Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (6): 1797-1808    DOI: 10.1016/j.jia.2023.02.021
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |

Model fitting of the seasonal population dynamics of the soybean aphid, Aphis glycines Matsumura, in the field

XU Lei1, ZHAO Tong-hua1, Xing Xing2, XU Guo-qing1#, XU Biao2, ZHAO Ji-qiu1

1 Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang 110161, P.R.China

2 Agricultural Technology Extension Center of Xiuyan Manchu Autonomous County, Anshan 114300, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

大豆蚜虫是大豆生产中的最大威胁之一,其种群动态的趋势性及周期性分析对害虫综合治理(IPM具有重要意义。本研究在对田间大豆蚜种群系统调查(20182020)的基础上,首次采用反Logistic模型,同时结合经典Logistic模型,描述了大豆蚜从田间定殖到绝迹的季节性种群消长规律。通过计算模型的拐点,划分了种群波动的递增和递减阶段,直观地呈现出不同年份大豆蚜虫种群的季节性变化趋势。此外,首次建立了田间大豆蚜随时间以及相关环境因子变化多元Logistic模型,可以根据气象数据预测对应时间下的瞬时蚜量。总体而言,本研究方法的成功运用可为实践中的大豆蚜虫IPM策略提供理论框架



Abstract  

The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is one of the greatest threats to soybean production, and both trend analysis and periodic analysis of its population dynamics are important for integrated pest management (IPM).  Based on systematically investigating soybean aphid populations in the field from 2018 to 2020, this study adopted the inverse logistic model for the first time, and combined it with the classical logistic model to describe the changes in seasonal population abundance from colonization to extinction in the field.  Then, the increasing and decreasing phases of the population fluctuation were divided by calculating the inflection points of the models, which exhibited distinct seasonal trends of the soybean aphid populations in each year.  In addition, multifactor logistic models were then established for the first time, in which the abundance of soybean aphids in the field changed with time and relevant environmental conditions.  This model enabled the prediction of instantaneous aphid abundance at a given time based on relevant meteorological data.  Taken as a whole, the successful approaches implemented in this study could be used to build a theoretical framework for practical IPM strategies for controlling soybean aphids.

Keywords:  soybean aphid        population dynamics        logistic model        inverse logistic model        multifactor logistic model  
Received: 12 July 2022   Online: 17 February 2023   Accepted: 21 November 2022
Fund: 

This study was supported by the Chinese National Special Fund for Agro-scientific Research in the Public Interest (201003025 and 201103022), the National Key Research and Development Program of China (2018YFD0201004) and the Discipline Construction Project of Liaoning Academy of Agricultural Sciences, China (2019DD082612).

About author:  XU Lei, E-mail: syxlei81@hotmail.com; #Correspondence XU Guo-qing, Tel: +86-24-31021234, Fax: +86-24-88419895, E-mail: ylzwch@hotmail.com

Cite this article: 

XU Lei, ZHAO Tong-hua, Xing Xing, XU Guo-qing, XU Biao, ZHAO Ji-qiu. 2023.

Model fitting of the seasonal population dynamics of the soybean aphid, Aphis glycines Matsumura, in the field . Journal of Integrative Agriculture, 22(6): 1797-1808.

Agrawal A A, Underwood N, Stinchcombe J R. 2004. Intraspecific variation in the strength of density dependence in aphid populations. Ecological Entomology29, 521–526.

Alexandrov V A, Hoogenboom G. 2000. The impact of climate variability and change on crop yield in Bulgaria. Agricultural and Forest Meteorology104, 315–327.

Aoki S, Imai M. 2005. Factors affecting the proportion of sterile soldiers in growing aphid colonies. Population Ecology47, 127–136.

Aoki S, Kurosu U. 2003. Logistic model for soldier production in aphids. Insectes Sociaux50, 256–261.

Bahlai C A, Sears M K. 2009. Population dynamics of Harmonia axyridis and Aphis glycines in Niagara Peninsula soybean fields and vineyards. Journal of the Entomological Society of Ontario140, 27–39.

Beckendorf E A, Catangui M A, Riedell W E. 2008. Soybean aphid feeding injury and soybean yield, yield components, and seed composition. Agronomy Journal100, 237–246.

Van den Berg H, Ankasah D, Muhammad A, Rusli R, Widayanto H A, Wirasto H B, Yully I. 1997. Evaluating the role of predation in population fluctuations of the soybean aphid Aphis glycines in farmer’s fields in Indonesia. Journal of Applied Ecology34, 971–984.

Blackman R L, Eastop V F. 2000. Aphids on the World’s CropsAn Identification and Information Guide. 2nd ed., Wiley, Chichester, UK. p. 104.

Brand R J, Pinnock D E, Jackson K L. 1973. Large sample confidence bands for the logistic response curve and its inverse. The American Statistician27, 157–160.

Brosius T R, Higley L G, Hunt T E. 2007. Population dynamics of soybean aphid and biotic mortality at the edge of its range. Journal of Economic Entomology100, 1268–1275.

Catangui M A, Beckendorf E A, Riedell W E. 2009. Soybean aphid population dynamics, soybean yield loss, and development of stage-specific economic injury levels. Agronomy Journal101, 1080–1092.

Chen C, Feng M G. 2005. Epizootiological modeling of Pandora neoaphidis mycosis transmission in Myzus persicae colonies initiated by primarily infected alates. Applied and Environmental Microbiology71, 4104–4107.

Chen C, Feng M G. 2006. Experimental simulation of transmission of an obligate aphid pathogen with aphid flight dispersal. Environmental Microbiology8, 69–76.

Chen Y G, Zhou Y X. 2005. Logistic process of urbanization falls into four successive phases: revising Northam’s curve with new spatial interpretation. Economic Geography25, 817–822. (in Chinese)

Costamagna A C, Van der Werf W, Bianchi F J J A, Landis D A. 2007. An exponential growth model with decreasing r captures bottom-up effects on the population growth of Aphis glycines Matsumura (Hemiptera: Aphididae). Agricultural and Forest Entomology9, 297–305.

Cui Y Y, Wang C J. 2000. A mathematical model of seasonal creature population. Journal of Liaoning Teachers University23, 83–85. (in Chinese)

Dixon A F G. 1998. Aphid Ecology. 2nd ed. Chapman & Hall, New York, USA.

Duan A G, Zhang J G, Zhang X Q, He C Y. 2015. Relationship between modelling accuracy and inflection point attributes of several equations while modelling stand diameter distributions. PLoS ONE10, e0126831.

Fehr W R, Caviness C E, Burmood D T, Pennington J S. 1971. Stage of development descriptions for soybeans, Glycine max (L.) Merrill. Crop Science11, 929–931.

Fox T B, Landis D A, Cardoso F F, Difonzo C D. 2004. Predators suppress Aphis glycines Matsumura population growth in soybean. Environmental Entomology33, 608–618.

Fulda J S. 1981. The logistic equation and population decline. Journal of Theoretical Biology91, 255–259.

Haddon M, Mundy C, Tarbath D. 2008. Using an inverse-logistic model to describe growth increments of blacklip abalone (Haliotis rubra) in Tasmania. Fishery Bulletin106, 58–71.

Hallett R H, Bahlai C A, Xue Y, Schaafsma A W. 2014. Incorporating natural enemy units into a dynamic action threshold for the soybean aphid, Aphis glycines (Homoptera: Aphididae). Pest Management Science70, 879–888.

Helidoniotis F, Haddon M, Tuck G, Tarbath D. 2011. The relative suitability of the von Bertalanffy, Gompertz and inverse logistic models for describing growth in blacklip abalone populations (Haliotis rubra) in Tasmania, Australia. Fisheries Research112, 13–21.

Hodgson E W, Venette R C, Abrahamson M, Ragsdale D W. 2005. Alate production of soybean aphid (Homoptera: Aphididae) in Minnesota. Environmental Entomology, 34, 1456–1463.

Hu Q, Zhang W Q, Yao Y X, Yan S Q. 1992. Relationship between nitrogen content in soybean leaves and occurrence of Aphis glycinesJournal of Jilin Agricultural University14, 103–104. (in Chinese)

Johnson K D, O’Neal M E, Ragsdale D W, Difonzo C D, Swinton S M, Dixon P M, Potter B D, Hodgson E W, Costamagna A C. 2009. Probability of cost-effective management of soybean aphid (Hemiptera: Aphididae) in North America. Journal of Economic Entomology102, 2101–2108.

Ju R H, Shen Z R. 2005. Review on insect population dynamics simulation models. Acta Ecologica Sinica25, 2709–2716. (in Chinese)

Leblanc A, Brodeur J. 2018. Estimating parasitoid impact on aphid populations in the field. Biological Control119, 33–42.

Leslie P H. 1945. On the use of matrix incertain population mathematics. Biometrika33, 183–212.

Li J, Wang M Y, Wang Y, Zhang M, Yao N M. 2017. Fitting model of Jilin quinoa growth model based on meteorological factors. Journal of Jilin Agricultural University39, 743–747. (in Chinese)

Li X J, Zheng G, Wang S X, Xing X, Li Y, Yu G W, You G L. 2011. The population dynamics and control effect of important natural enemies of the soybean aphid, Aphis glycinesChinese Journal of Applied Entomology48, 1613–1624. (in Chinese)

Lin L, Ives A. 2003. The effect of parasitoid host-size preference on host population growth rates: An example of Aphidius colemani and Aphis glycinesEcological Entomology28, 542–550.

Macedo T B, Bastos C S, Higley L G, Ostlie K R, Madhavan S. 2003. Photosynthetic responses of soybean to soybean aphid (Homoptera: Aphididae) injury. Journal of Economic Entomology96, 188–193.

Martínez A F R, Costamagna A C. 2018. Effects of crowding and host plant quality on morph determination in the soybean aphid, Aphis glycinesEntomologia Experimentalis et Applicata166, 53–62.

McCornack B P, Costamagna A C, Ragsdale D W. 2008. Within-plant distribution of soybean aphid (Hemiptera: Aphididae) and development of node-based sample units for estimating whole-plant densities in soybean. Journal of Economic Entomology101, 1448–1500.

McCornack B P, Ragsdale D W, Venette R C. 2004. Demography of soybean aphid (Homoptera: Aphididae) at summer temperatures. Journal of Economic Entomology97, 857–861.

Mendes B R, Calegario N, Volpato C E S, Mello A A D. 2006. Development of individual tree growth models based on differential equations. Cerne12, 254–263.

Miksanek J R, Heimpel G E. 2019. A matrix model describing host-parasitoid population dynamics: The case of Aphelinus certus and soybean aphid. PLoS ONE14, e0218217.

Osborne S L, Riedell W E. 2006. Starter nitrogen fertilizer impact on soybean yield and quality in the northern Great Plains. Agronomy Journal98, 1569–1574.

Pang X F, Lu Y L, Wang Y A. 1980. On the use of population matrix models for the studies of insect ecology. Journal of South China Agricultural College1, 27–37. (in Chinese)

Panković V, Krmar M, Glavatović R. 2009. (ANTI)PETER principle-discrete (INVERSE) logistic equation with imprecisely estimated and stimulated carrying capacity. [2016-05-10]. https://doi.org/10.48550/arXiv.0907.5320

Ragsdale D W. 2001. Aphid Alert: Status of Soybean Aphid. In: Radcliffe E B, ed., University of Minnesota Press, Twin Cities, USA.

Ragsdale D W, Voegtlin D J, O’Neil R J. 2004. Soybean aphid biology in North America. Annals of the Entomological Society of America97, 204–208.

Rauwald K S, Ives A R. 2001. Biological control in disturbed agricultural systems and the rapid re-establishment of parasitoids. Ecological Applications11, 1224–1234.

Rhainds M, Yoo H J, Steffey K L, Voegtlin D J, Sadof C S, Yaninek S, O’Neil R J. 2010. Potential of suction traps as a monitoring tool for Aphis glycines (Hemiptera: Aphididae) in soybean fields. Journal of Economic Entomology103, 186–189.

Riedell W E, Lundgren J G, Osborne S L, Pikul J L. 2005. Effects of soil nitrogen management on soybean nitrogen relations and bean leaf beetle (Coleoptera: Chrysomelidae) biology. Journal of Agricultural and Urban Entomology22, 181–190.

Semenzato P, Cattaneo D, Dainese M. 2011. Growth prediction for five tree species in an Italian urban forest. Urban Forestry & Urban Greening10, 169–176.

Shang S H, Mao X M, Lei Z D, Zhou K, Zhong Y G, Ai N W. 1999. Inverse-logistic formula for calculation of phreatic evaporation coefficient. Journal of Irrigation and Drainage18, 18–21. (in Chinese)

Tang Q S. 1996. On the carrying capacity and its study. Marine Fisheries Research17, 1–6. (in Chinese)

Tsoularis A. 2001. Analysis of logistic growth models. Research Letters of Information and Mathematics Science2, 23–46.

Vandermeer J H. 1975. On the construction of the population projection matrix for a population grouped in unequal stages. Biomatrics31, 239–242.

Venette R C, Ragsdale D W. 2004. Assessing the invasion by soybean aphid (Homoptera: Aphididae): Where will it end? Annals of the Entomological Society of America97, 219–226.

Verhulst P F. 1838. Notice sur la loi que la population suit dans son accroissement. Correspondence Mathematique et Physique Publiee (Par A), 10, 113–121. (in French)

Walter A J, Difonzo C D. 2007. Soil potassium deficiency affects soybean phloem nitrogen and soybean aphid populations. Environmental Entomology36, 26–33.

Wang C L, Xiang L Y, Zhang G X, Zhu H F. 1962. Studies on the soybean aphid, Aphis glycines Matsumura. Acta Entomologica Sinica11, 31–44. (in Chinese)

Wang D B, Zhang G L. 2005. Meteorological factors-based corn grow simulation model research. Journal of Maize Sciences13, 119–122. (in Chinese)

Wang F, Yamamoto H, Ibaraki Y. 2008. Measuring leaf necrosis and chlorosis of bamboo induced by typhoon 0613 with RGB image analysis. Journal of Forestry Research19, 225–230.

Wang X Y, Zhou L H, Xu B, Xing X, Xu G Q. 2014. Seasonal occurrence of Aphis glycines and physiological responses of soybean plants to its feeding. Insect Science21, 342–351.

Watt M, Hales D F. 1996. Dwarf phenotype of the cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae). Australian Journal of Entomology35, 153–159.

Wu T L, Ma X H, Yao L M, Wang B. 2009. Identification of soybean resources of resistance to aphids. Agricultural Sciences in China8, 979–984.

Wu Z S, Schenk-Hamlin D, Zhan W Y, Ragsdale D W, Heimpel G E. 2004. The soybean aphid in China: A historical review. Annals of the Entomological Society of America97, 209–218.

Xu L, Zhao T H, Xing X, Xu G Q. 2022. Comparing the cost-benefit probability of management based on early-stage and late-stage economic thresholds with that of seed treatment of Aphis glycinesPest Management Science78, 4048–4060.

Xu L, Zhong T, Zhao T H, Xu G Q. 2016. Migration quantitative dynamic of Aphis glycines in the suction trap monitor and the relationships with meteorological factors in Shenyang. Chinese Journal of Applied Entomology53, 365–372. (in Chinese)

Xu R M. 1985. Insects Population Ecology. Beijing Normal University Publishing Company, Beijing. pp. 243–247. (in Chinese)

Yue Z D, Hao J F. 1990. Monitoring and control threshold of the soybean aphid in Jilin province. China Plant Protection3, 28–30. (in Chinese)

Zhang P P, Feng L Z, Li Y, Li Z, Zhao H Y. 2018. Catastrophe model for pest population dynamics under meteorological influence. Journal of Northwest A&F University46, 113–120. (in Chinese)

Zhao H Y. 1996. Insect Ecology and Pests Forecast. Northwest A&F University Press, Shaanxi, China. pp. 12–30. (in Chinese)

Zheng L F, Zhao H Y, Liu G Z, Wu Y N. 2008. Aphid population numerical dynamical general model. Journal of Biomathematics23, 306–310. (in Chinese)

Zheng Y L, Yao S T. 2006. Occurrence regularity and control threshold of Aphis glycines in fresh soybean fields. Chinese Bulletin of Entomology43, 395–397. (in Chinese)

Zhu C L, Gao X T. 2013. Parameter estimates of cotton aphid population model. Journal of Huaiyin Teachers College12, 30–36. (in Chinese)

No related articles found!
No Suggested Reading articles found!