Please wait a minute...
Journal of Integrative Agriculture  2020, Vol. 19 Issue (11): 2746-2757    DOI: 10.1016/S2095-3119(20)63226-9
Special Issue: 昆虫合辑Plant Protection—Entomolgy ; 昆虫分子生物学合辑Insect Molecular Biology 昆虫和植物互作合辑Insect and Plant Interact
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Molecular characteristics and temperature tolerance function of the transient receptor potential in the native Bemisia tabaci AsiaII3 cryptic species
JI Shun-xia1, SHEN Xiao-na1, LIANG Lin1, WANG Xiao-di1, LIU Wan-xue1, WAN Fang-hao1, 2, LÜ Zhi-chuang1 
1 State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China
2 Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  
Insects are poikilothermic animals, and temperature is one of the most important abiotic factors affecting their spread and distribution.  For example, differences in thermal tolerance may underlie the significant differences in geographical distributions between the native AsiaII3 and invasive MED (Mediterranean) cryptic Bemisia tabaci species in China.  Transient receptor potential (TRP) channels are key components of the insect temperature perception system and act as molecular thermometers since they can be activated by specific changes in temperature.  In this study, we cloned and characterized the AsiaII3 BtTRP gene and revealed its functions in the response to thermal stress.  The full-length cDNA of BtTRP was 3 821 bp, with a 3 501-bp open reading frame encoding a 132.05-kDa protein.  Comparing the deduced amino acid sequences of AsiaII3 BtTRP and MED TRP revealed five amino acid differences.  In situ hybridization indicated that BtTRP might be widely expressed throughout the AsiaII3 adult body.  BtTRP mRNA expression reached the highest levels after exposure to mild thermal stimuli (12 and 35°C), showing that BtTRP expression can be induced by temperature stress.  Furthermore, the thermal tolerance of AsiaII3 after BtTRP dsRNA feeding was significantly lower than that of the control.  Taken together, the present study highlights the importance of TRP channels for B.?tabaci thermal resistance, and allows us to infer that the differences in amino acids between AsiaII3 and MED might cause the differences in thermal tolerance of these two cryptic species.  This study provides a new direction for investigating geographic distribution differences between invasive and native insects.
Keywords:  transient receptor potential        thermosensation        thermal stress        Bemisia tabaci       AsiaII3  
Received: 30 September 2019   Accepted:
Fund: This work was funded by the National Natural Science Foundation of China (31672088 and 31601695), the Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences (caascx-2017-2022-IAS) and the National Key Research and Development Program of China (2016YFC1200603).
Corresponding Authors:  Correspondence Lü Zhi-chuang, Tel/Fax: +86-10-82109572, E-mail: lvzhichuang@caas.cn   
About author:  JI Shun-xia, E-mail: 82101172334@caas.cn;

Cite this article: 

JI Shun-xia, SHEN Xiao-na, LIANG Lin, WANG Xiao-di, LIU Wan-xue, WAN Fang-hao, Lü Zhi-chuang. 2020. Molecular characteristics and temperature tolerance function of the transient receptor potential in the native Bemisia tabaci AsiaII3 cryptic species. Journal of Integrative Agriculture, 19(11): 2746-2757.

Bowler K, Terblanche J S. 2008. Insect thermal tolerance: What is the role of ontogeny, ageing and senescence? Biological Reviews, 83, 339–355.
Bubli O A, Imasheva A G, Loeschcke V. 1998. Selection for knockdown resistance to heat in Drosophila melanogaster at high and low larval densities. Evolution, 52, 619–625.
Castillo K, Diaz-Franulic I, Canan J, Gonzalez-Nilo F, Latorre R. 2018. Thermally activated TRP channels: Molecular sensors for temperature detection. Physical Biology, 15, 021001.
Chu D, Zhang Y J, Cong B, Xu B Y, Wu Q J. 2005. Identification for Yunnan Q-biotype Bemisia tabaci population. Entomological Knowledge, 42, 59–62. (in Chinese)
Cordero-Morales J F, Gracheva E O, Julius D. 2011. Cytoplasmic ankyrin repeats of transient receptor potential A1 (TRPA1) dictate sensitivity to thermal and chemical stimuli. Proceedings of the National Academy of Sciences of the United States of America, 108, E1184–E1191.
Couret J, Dotson E, Benedict M Q. 2014. Temperature, larval diet, and density effects on development rate and survival of Aedes aegypti (Diptera: Culicidae). PLoS ONE, 9, e87468.
Cui X H, Wan F H, Xie M, Liu T X. 2008. Effects of heat shock on survival and reproduction of two whitefly species, Trialeurodes vaporariorum and Bemisia tabaci biotype B. Journal of Insect Science, 8, 24.
Dai T M, Lü Z C, Liu W X, Wan F H. 2017. Selection and validation of reference genes for qRT-PCR analysis during biological invasions: The thermal adaptability of Bemisia tabaci MED. PLoS ONE, 12, e0173821.
Dai T M, Wang Y S, Liu W X, Lü Z C, Wan F H. 2018. Thermal discrimination and transgenerational temperature response in Bemisia tabaci Mediterranean (Hemiptera: Aleyrodidae): Putative involvement of the thermo-sensitive receptor BtTRPA. Environmental Entomology, 47, 204–209.
Damann N, Voets T, Nilius B. 2008. TRPs in our senses. Current Biology, 18, R880–R889.
De Barro P J, Liu S S, Boykin L M, Dinsdale A B. 2011. Bemisia tabaci: A statement of species status. Annual Review of Entomology, 56, 1–19.
Fowler M A, Montell C. 2013. Drosophila TRP channels and animal behavior. Life Science, 92, 394–403.
Gibert P, Moreteau B, Pétavy G, Karan D, David J R. 2001. Chill-coma tolerance, a major climatic adaptation among Drosophila species. Evolution, 55, 1063–1068.
Gutierrez A P, Ponti L. 2014. Analysis of invasive insects: Links to climate change. Invasive Species and Global Climate Change, 4, 45–61.
Harrison J F, Woods H A, Roberts S P. 2012. Temperature. In: Burggren W, Sherman I, eds., Ecological and Environmental Physiology of Insects. Oxford University Press, Oxford. pp. 64–97.
Hu J, De Barro P J, Zhao H, Wang J, Nardi F, Liu S S. 2011. An extensive field survey combined with a phylogenetic analysis reveals rapid and widespread invasion of two alien whiteflies in China. PLoS ONE, 6, e16061.
Islas L D. 2018. Molecular mechanisms of temperature gating in TRP channels. In: Emir T L R, ed., Neurobiology of TRP Channels. CRC Press, Taylor & Francis Group, Boca Raton. pp. 11–25.
Jabba S, Goyal R, Sosa-Pagán J O, Moldenhauer H, Wu J, Kalmeta B, Bandell M, Latorre R, Patapoutian A, Grandl J. 2014. Directionality of temperature activation in mouse TRPA1 ion channel can be inverted by single-point mutations in ankyrin repeat six. Neuron, 82, 1017–1031.
Julius D. 2013. TRP channels and pain. Annual Review of Cell and Developmental Biology, 29, 355–384.
Kang K, Panzano V C, Chang E C, Ni L, Dainis A M, Jenkins A M, Regna K, Muskavitch M A, Garrity P A. 2012. Modulation of TRPA1 thermal sensitivity enables sensory discrimination in Drosophila. Nature, 481, 76.
Kang K, Pulver S R, Panzano V C, Chang E C, Griffith L C, Theobald D L, Garrity P A. 2010. Analysis of Drosophila TRPA1 reveals an ancient origin for human chemical nociception. Nature, 464, 597.
Kim H G, Margolies D, Park Y. 2015. The roles of thermal transient receptor potential channels in thermotactic behavior and in thermal acclimation in the red flour beetle, Tribolium castaneum. Journal of Insect Physiology, 76, 47–55.
Kohno K, Sokabe T, Tominaga M, Kadowaki T. 2010. Honey bee thermal/chemical sensor, AmHsTRPA, reveals neofunctionalization and loss of transient receptor potential channel genes. Journal of Neuroscience, 30, 12219–12229.
Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870–1874.
Kwon Y, Shim H S, Wang X, Montell C. 2008. Control of thermotactic behavior via coupling of a TRP channel to a phospholipase C signaling cascade. Nature Neuroscience, 11, 871.
Lancaster L T. 2016. Widespread range expansions shape latitudinal variation in insect thermal limits. Nature Climate Change, 6, 618.
Lancaster L T, Dudaniec R Y, Chauhan P, Wellenreuther M, Svensson E I, Hansson B. 2016. Gene expression under thermal stress varies across a geographical range expansion front. Molecular Ecology, 25, 1141–1156.
Lee Y, Lee Y, Lee J, Bang S, Hyun S, Kang J, Hong S T, Bae E, Kaang B K, Kim J. 2005. Pyrexia is a new thermal transient receptor potential channel endowing tolerance to high temperatures in Drosophila melanogaster. Nature Genetics, 37, 305.
Li H. 2014. Studies on cold hardiness of Galeruca daurica Joannis (Coleoptera: Chrysomelidae) and its mechanisms. MSc thesis, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia. (in Chinese)
Li Q, Lü Z C, Li Z L, Wan F H. 2015. Molecular cloning and bioinformatics analysis of the Bemisia tabaci Mediterranean (MED) transient receptor potential (TRP) gene. Chinese Journal of Applied Entomology, 52, 400–410. (in Chinese)
Liu S S, Colvin J, De Barro P J. 2012. Species concepts as applied to the whitefly Bemisia tabaci systematics: How many species are there? Journal of Integrative Agriculture, 11, 176–186.
Liu Y. 2014. Expression pattern of As-trpc4 gene during diapause process and temperature stress in Artemia sinica. MSc thesis, Liaoning Normal University, Dalian, Liaoning. (in Chinese)
Liu Y Q, Liu S S. 2012. Species status of Bemisia tabaci complex and their distributions in China. Journal of Biosafety, 21, 247–255. (in Chinese)
Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2–??CT method. Methods, 25, 402–408.
Lü Z C, Li Q, Liu W X, Wan F H. 2014. Transient receptor potential is essential for high temperature tolerance in invasive Bemisia tabaci Middle East Asia minor 1 cryptic species. PLoS ONE, 9, e108428.
Lü Z C, Wan F H. 2011. Using double-stranded RNA to explore the role of heat shock protein genes in heat tolerance in Bemisia tabaci (Gennadius). Journal of Experimental Biology, 214, 764–769.
Ma F Z, Lü Z C, Wang R, Wan F H. 2014. Heritability and evolutionary potential in thermal tolerance traits in the invasive Mediterranean cryptic species of Bemisia tabaci (Hemiptera: Aleyrodidae). PLoS ONE, 9, e103279.
Mao F, Guo L, Jin M, Qiao X M, Ye G Y, Huang J. 2019. Molecular cloning and characterization of TRPVs in two rice pests: Nilaparvata lugens (Stål) and Nephotettix cincticeps (Uhler). Pest Management Science, 75, 1361–1369.
Matsuura H, Sokabe T, Kohno K, Tominaga M, Kadowaki T. 2009. Evolutionary conservation and changes in insect TRP channels. BMC Evolutionary Biology, 9, 228.
Miles P W. 1965. Studies on the salivary physiology of plant-bugs: The salivary secretions of aphids. Journal of Insect Physiology, 11, 1261–1268.
Mitchell K A, Hoffmann A A. 2010. Thermal ramping rate influences evolutionary potential and species differences for upper thermal limits in Drosophila. Functional Ecology, 24, 694–700.
Montell C. 2005. Drosophila TRP channels. Pflügers Archiv-European Journal of Physiology, 451, 19–28.
Montell C. 2011. The history of TRP channels, a commentary and reflection. Pflügers Archiv-European Journal of Physiology, 461, 499–506.
Musolin D L. 2007. Insects in a warmer world: Ecological, physiological and life-history responses of true bugs (Heteroptera) to climate change. Global Change Biology, 13, 1565–1585.
Patapoutian A. 2005. TRP channels and thermosensation. Chemical Senses, 30, i193–i194.
Peng G, Shi X, Kadowaki T. 2015. Evolution of TRP channels inferred by their classification in diverse animal species. Molecular Phylogenetics and Evolution, 84, 145–157.
Pfaffl M W. 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 29, e45–e45.
Su H A, Bai X, Zeng T, Lu Y Y, Qi Y X. 2018. Identification, characterization and expression analysis of transient receptor potential channel genes in the oriental fruit fly, Bactrocera dorsalis. BMC Genomics, 19, 1–13.
Venkatachalam K, Montell C. 2007. TRP channels. Annual Review of Biochemistry, 76, 387–417.
Wang H, Schupp M, Zurborg S, Heppenstall P A. 2013. Residues in the pore region of Drosophila transient receptor potential A1 dictate sensitivity to thermal stimuli. The Journal of Physiology, 591, 185–201.
Wang X W, Yang N W. 2017. The whitefly Bemisia tabaci (Gennadius). In: Wan F H, Jiang M X, Zhan A B, eds., Biological Invasions and its Management in China. Springer, Dordrecht. pp. 159–182.
Wei J J, Fu T, Yang T, Liu Y, Wang G R. 2015. A TRPA1 channel that senses thermal stimulus and irritating chemicals in Helicoverpa armigera. Insect Molecular Biology, 24, 412–421.
Xue Y T. 2018. Geographical distribution, genetic structure of Bemisia tabaci (Hemiptera: Aleyrodidae) in China, and diversity of its secondary endosymbionts. MSc thesis, Southwest University, Chongqing. (in Chinese)
Yu H, Wan F H, Guo J Y. 2012. Different thermal tolerance and hsp gene expression in invasive and indigenous sibling species of Bemisia tabaci. Biological Invasions, 14, 1587–1595.
Zhong L, Bellemer A, Yan H, Honjo K, Robertson J, Hwang R Y, Pitt G S, Tracey W D. 2012. Thermosensory and nonthermosensory isoforms of Drosophila melanogaster TRPA1 reveal heat-sensor domains of a thermoTRP channel. Cell Reports, 1, 43–55.
[1] LIU Xiang, KANG Zhi-wei, YU Xing-lin, LI Fan, LIU Tong-xian, LI Qiang . Role of TRP channels and HSPs in thermal stress response in the aphid parasitoid Aphelinus asychis (Hymenoptera: Aphelinidae)[J]. >Journal of Integrative Agriculture, 2020, 19(6): 1530-1542.
No Suggested Reading articles found!