC Molecular Biology, 11, 74.

[8]Chiel E, Gottlieb Y, Zchori-Fein E, Mozes-Daube N, Katzir N, Inbar M, Ghanim M. 2007. Biotype-dependent secondary symbiont communiteis in sympatric populations of Bemisia tabaci. Bulletin of Entomological Research, 97, 407-413.

[9]Colvin J, Omongo C A, Maruthi M N, Otim-Nape G W, Thresh J M. 2004. Dual begomovirus infections and high Bemisia tabaci populations: two factors driving the spread of a cassava mosaic disease pandemic. Plant Pathology, 53, 577-584.

[10]Colvin J, Omongo C A, Govindappa M R, Stevenson P C, Maruthi M N, Gibson G, Seal S E, Muniyappa V. 2006. Host-plant viral infection effects on arthropod-vector population growth, development and behaviour: management and epidemiological implications. Advances in Virus Research, 67, 419-452.

[11]Colvin J, Seal S E, Bailey D S. 2009. Whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae) genomics initiative. In: 5th International Bemisia Workshop. 9-12/11/2009, Guangzhou, China.

[12]Conesa A, Götz S, García-Gómez J M, Terol J, Talón M, Robles M. 2005. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, 21, 3674-3676.

[13]Czosnek H, Brown J K. 2010. The whitefly genome- White Paper: A proposal to sequence multiple genomes of Bemisia tabaci. Chapter 17. In: Stansly P A, Naranjo S E, eds., Bemisia, Bio-Nomics and Management of a Global Pest. Springer Science, Dordrecht, The Netherlands. pp. 503-532.

[14]Denholm I, Cahill M, Dennehy T, Horowitz A R. 1998. Challenges with managing resistance in agricultural pests, exemplified by the whitefly Bemisia tabaci (Hemiptera: Aleyrodidae). Philosophical Transactions of the Royal Society of London (Series B), 353, 1757- 1767.

[15]Dinsdale A, Cook L, Riginos C, Buckley Y, De Barro P J. 2010. Refined global analysis of Bemisia tabaci (Gennadius) (Hemiptera: Sternorrhyncha: Aleyrodoidea) mitochondrial COI to identify species level genetic boundaries. Annals of the Entomological Society of America, 103, 196-208.

[16]Gawel N J, Bartlett A C. 1993. Characterization of differences between whiteflies using RAPD-PCR. Insect Molecular Biology, 2, 33-38.

[17]Ghanim M, Kontsedalov S. 2007. Gene expression in pyriproxyfen-resistant Bemisia tabaci Q biotype. Pest Management Science, 63, 776-783.

[18]Gottlieb Y, Zchori-Fein E, Mozes-Daube N, Kontsedalov S, Skaljac M, Brumin M, Sobol I, Czosnek H, Vavre F, Fleury F, et al. 2010. The transmission efficiency of tomato yellow leaf curl virus by the whitefly Bemisia tabaci is correlated with the presence of a specific symbiotic bacterium species. Journal of Virology, 84, 9310-9317.

[19]Horowitz A R, Kontsedalov S, Khasden V, Ishaaya I. 2005. Biotypes B and Q of Bemisia tabaci and their relevance to neonicotinoid and pyriproxyfen resistance. Archives of Insect Biochemistry and Physiology, 58, 216-225.

[20]Hurst G D D, Jiggins F M. 2005. Problems with mitochondrial DNA as a marker in population, phylogeographic and phylogenetic studies: the effects of inherited symbionts. Proceedings of the Royal Society (B: Biological Sciences), 272, 1525-1534.

[21]International Aphid Genomics Consortium. 2010. Genome sequence of the pea aphid acyrthosiphon pisum. PLoS Biology, 8, e1000313.

[22]de Jonge H J, Fehrmann R S, de Bont E S, Hofstra R M, Gerbens F, Kamps W A, de Vries E G, van der Zee A G, te Meerman G J, ter Elst A. 2007. Evidence based selection of housekeeping genes. PLoS ONE, 2, e898.

[23]Karatolos N, Pauchet Y, Wilkinson P, Chauhan R, Denholm I, Gorman K, Nelson D R, Bass C, Ffrench-Constant R H, Williamson M S. 2011. Pyrosequencing the transcriptome of the greenhouse whitefly, trialeurodes vaporariorum reveals multiple transcripts encoding insecticide targets and detoxifying enzymes. BMC Genomics, 12, 56. Kumar S, Blaxter M L. 2010. Comparing de novo assemblers for 454 transcriptome data. BMC Genomics, 11, 571.

[24]Leshkowitz D, Gazit S, Reuveni E, Ghanim M, Czosnek H, McKenzie C, Shatters Jr R L, Brown J K. 2006. Whitefly (Bemisia tabaci) genome project: analysis of sequenced clones from egg, instar, and adult (viruliferous and nonviruliferous) cDNA libraries. BMC Genomics, 7, 79.

[25]Lin C P, Danforth B N. 2004. How do insect nuclear and mitochondrial gene substitution patterns differ? Insights from Bayesian analyses of combined datasets. Molecular Phylogenetics and Evolution, 30, 686-702.

[26]Liu S S, De Barro P J, Xu J, Luan J B, Zang L S, Ruan Y M, Wan F H. 2007. Asymmetric mating interactions drive widespread invasion and displacement in a whitefly. Science, 318, 1769-1772.

[27]Luan J B, Li J M, Varela N, Wang Y L, Li F F, Bao Y Y, Zhang C X, Liu S S, Wang X W. 2011. Global analysis of the transcriptional response of whitefly to tomato yellow leaf curl China virus reveals their relationship of coevolved adaptations. Journal of Virology, 85, 3330- 3340.

[28]Mahadav A, Gerling D, Gottlieb Y, Czosnek H, Ghanim M. 2008. Parasitization by the wasp Eretmocerus mundus induces transcription of genes related to immune response and symbiotic bacteria proliferation in the whitefly Bemisia tabaci. BMC Genomics, 9, 342.

[29]Mahadav A, Kontsedalov S, Czosnek H, Ghanim M. 2009. Thermotolerance and gene expression following heat stress in the whitefly Bemisia tabaci B and Q biotypes. Insect Biochemistry and Molecular Biology, 39, 668- 676.

[30]Maruthi M N, Colvin J, Seal S E, Gibson G, Cooper J. 2002. Co-adaptation between cassava mosaic geminiviruses and their local vector populations. Virus Research, 86, 71-85.

[31]Morales F J, Anderson P K. 2001. The emergence and dissemination of whitefly-transmitted geminiviruses in Latin America. Archives of Virology, 146, 415-441.

[32]Morin S, Gottlieb Y, Zeidan M, Czosnek H, Verbeek M, van den Heuvel J F J M. 1999. A GroEL homologue from endosymbiotic bacteria of the whitefly Bemisia tabaci is implicated in the circulative transmission of tomato yellow leaf curl virus. Virology, 256, 75-84.

[33]Nagalakshmi U, Waern K, Snyder M. 2010. RNA-Seq: a method for comprehensive transcriptome analysis. Current Protocols in Molecular Biology, 4, 1-13.

[34]Papanicolaou A, Stierli R, Ffrench-Constant R H, Heckel D G. 2009. Next generation transcriptome for next generation genomes using est2assembly. BMC Bioinformatics, 10, 447. Perring T M. 2001. The Bemisia tabaci species complex. Crop Protection, 20, 725-737.

[35]Rannala B, Yang Z. 2008. Phylogenetic inference using whole genomes. Annual Review of Genomics and Human Genetics, 9, 217-231.

[36]Rekha A R, Maruthi M N, Muniyappa V, Colvin J. 2005. Occurrence of three genotypic clusters of Bemisia tabaci and the rapid spread of the B biotype in south India. Entomologia Experimentalis et Applicata, 117, 221-233.

[37]Seal S, van den Bosch F, Jeger M. 2006. Factors influencing begomovirus evolution and their increasing global significance: implications for sustainable control. Critical Reviews in Plant Sciences, 25, 23-46.

[38]Shatters R G, Powell C A, Boykin L A, Liansheng H, McKenzie C L. 2009. Improved DNA barcoding method for Bemisia tabaci and related Aleyrodidae: development of universal and Bemisia tabaci biotypespecific mitochondrial cytochrome c oxidase I polymerase chain reaction primers. Journal of Economic Entomology, 102, 750-758.

[39]Sinisterra X H, McKenzie C L, Hunter W B, Powell C A, Shatters Jr R G. 2005. Differential transcriptional activity of plant-pathogenic begomoviruses in their whitefly vector (Bemisia tabaci, Gennadius: Hemiptera: Aleyrodidae). Journal of General Virology, 86, 1525- 1532.

[40]Stechmann A, Cavalier-Smith T. 2003. Phylogenetic analysis of eukaryotes using heat-shock protein Hsp90. Journal of Molecular Evolution, 57, 408-419.

[41]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28, 2731-2739.

[42]Tufail M, Takeda M. 2008. Molecular characteristics of insect vitellogenins. Journal of Insect Physiology, 54, 1447-1458.

[43]Vandesompele J, de Preter K, Pattyn F, Poppe B, van Roy N, de Paepe A, Speleman F. 2002. Accurate normalisation of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology, 3, RESEARCH0034. Varma A, Malathi V G. 2003. Emerging geminivirus problems. A serious threat to crop production. Annals of Applied Biology, 142, 145-164.

[44]Wang X W, Luan J B, Li J M, Bao Y Y, Zhang C X, Liu S S. 2010. De novo characterisation of a whitefly transcriptome and analysis of its gene expression during development. BMC Genomics, 11, 400.

[45]Wang X W, Luan J B, Li J M, Su Y L, Xia J, Liu S S. 2011. Transcriptome analysis and comparison reveal divergence between two invasive whitefly cryptic species. BMC Genomics, 12, 458.

[46]Xu J, De Barro P J, Liu S S. 2010. Reproductive incompatibility among genetic groups of Bemisia tabaci supports the proposition that the whitefly is a cryptic species complex. Bulletin of Entomological Research, 100, 359-366.

[47]Yu H, Wan F H. 2009. Cloning and expression of heat shock protein genes in two whitefly species in response to thermal stress. Journal of Applied Entomology, 133, 602-614.

[48]Zhu Y Y, Machleder E M, Chenchik A, Li R, Siebert P D. 2001. Reverse transcriptase template switching: a SMART approach for full-length cDNA library construction. Biotechniques, 30, 892-897.
[1] SHAN Yan-ju, JI Gai-ge, ZHANG Ming, LIU Yi-fan, TU Yun-jie, JU Xiao-jun, SHU Jing-ting, ZOU Jian-min. Use of transcriptome sequencing to explore the effect of CSRP3 on chicken myoblasts[J]. >Journal of Integrative Agriculture, 2023, 22(4): 1159-1171.
[2] LÜ Jing, Satyabrata NANDA, CHEN Shi-min, MEI Yang, HE Kang, QIU Bao-li, ZHANG You-jun, LI Fei, PAN Hui-peng.

A survey on the off-target effects of insecticidal double-stranded RNA targeting the Hvβ´COPI gene in the crop pest Henosepilachna vigintioctopunctata through RNA-seq [J]. >Journal of Integrative Agriculture, 2022, 21(9): 2665-2674.

[3] LONG Ke-ren, LI Xiao-kai, ZHANG Ruo-wei, GU Yi-ren, DU Min-jie, XING Xiang-yang, DU Jia-xiang, MAI Miao-miao, WANG Jing, JIN Long, TANG Qian-zi, HU Si-lu, MA Ji-deng, WANG Xun, PAN Deng-ke, LI Ming-zhou. Transcriptomic analysis elucidates the enhanced skeletal muscle mass, reduced fat accumulation, and metabolically benign liver in human follistatin-344 transgenic pigs[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2675-2690.
[4] WANG Bo, HUANG Tian-yu, YAO Yuan, Frederic FRANCIS, YAN Chun-cai, WANG Gui-rong, WANG Bing. A conserved odorant receptor identified from antennal transcriptome of Megoura crassicauda that specifically responds to cis-jasmone[J]. >Journal of Integrative Agriculture, 2022, 21(7): 2042-2054.
[5] FAN Xiao-xue, BIAN Zhong-hua, SONG Bo, XU Hai. Transcriptome analysis reveals the differential regulatory effects of red and blue light on nitrate metabolism in pakchoi (Brassica campestris L.)[J]. >Journal of Integrative Agriculture, 2022, 21(4): 1015-1027.
[6] ZHOU Cheng-zhe, ZHU Chen, LI Xiao-zhen, CHEN Lan, XIE Si-yi, CHEN Guang-wu, ZHANG Huan, LAI Zhong-xiong, LIN Yu-ling, GUO Yu-qiong. Transcriptome and phytochemical analyses reveal roles of characteristic metabolites in the taste formation of white tea during withering process[J]. >Journal of Integrative Agriculture, 2022, 21(3): 862-877.
[7] ZHU Ying-chun, YUAN Gao-peng, JIA Sheng-feng, AN Guo-lin, LI Wei-hua, SUN De-xi, LIU Jun-pu. Transcriptomic profiling of watermelon (Citrullus lanatus) provides insights into male flowers development[J]. >Journal of Integrative Agriculture, 2022, 21(2): 407-421.
[8] WU Zhe, YANG Xuan, ZHAO Yu-xuan, JIA Li. Identifying candidate genes involved in trichome formation on carrot stems by transcriptome profiling and resequencing [J]. >Journal of Integrative Agriculture, 2022, 21(12): 3589-3599.
[9] MA Wen-tao, LU Min, AN Hua-ming, YI Yin. Comparative transcriptomic analysis of Rosa sterilis inflorescence branches with different trichome types reveals an R3-MYB transcription factor that negatively regulates trichome formation[J]. >Journal of Integrative Agriculture, 2022, 21(10): 2926-2942.
[10] CHU Shuang-feng, ZHAO Tian-qi, Abdelaziz Adam Idriss ARBAB, YANG Yi, CHEN Zhi, YANG Zhang-ping. MiR-140 downregulates fatty acid synthesis by targeting transforming growth factor alpha (TGFA) in bovine mammary epithelial cells[J]. >Journal of Integrative Agriculture, 2022, 21(10): 3004-3016.
[11] MA Wei-hua, WU Tong, ZHANG Zan, LI Hang, SITU Gong-ming, YIN Chuan-lin, YE Xin-hai, CHEN Meng-yao, ZHAO Xian-xin, HE Kang, LI Fei . Using transcriptome Shannon entropy to evaluate the off-target effects and safety of insecticidal siRNAs[J]. >Journal of Integrative Agriculture, 2022, 21(1): 170-177.
[12] SHI Hai-yan, CAO Li-wen, XU Yue, YANG Xiong, LIU Shui-lin, LIANG Zhong-shuo, LI Guo-ce, YANG Yu-peng, ZHANG Yu-xing, CHEN Liang. Transcriptional profiles underlying the effects of salicylic acid on fruit ripening and senescence in pear (Pyrus pyrifolia Nakai)[J]. >Journal of Integrative Agriculture, 2021, 20(9): 2424-2437.
[13] WANG Chao-nan, LUAN Fei-shi, LIU Hong-yu, Angela R. DAVIS, ZHANG Qi-an, DAI Zu-yun, LIU Shi. Mapping and predicting a candidate gene for flesh color in watermelon[J]. >Journal of Integrative Agriculture, 2021, 20(8): 2100-2111.
[14] WU Tong, FENG Shu-yan, YANG Qi-hang, Preetida J BHETARIYA, GONG Ke, CUI Chun-lin, SONG Jie, PING Xiao-rui, PEI Qiao-ying, YU Tong, SONG Xiao-ming. Integration of the metabolome and transcriptome reveals the metabolites and genes related to nutritional and medicinal value in Coriandrum sativum[J]. >Journal of Integrative Agriculture, 2021, 20(7): 1807-1818.
[15] ZHAO Juan, LIU Ting, LIU Wei-cheng, ZHANG Dian-peng, DONG Dan, WU Hui-ling, ZHANG Tao-tao, LIU De-wen. Transcriptomic insights into growth promotion effect of Trichoderma afroharzianum TM2-4 microbial agent on tomato plants[J]. >Journal of Integrative Agriculture, 2021, 20(5): 1266-1276.
No Suggested Reading articles found!