Please wait a minute...
Journal of Integrative Agriculture  2012, Vol. 11 Issue (2): 249-262    DOI: 10.1016/S1671-2927(00)8542
SECTION 2: Bemisia AND BEGOMOVIRUS TRANSMISSION Advanced Online Publication | Current Issue | Archive | Adv Search |
Homopteran Vector Biomarkers for Efficient Circulative Plant Virus Transmission are Conserved in Multiple Aphid Species and the Whitefly Bemisia tabaci
 Michelle Cilia, Michael Bereman, Tara Fish, Michael J MacCoss , Stewart Gray
1.USDA-ARS, Robert W. Holley Center for Agriculture and Health, Tower Road, Ithaca, New York 14853, USA
2.Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14853, USA
3.Department of Genome Sciences, University of Washington, Seattle, Washington 98195-5065, USA
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  Plant viruses in the families Luteoviridae and Geminiviridae are phloem restricted and are transmitted in a persistent, circulative manner by homopteran insects. Using fluorescence 2-D difference gel electrophoresis to compare the proteomes of F2 genotypes of Schizaphis graminum segregating for virus transmission ability, we recently discovered a panel of protein biomarkers that predict vector competency. Here we used aphid and whitefly nucleotide and expressed sequence tag database mining to test whether these biomarkers are conserved in other homopteran insects. S. graminum gene homologs that shared a high degree of predicted amino acid identity were discovered in two other aphid species and in the whitefly Bemisia tabaci. Selected reaction monitoring mass spectrometry was used to validate the expression of these biomarkers proteins in multiple aphid vector species. The conservation of these proteins in multiple insect taxa that transmit plant viruses along the circulative transmission pathway creates the opportunity to use these biomarkers to rapidly identify insect populations that are the most efficient vectors and allow them to be targeted for control prior to the spread of virus within a crop.

Abstract  Plant viruses in the families Luteoviridae and Geminiviridae are phloem restricted and are transmitted in a persistent, circulative manner by homopteran insects. Using fluorescence 2-D difference gel electrophoresis to compare the proteomes of F2 genotypes of Schizaphis graminum segregating for virus transmission ability, we recently discovered a panel of protein biomarkers that predict vector competency. Here we used aphid and whitefly nucleotide and expressed sequence tag database mining to test whether these biomarkers are conserved in other homopteran insects. S. graminum gene homologs that shared a high degree of predicted amino acid identity were discovered in two other aphid species and in the whitefly Bemisia tabaci. Selected reaction monitoring mass spectrometry was used to validate the expression of these biomarkers proteins in multiple aphid vector species. The conservation of these proteins in multiple insect taxa that transmit plant viruses along the circulative transmission pathway creates the opportunity to use these biomarkers to rapidly identify insect populations that are the most efficient vectors and allow them to be targeted for control prior to the spread of virus within a crop.
Keywords:  aphid      whitefly      Schizaphis graminum      Bemisia tabaci      Acyrthosiphon pisum      Toxoptera citricida      Myzus persicae      proteomics      biomarker      circulative transmission      begomovirus      luteovirus      geminivirus      leafhopper      selected reaction monitoring      SRM      mass spectrometry      targeted proteomics      Skyline  
Received: 15 March 2011   Accepted:
Fund: 

This work was supported by NSF BREAD IOS:1109989, USDA-NRI 2007-04567, NSF DBI-0606596, and USDA-ARS 764 CRIS projects 1907-101- 16, 1907-21000-024/25-00D and NIH/NCRR funded Yeast Resource Center P41 RR01182.

Corresponding Authors:  Correspondence Stewart Gray, Tel: +1-607-2554596 (lab), +1-607-2557844 (office), Fax: +1-607-2552739, E-mail:smg3@cornell.edu     E-mail:  smg3@cornell.edu
About author:  Michelle Cilia, E-mail:.mlc68@cornell.edu

Cite this article: 

Michelle Cilia, Michael Bereman, Tara Fish, Michael J MacCoss , Stewart Gray. 2012. Homopteran Vector Biomarkers for Efficient Circulative Plant Virus Transmission are Conserved in Multiple Aphid Species and the Whitefly Bemisia tabaci. Journal of Integrative Agriculture, 11(2): 249-262.

[1]Altschul S F, Wootton J C, Gertz E M, Agarwala R, Morgulis A, Schaffer A A, Yu Y K. 2005. Protein database searches using compositionally adjusted substitution matrices. FEBS Journal, 272, 5101-5109.

[2]Anderson T J, Tchernyshyov I, Diez R, Cole R N, Geman D, Dang C V, Winslow R L. 2007. Discovering robust protein biomarkers for disease from relative expression reversals in 2-D DIGE data. Proteomics, 7, 1197-1207.

[3]Anstead J A, Burd J D, Shufran K A. 2002. Mitochondrial DNA sequence divergence among Schizaphis graminum (Hemiptera: Aphididae) clones from cultivated and non-cultivated hosts: haplotype and host associations. Bulletin of Entomological Research, 92, 17-24.

[4]Asanzi C M, Bosque-Perez N A , Buddenhagen I W, Gordon D T, Nault L R. 1994. Interactions among maize streak virus disease, leafhopper vector populations and maize cultivars in forest and savanna zones of Nigeria. Plant Pathology, 43, 145-157.

[5]Blackman R L. 1987. Reproduction, cytogenetics and development. In: Minks A K, Harrewijn P, eds., Aphids: Their Biology, Natural Enemies and Control. Elservier, Amsterdam. p. 33.

[6]Blumenstein M, McMaster M T, Black M A, Wu S, Prakash R, Cooney J, McCowan L M, Cooper G J, North R A. 2009. A proteomic approach identifies early pregnancy biomarkers for preeclampsia: novel linkages between a predisposition to preeclampsia and cardiovascular disease. Proteomics, 9, 2929-2945.

[7]Bosque-Perez N A. 2000. Eight decades of maize streak virus research. Virus Research, 71, 107-121.

[8]Brown J K. 2000. Molecular markers for the identification and global tracking of whitefly vector-Begomovirus complexes. Virus Research, 71, 233-260.

[9]Burrows M E, Caillaud M C, Smith D M, Benson E C, Gildow F E, Gray S M. 2006. Genetic regulation of polerovirus and luteovirus transmission in the aphid Schizaphis graminum. Phytopathology, 96, 828-837.

[10]Burrows M E, Caillaud M C, Smith D M, Gray S M. 2007. Biometrical genetic analysis of luteovirus transmission in the aphid Schizaphis graminum. Heredity, 98, 106- 113.

[11]Caciagli P, Medina Piles V, Marian D, Vecchiati M, Masenga V, Mason G, Falcioni T, Noris E. 2009. Virion stability is important for the circulative transmission of Tomato yellow leaf curl sardinia virus by Bemisia tabaci, but virion access to salivary glands does not guarantee transmissibility. Journal of Virology, 83, 5784-5795.

[12]Castle S, Palumbo J , Prabhaker N. 2009. Newer insecticides for plant virus disease management. Virus Research, 141, 131-139.

[13]Chapin J W, Thomas J S, Gray S M, Smith D M, Halbert S E. 2001. Seasonal abundance of aphids (Homoptera: Aphididae) in wheat and their role as Barley yellow dwarf virus vectors in the South Carolina coastal plain. Journal of Economic Entomology, 94, 410-421.

[14]Chen L F, Gilbertson R L. 2009. Curtovirus-cucurbit interaction: acquisition host plays a role in leafhopper transmission in a host-dependent manner. Phytopathology, 99, 101-108.

[15]Cilia M, Fish T, Yang X, McLaughlin M, Thannhauser T W, Gray S. 2009. A comparison of protein extraction methods suitable for gel-based proteomic studies of aphid proteins. Journal of Biomololecular Techniques, 20, 201-215.

[16]Cilia M, Howe K, Fish T, Smith D, Mahoney J, Tamborindeguy C, Burd J, Thannhauser T W, Gray S. 2011. Biomarker discovery from the top down: protein biomarkers for efficient virus transmission by insects (Homoptera: Aphididae) discovered by coupling genetics and 2-D DIGE.

[17]Proteomics, 11, 2440-2458.

[18]Cilia M, Tamborindeguy C, Fish T, Howe K, Thannhauser T W, Gray S. 2011. Genetics coupled to quantitative intact proteomics links heritable aphid and endosymbiont protein expression to circulative polerovirus transmission. Journal of Virology, 85, 2148- 2166.

[19]Cilia M, Tamborindeguy C, Rolland M, Howe K, Thannhauser T W, Gray S. 2011. Tangible benefits of the aphid Acyrthosiphon pisum genome sequencing for aphid proteomics: Enhancements in protein identification and data validation for homology-based proteomics. Journal of Insect Physiology, 57, 179-190.

[20]Czosnek H, Ghanim M, Ghanim M. 2002. The circulative pathway of begomoviruses in the whitefly vector Bemisia tabaci - insights from studies with Tomato yellow leaf curl virus. Annals of Applied Biology, 140, 215-231.

[21]Dedryver C A, Le Ralec A, Fabre F. 2010. The conflicting relationships between aphids and men: a review of aphid damage and control strategies. Comptes Rendus Biologies, 333, 539-553.

[22]Douglas A E. 1998. Nutritional interactions in insectmicrobial symbioses: aphids and their symbiotic bacteria Buchnera. Annual Review of Entomology, 43, 17-37.

[23]Filichkin S A, Brumfield S, Filichkin T P, Young M J. 1997. In vitro interactions of the aphid endosymbiotic SymL chaperonin with Barley yellow dwarf virus. Journal of Virology, 71, 569-577.

[24]Gildow F E, Rochow W F. 1980. Role of accessory salivary glands in aphid transmission of Barley yellow dwarf virus. Virology, 104, 97-108.

[25]Gottlieb Y, Zchori-Fein E, Mozes-Daube N, Kontsedalov S, Skaljac M, Brumin M, Sobol I, Czosnek H, Vavre F, Fleury F, Ghanim M. 2010. The transmission efficiency of Tomato yellow leaf curl virus by the whitefly Bemisia tabaci is correlated with the presence of a specific symbiotic bacterium species. Journal of Virology, 84, 9310-9317.

[26]Gray S, Gildow F E. 2003. Luteovirus-aphid interactions. Annual Review of Phytopathology, 41, 539-566.

[27]Gray S M, Banerjee N. 1999. Mechanisms of arthropod transmission of plant and animal viruses. Microbiology and Molecular Biology Reviews, 63, 128-148.

[28]Gray S M, Caillaud M C, Burrows M, Smith D M. 2007. Transmission of two viruses that cause Barley Yellow Dwarf is controlled by different loci in the aphid, Schizaphis graminum. Journal of Insect Science, 7, 1- 15.

[29]Gray S M, Smith D M, Barbierri L, Burd J. 2002. Virus transmission phenotype is correlated with host adaptation among genetically diverse populations of the aphid Schizaphis graminum. Phytopathology, 92, 970-975.

[30]Hesler L S, Riedell W E, Langham M A, Osborne S L. 2005. Insect infestations, incidence of viral plant diseases, and yield of winter wheat in relation to planting date in the northern Great Plains. Journal of Econonomic Entomology, 98, 2020-2027.

[31]van den Heuvel J F, Verbeek M, van der Wilk F. 1994. Endosymbiotic bacteria associated with circulative transmission of potato leafroll virus by Myzus persicae. Journal of General Virology, 75, 2559-2565.

[32]Hogenhout S A, Ammar el-D, Whitfield A E, Redinbaugh M G. 2008. Insect vector interactions with persistently transmitted viruses. Annual Review of Phytopathology, 46, 327-359.

[33]Hueber W, Robinson W H. 2006. Proteomic biomarkers for autoimmune disease. Proteomics, 6, 4100-4105.

[34]Huttenhain R, Malmstrom J, Picotti P, Aebersold R. 2009. Perspectives of targeted mass spectrometry for protein biomarker verification. Current Opinion in Chemical Biology, 13, 518-525.

[35]Hye A, Lynham S, Thambisetty M, Causevic M, Campbell J, Byers H L, Hooper C, Rijsdijk F, Tabrizi S J, Banner S, et al. 2006. Proteome-based plasma biomarkers for Alzheimer’s disease. Brain, 129, 3042-3050.

[36]IAGC. 2010. Genome sequence of the pea aphid Acyrthosiphon pisum. PLoS Biology, 8, e1000313. Jones R A C. 2004. Using epidemiological information to develop effective integrated virus disease management strategies. Advances in Virus Research, 100, 5-30.

[37]Jones R A C. 2006. Control of plant virus diseases. Advances in Virus Research, 67, 205-244.

[38]Kirkness E F, Haas B J, Sun W, Braig H R, Perotti M A, Clark J M, Lee S H, Robertson H M, Kennedy R C, Elhaik E, et al. 2010. Genome sequences of the human body louse and its primary endosymbiont provide insights into the permanent parasitic lifestyle. Proceedings of the National Academy of Sciences of the USA, 107, 12168-12173.

[39]Legg J P, French R, Rogan D, Okao-Okuja G, Brown J K. 2002. A distinct Bemisia tabaci (Gennadius) (Hemiptera: Sternorrhyncha: Aleyrodidae) genotype cluster is associated with the epidemic of severe cassava mosaic virus disease in Uganda. Molecular Ecology, 11, 1219- 1229.

[40]Li M, Hu J A, Xu F C, Liu S S. 2010. Transmission of Tomato Yellow Leaf Curl Virus by two invasive biotypes and a Chinese indigenous biotype of the whitefly Bemisia tabaci. International Journal of Pest Management, 56, 275-280.

[41]MacLean B, Tomazela D M, Shulman N, Chambers M, Finney G L, Frewen B, Kern R, Tabb D L, Liebler D C, MacCoss M J. 2010. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics, 26, 966-968.

[42]Magenya O E V, Mueke J, Omwega C. 2008. Significance and transmission of maize streak virus disease in Africa and options for management: A review. African Journal of Biotechnology, 7, 4897-4910.

[43]Makkouk K M, Kumari S G. 2009. Epidemiology and integrated management of persistently transmitted aphid-borne viruses of legume and cereal crops in West Asia and North Africa. Virus Research, 141, 209-218.

[44]Momol M T, Olson S M, Funderburk J E, Stavisky J, Marois J J. 2004. Integrated management of tomato spotted wilt on field-grown tomatoes. Plant Disease, 88, 882- 890.

[45]Nault L R, Ammar E D. 1989. Leafhopper and planthopper transmission of plant viruses. Annual Review of Entomology, 34, 503-529.

[46]Ollivier M, Legeai F, Rispe C. 2010. Comparative analysis of the Acyrthosiphon pisum genome and expressed sequence tag-based gene sets from other aphid species. Insect Molecular Biology, 19(Suppl. 2), 33-45.

[47]Paoloni M, Davis S, Lana S, Withrow S, Sangiorgi L, Picci P, Hewitt S, Triche T, Meltzer P, Khanna C. 2009. Canine tumor cross-species genomics uncovers targets linked to osteosarcoma progression. BMC Genomics, 10, 625. Papura D, Jacquot E, Dedryver C A, Luche S, Riault G, Bossis M, Rabilloud T. 2002. Two-dimensional electrophoresis of proteins discriminates aphid clones of Sitobion avenae differing in BYDV-PAV transmission. Archives of Virology, 147, 1881-1898.

[48]Peiffer M L, Gildow F E, Gray S M. 1997. Two distinct mechanisms regulate luteovirus transmission efficiency and specificity at the aphid salivary gland. Journal of General Virology, 78, 495-503.

[49]Peter K A, Liang D, Palukaitis P, Gray S M. 2008. Small deletions in the potato leafroll virus readthrough protein affect particle morphology, aphid transmission, virus movement and accumulation. Journal of General Virology, 89, 2037-2045.

[50]Picotti P, Bodenmiller B, Mueller L N, Domon B, Aebersold R. 2009. Full dynamic range proteome analysis of S. cerevisiae by targeted proteomics. Cell, 138, 795-806.

[51]Power A G, Gray S M 1995. Aphid transmission of barley yellow dwarf viruses: Interactions between viruses, vectors, and host plants. In: D’Arcy C J, Burnett P A, eds., Barley Yellow Dwarf: 40 Years of Progress. APS Press, St. Paul 32, USA

[52]Prakash A, Tomazela D M, Frewen B, Maclean B, Merrihew G, Peterman S, Maccoss M J. 2009. Expediting the development of targeted SRM assays: using data from shotgun proteomics to automate method development. Journal of Proteome Research, 8, 2733-2739.

[53]Rifai N, Gillette M A, Carr S A. 2006. Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nature Biotechnology, 24, 971-983.

[54]Rosell R C, Torres-Jerez I, Brown J K. 1999. Tracing the geminivirus-whitefly transmission pathway by polymerase chain reaction in whitefly extracts, saliva, hemolymph, and honeydew. Phytopathology, 89, 239- 246.

[55]Seddas P, Boissinot S, Strub J M, van Dorsselaer A, van Regenmortel M H, Pattus F. 2004. Rack-1, GAPDH3, and actin: proteins of Myzus persicae potentially involved in the transcytosis of Beet western yellows virus particles in the aphid. Virology, 325, 399-412.

[56]Shufran K A, Burd J D, Anstead J A, Lushai G. 2000. Mitochondrial DNA sequence divergence among greenbug (Homoptera: Aphididae) biotypes: evidence for host-adapted races. Insect Molecular Biology, 9, 179-184.

[57]Shufran K A, Peters D C, Webster J A. 1997. Generation of clonal diversity by sexual reproduction in the greenbug, Schizaphis graminum. Insect Molecular Biology, 6, 203-209.

[58]Simmons A M, Kousik C S, Levi A. 2010. Combining reflective mulch and host plant resistance for sweetpotato whitefly (Hemiptera: Aleyrodidae) management in watermelon. Crop Protection, 29, 898- 902.

[59]Soto M J, Chen L F, Seo Y S, Gilbertson R L. 2005. Identification of regions of the Beet mild curly top virus (family Geminiviridae) capsid protein involved in systemic infection, virion formation and leafhopper transmission. Virology, 341, 257-270.

[60]Srinivas P R, Verma M, Zhao Y, Srivastava S. 2002. Proteomics for cancer biomarker discovery. Clinical Chemistry, 48, 1160-1169.

[61]Storey H H. 1925. The transmission of streak disease of maize by the leafhopper Balclutha mbila naude. Annals of Applied Biology, 12, 422-439.

[62]Strausbaugh C A, Wintermantel W M, Gillen A M, Eujayl I A. 2008. Curly top survey in the Western United States. Phytopathology, 98, 1212-1217.

[63]Tagu D, Wilson A, Edwards O, Calevro F, Carolan J, Chang C, Charles H, Cilia M, Colella S, Field L, et al. 2010. Aphid White Paper II: Proposal to complete development of the aphid model. [2012-1-16].

[64]http:// inra.academia.edu/StefanoColella/Papers/1013284/ Aphid_White_Paper_II_Proposal_to_Complete_Devel opment_of_the_Aphid_Model

[65]Tomazela D M, Patterson B W, Hanson E, Spence K L, Kanion T B, Salinger D H, Vicini P, Barret H, Heins H B, Cole F S, et al. 2010. Measurement of human surfactant protein-B turnover in vivo from tracheal aspirates using targeted proteomics. Analytical Chemistry, 82, 2561- 2567.

[66]Wang X W, Luan J B, Li J M, Bao Y Y, Zhang C X, Liu S S. 2010. De novo characterization of a whitefly transcriptome and analysis of its gene expression during development. BMC Genomics, 11, 400. Wang Y, Carolan J C, Hao F, Nicholson J K, Wilkinson T L, Douglas A E. 2010. Integrated metabonomic-proteomic analysis of an insect-bacterial symbiotic system. Journal of Proteome Research, 9, 1257-1267.

[67]Wolf-Yadlin A, Hautaniemi S, Lauffenburger D A, White F M. 2007. Multiple reaction monitoring for robust quantitative proteomic analysis of cellular signaling networks. Proceedings of the National Academy of Sciences of the USA, 104, 5860-5865.

[68]Yang X, Thannhauser T W, Burrows M, Cox-Foster D, Gildow F E, Gray S M. 2008. Coupling genetics and proteomics to identify aphid proteins associated with vector-specific transmission of polerovirus (Luteoviridae). Journal of Virology, 82, 291-299.

[69]Yu Y K, Wootton J C, Altschul S F. 2003. The compositional adjustment of amino acid substitution matrices. Proceedings of the National Academy of Sciences of the USA, 100, 15688-15693.

[70]Zagre M B B. 1983. Studies on maize streak virus and its transmission characteristics by the leafhopper vector Cicadulina triangula. Ingenieur agronome these, Universite Nationale du Benin.

[71]Zwiener C M, Conley S P, Bailey W C, Sweets L E. 2005. Influence of aphid species and Barley yellow dwarf virus on soft red winter wheat yield. Journal of Economic Entomology, 98, 2013-2019.
[1] Meagan J. STOTTS, Yangzi ZHANG, Shuwen ZHANG, Jennifer J. MICHAL, Juan VELEZ, Bothe HANS, Martin MAQUIVAR, Zhihua JIANG.

Alternative polyadenylation events in epithelial cells sense endometritis progression in dairy cows [J]. >Journal of Integrative Agriculture, 2023, 22(6): 1820-1832.

[2] XU Lei, ZHAO Tong-hua, Xing Xing, XU Guo-qing, XU Biao, ZHAO Ji-qiu.

Model fitting of the seasonal population dynamics of the soybean aphid, Aphis glycines Matsumura, in the field [J]. >Journal of Integrative Agriculture, 2023, 22(6): 1797-1808.

[3] YANG Ning, YANG Dan-dan, YU Xu-chen, XU Cao. Multi-omics-driven development of alternative crops for natural rubber production[J]. >Journal of Integrative Agriculture, 2023, 22(4): 959-971.
[4] PAN Fan, GAO Li-jie, ZHU Kai-hui, DU Gui-lin, ZHU Meng-meng, ZHAO Li, GAO Yu-lin, TU Xiong-bing, ZHANG Ze-hua. Regional selection of insecticides and fungal biopesticides to control aphids and thrips and improve the forage quality of alfalfa crops[J]. >Journal of Integrative Agriculture, 2023, 22(1): 185-194.
[5] CHENG Jin-tao, CHEN Hai-wen, DING Xiao-chen, SHEN Tai, PENG Zhao-wen, KONG Qiu-sheng, HUANG Yuan, BIE Zhi-long. Transcriptome analysis of the influence of CPPU application for fruit setting on melon volatile content[J]. >Journal of Integrative Agriculture, 2021, 20(12): 3199-3208.
[6] LAN Hao, ZHANG Zhan-feng, WU Jun, CAO He-he, LIU Tong-xian. Performance and transcriptomic response of the English grain aphid, Sitobion avenae, feeding on resistant and susceptible wheat cultivars[J]. >Journal of Integrative Agriculture, 2021, 20(1): 178-190.
[7] ZHANG Hong, HUANG Xin-zheng, JING Wei-xia, LIU Dan-feng, Khalid Hussain DHILOO, HAO Zhi-min, ZHANG Yong-jun. Two farnesyl pyrophosphate synthases, GhFPS1–2, in Gossypium hirsutum are involved in the biosynthesis of farnesol to attract parasitoid wasps[J]. >Journal of Integrative Agriculture, 2020, 19(9): 2274-2285.
[8] YAN Shuo, WANG Wan-xing, SHEN Jie. Reproductive polyphenism and its advantages in aphids: Switching between sexual and asexual reproduction[J]. >Journal of Integrative Agriculture, 2020, 19(6): 1447-1457.
[9] LIU Fang-hua, KANG Zhi-wei, TAN Xiao-ling, FAN Yong-liang, TIAN Hong-gang, LIU Tong-xian . Physiology and defense responses of wheat to the infestation of different cereal aphids[J]. >Journal of Integrative Agriculture, 2020, 19(6): 1464-1474.
[10] XU Yi, Stewart M. GRAY.
Aphids and their transmitted potato viruses: A continuous challenges in potato crops
[J]. >Journal of Integrative Agriculture, 2020, 19(2): 367-389.
[11] Andrew GALIMBERTI, Andrei ALYOKHIN, Hongchun QU, Jason ROSE .
Simulation modelling of potato virus Y spread in relation to initial inoculum and vector activity
[J]. >Journal of Integrative Agriculture, 2020, 19(2): 376-388.
[12] JI Shun-xia, SHEN Xiao-na, LIANG Lin, WANG Xiao-di, LIU Wan-xue, WAN Fang-hao, Lü Zhi-chuang. Molecular characteristics and temperature tolerance function of the transient receptor potential in the native Bemisia tabaci AsiaII3 cryptic species[J]. >Journal of Integrative Agriculture, 2020, 19(11): 2746-2757.
[13] HAN Shan-jie, WANG Meng-xin, WANG Yan-su, WANG Yun-gang, CUI Lin, HAN Bao-yu. Exploiting push-pull strategy to combat the tea green leafhopper based on volatiles of Lavandula angustifolia and Flemingia macrophylla[J]. >Journal of Integrative Agriculture, 2020, 19(1): 193-203.
[14] WEI Ke-ke, LI Jie, DING Tian-bo, LIU Tong-xian, CHU Dong . Transmission characteristics of Tomato chlorosis virus (ToCV) by Bemisia tabaci MED and its effects on host preference of vector whitefly[J]. >Journal of Integrative Agriculture, 2019, 18(9): 2107-2114.
[15] WANG Ran, WANG Jin-da, CHE Wu-nan, SUN Yan, LI Wen-xiang, LUO Chen .
Characterization of field-evolved resistance to cyantraniliprole in Bemisia tabaci MED from China
[J]. >Journal of Integrative Agriculture, 2019, 18(11): 2571-2578.
No Suggested Reading articles found!