Browse by section

    Content of CULTIVATION·PHYSIOLOGY in our journal
        Published in last 1 year |  In last 2 years |  In last 3 years |  All
    Please wait a minute...
    For Selected: Toggle Thumbnails
    Effects of Different Intercropping Patterns on Photosynthesis Production Characteristics and Water Use Efficiency of Proso Millet
    GONG XiangWei,DANG Ke,LI Jing,LUO Yan,ZHAO Guan,YANG Pu,GAO XiaoLi,GAO JinFeng,WANG PengKe,FENG BaiLi
    Scientia Agricultura Sinica    2019, 52 (22): 4139-4153.   DOI: 10.3864/j.issn.0578-1752.2019.22.018
    Abstract370)   HTML35)    PDF (3504KB)(390)       Save

    【Objective】The propose of this study was to select the suitable proso millet-mung bean intercropping patterns in semi-arid region of northwest through studying the effects of different intercropping systems on the photosynthetic production and water use efficiency of proso millet, which can provide the basis for high yield, high efficiency production and ecological environmental protection.【Method】Field experiments were conducted in 2017 and 2018 in Yulin Modern Agriculture Demonstration Garden, Shaanxi. Four intercropping patterns were designed, 2 rows proso millet and 2 rows mung bean (2P2M), 4 rows proso millet and 2 rows mung bean (4P2M), 4 rows proso millet and 4 rows mung bean (4P4M), 2 rows proso millet and 4 rows mung bean (2P4M). The treatments containing proso millet (SP) and mung bean (SM) served as the controls. Photosynthetic characteristics and chlorophyll fluorescence parameters of leaves of proso millet as well as soil water distribution and utilization efficiency were conducted and the yield benefit was analyzed.【Result】The chlorophyll content, net photosynthesis rate, stomatal conductance, and transpiration rate of the flag leaf at anthesis stage was increased by 2.9%-13.5%, 5.0%-32.3%, 1.3%-6.3%, and 2.1%-8.7% than the single-plant systems, and thus the production capacity in the leaves of proso millet was improved. Meanwhile, proso millet//mung bean intercropping significantly increased the maximal photochemical efficiency of photosystem II (PSII) (Fv/Fm), the photochemical quenching coefficient (qL), the actual PSII efficiency (ΦPSII) and decreased non-photochemical quenching coefficient (NPQ). This led to enhance the ability to capture and transform light energy, reducing ineffective light leakage loss and heat loss, and improving the utilization ability of high intensity light for intercropping systems. The soil water content was significantly reduced and the reduction in the middle layer (60-140 cm) was significantly higher than that in the upper layer (0-40 cm) and the lower layer (160-200 cm). The changes in soil deep structure were related to the root depth collocation. Intercropping could improve the water use efficiency, and 2P2M, 4P2M, 4P4M and 2P4M increased by 11.5%, 2.3%, 20.8% and 30.1% compared with monoculture, respectively. Further, the biomass and yield of proso millet under intercropping were also significantly increased. The yield under 4P2M and 2P4M intercropping was 6.7% and 36.8% higher than the monoculture.【Conclusion】Photosynthetic production capacity of proso millet could be promoted by proso millet//mung bean intercropping, and land use efficiency in the semi-arid region of northwest could be improved. Under this experimental condition, 2P4M intercropping system was the suitable combination for the northwest dry farming areas to promote the application.

    Table and Figures | Reference | Related Articles | Metrics
    Effects of Heterogeneous Salinity Across Rhizosphere on the Growth of Sorghum Seedlings
    ZHANG HuaWen,WANG RunFeng,XU MengPing,LIU Bin,CHEN ErYing,HUANG RuiDong,ZHOU YuFei,WANG HaiLian
    Scientia Agricultura Sinica    2019, 52 (22): 4110-4118.   DOI: 10.3864/j.issn.0578-1752.2019.22.015
    Abstract239)   HTML29)    PDF (453KB)(322)       Save

    【Objective】Salt content is usually unevenly distributed in saline-alkali lands. Studies on growth and development, and the changes of physiological and biochemical indexes of sorghum seedlings under non-uniform salt stress could provide a theoretical basis for the cultivation of sorghum in saline-alkali land and the efficient exploitation and utilization of saline-alkali lands.【Method】Roots of sorghum were divided into two equal portions by a root-split method and put in uniform and non-uniform NaCl concentration solution, respectively. There were four treatments. No sodium chloride (denoted as 0/0) was the control, 0 and 200 mmol·L -1(denoted as 0/200), 50 mmol·L -1 and 150 mmol·L -1(denoted as 50/150) were non-uniform salinity treatments, and 100 mmol·L -1/100 mmol·L -1 (denoted as 100/100) were uniform salinity treatment. Healthy sorghum seedlings after growing for 14 days in a growth chamber were sampled for the determination of biomass, leaf area, SPAD, root morphology, osmotic regulators content, anti-oxidative enzyme activity, and photosynthetic parameters. 【Result】 Growth of sorghum both in uniform and non-uniform salt stress conditions was severely inhibited, and significant decrease of fresh weight, biomass, leaf area, root morphology, photosynthetic capacity, anti-oxidative enzyme activity and osmotic substance content accumulation was found. Dry weight per plant was increased by 21.19% and 62.71%, fresh weights of seedlings was increased by 35.39% and 86.44%, and leaf area was increased by 13.22% and 88.66%, respectively under 50/150 and 0/200 compared with those under 100/100. Under 50/150 treatment, fresh and dry weights of roots in the 50 mmol·L -1 side were 1.90 and 2.10 times of the 150 mmol·L -1 side. Under 0/200 treatment, fresh and dry weights of roots in 0 mmol·L -1 side were increased by 3.02 and 3.75 times compared with the 200 mmol·L -1 side. Likewise, local root morphology was affected significantly in non-uniform salt treatment. Root length, root volume, root tip number, and root branch number of sorghum seedlings in 50 mmol·L -1 side or 0 mmol·L -1 were significantly increased compared with 150 mmol·L -1 (50/150) or 200 mmol·L -1 (0/200) salt stress side, respectively. Root length, root volume, root tip number, and root branch number of the whole root were significantly increased under 0/200 (P<0.05) compared with the 100/100 treatment. Activities of SOD, CAT, and POD in leaves were significantly higher under non-uniform salt stress (P<0.05). Contents of proline and soluble sugars were significantly increased in leaves with a dramatic reduce in MDA content (P<0.05) under the non-uniform salinity treatments. Compared with seedlings under the 100/100 condition. Photosynthesis of sorghum was significantly enhanced under 0/200 and 50/150 salt stresses, which chiefly was reflected by notably increased photosynthetic rate, stomatal conductance, transpiration rate, and decreased intercellular CO2 concentration (P<0.05). With respect to indexes of fluorescence of photosynthesis, such as ΦPSⅡ, Fv/Fm, and ETR, their values under 50/150 and 0/200 were increased by 5.64% and 19.00%, 9.25% and 18.89%, and 1.93% and 6.89%, respectively. ΦPSⅡ and Fv/Fm under 0/200 were significantly different from those under 100/100 (P<0.05).【Conclusion】Both non-uniform and uniform salt stress treatments caused growth inhibition to sorghum seedlings. However, due to the root compensatory growth of low salt or salt-free side under the non-uniform salt stress condition, whole root morphology, leaf antioxidant enzymes activity, osmotic regulation ability, and photosynthetic capacity were improved in a certain degree. Thus, non-uniform salinity could relieve damages to sorghum seedling initiated by salt stress.

    Table and Figures | Reference | Related Articles | Metrics
    Effects of Exogenous Nitric Oxide on Seed Germination and Starch Transformation of Sorghum Seeds Under Salt Stress
    YIN MeiQiang,WANG Dong,WANG JinRong,LAN Min,ZHAO Juan,DONG ShuQi,SONG Xi’E,ALAM Sher,YUAN XiangYang,WANG YuGuo,WEN YinYuan
    Scientia Agricultura Sinica    2019, 52 (22): 4119-4128.   DOI: 10.3864/j.issn.0578-1752.2019.22.016
    Abstract324)   HTML20)    PDF (481KB)(260)       Save

    【Objective】To discuss the physiological and biochemical regulation of exogenous Nitric Oxide (NO) on the germination of sorghum seeds under salt stress, which provided a theoretical basis for revealing the germination physiology and chemical regulation of sorghum seeds. 【Method】Sorghum (variety: Jintian 08-1) seeds were cultivated with 0, 50, 100, 150, 200, 300, and 400 mmol·L -1 NaCl solution. According to the germination rate under different concentrations of NaCl, the suitable salt tolerance concentration, semi-lethal concentration, and limiting concentration of sorghum seeds at the germination stage were defined. Sorghum seeds pretreated with 0.05, 0.1, 0.2, 0.4, 0.6 and 0.8 mmol·L -1 sodium nitroprusside (SNP, NO donor) for 12 h at 25℃ in dark, then were cultured in salt solution of 150 mmol·L -1 NaCl. The germination potential and germination rate were counted at cultured 36 h and 72 h, respectively. Proline content, malondialdehyde content and starch transformation related indexes were determined at cultured 5 days. Dinitrosalicylic acid is used in colorimetric determination of reducing sugars and to analyze amylase activity by quantitation of enzymatically released reducing sugar. The content of soluble sugar and starch were determined by anthrone method. Proline content and malondialdehyde (MDA) content were measured by acid-ninhydrin method and thiobarbituric acid method, respectively. The germination rate, germination energy, water absorption capacity of seeds, amylase activity, starch and sugar content, proline and other indexes were determined and analyzed to investigate the effects of exogenous NO on sorghum seed germination and starch transformation under salt stress. 【Result】The germination of sorghum seeds was obviously inhibited by more than 100 mmol·L -1 NaCl. When NaCl concentration was 150 mmol·L -1, the germination rate of sorghum seeds was 63.17%. 400 mmol·L -1 NaCl completely inhibited sorghum seeds germination. Pretreatment with SNP greatly relieves the inhibitory effect of the following salt stress to sorghum seeds germination, especially during the early stage of germination (36 h). 0.05 mmol·L -1 SNP alleviated the inhibition of salt stress on seed germination, seed germination potential, germination rate and germination index were 14.44%, 12.22% and 18.07% higher than those of the control, respectively (P<0.05). SNP increased the content of proline and soluble sugar in sorghum seeds by 18.97% and 41.43% respectively, which reduced osmotic potential, promoted water absorption and alleviated osmotic stress caused by NaCl. At the same time, the content of MDA decreased by 17.79% compared with NaCl treatment alone. Further investigations showed that pretreatment with NO donor dramatically stimulated the activities of amylase under salt stress by 17.20% compared with NaCl on the first day after treatment, and accelerated the degradation of starch, increased the content of reducing sugar. By the 5th day of SNP+NaCl treatment, the starch content decreased by 19.17%, and the content of soluble sugar and reducing sugar increased by 41.4% and 41.0%, respectively, compared to NaCl treatment. These newly produced substances provided energy for seed germination, and improved the salt resistance of sorghum seeds during germination period. 【Conclusion】According to our results, exogenous NO could regulate the amylase activity and osmotic regulation ability of sorghum seeds during germination period, improved their resistance to salt stress, and promoted seed germination.

    Table and Figures | Reference | Related Articles | Metrics
    Effects of Black Full Film Mulching on Soil Temperature and Humidity and Weed Control in Root Zone of Sorghum
    ZHANG JianHua,GUO RuiFeng,CAO ChangLin,BAI WenBin
    Scientia Agricultura Sinica    2019, 52 (22): 4129-4138.   DOI: 10.3864/j.issn.0578-1752.2019.22.017
    Abstract299)   HTML9)    PDF (437KB)(263)       Save

    【Objective】Soil temperature, moisture and tillage measures are important factors affecting crop growth and yield in rain-fed arid areas. It is of great significance to clarify the effect of full-film mulching on the soil environmental conditions in the root of sorghum, as well as its inhibitory effect on weeds, in order to promote the increase of sorghum yield in rain-fed arid areas. 【Method】The experimental site is located in The Institute of Shanxi Academy of Agricultural Sciences test base. Jinnuo 3 is the tested variety. The experiment adopts sequential arrangement design. Black full-film mulching, white full-film mulching and bare land cultivation experiments were carried out in 2017 and 2018, respectively. The effects of full-film mulching on the daily temperature of 0-15cm soil in the root zone of sorghum, soil moisture content of 0-200 cm soil layer, weed control, the growth, yield and benefit of sorghum were analyzed.【Result】The results showed that black full-film mulching could effectively improve the soil temperature of the surface layer in each growth period, soil temperature was lower and made the daily temperature of 0-15cm soil by an average of 1.14℃(P<0.05), compared with the white full-film mulching . The black and white full-film mulching provided the same degree of soil moisture conservation, the average soil moisture content of each soil layer was slightly higher than white full-film mulching. and increased by 1.89 percentage points on average compared with bare land cultivation, which significantly increased (P<0.05)the moisture content of 0-160 cm soil layer. The black full-film mulching significantly reduced the amount of sorghum weeds in the field. The control effect on broadleaf weeds and grass weeds reached 96% and 93% respectively, which was superior to the white full-film mulching(P<0.05)and had more thorough weed control effect. It was no obvious influence on sorghum seedling rate, ear length, number of first-stage branches and grain number per ear, but had an effect on sorghum plant height, plant height uniformity, birth stage, thousand grain weight, yield and benefit when sorghum was planted on black full-film mulching . The plant height and plant height uniformity of sorghum covered with the black full film for 60 days were higher than that covered with white full-film. The growth period of black full-film mulching sorghum was the same as that of bare land cultivation, while that of white full-film mulching sorghum was shorter, shorter by 4-6 days than that of bare sorghum. The thousand-grain weight and yield of black full-film mulching were significantly higher than that of white full-film mulching and bare land cultivation (P<0.05). Compared with white full-film mulching, the thousand-grain weight increased by 3.72% and 3.78% respectively, and 6.95% and 7.06% respectively compared with bare land cultivation. The yield was 6.72% and 6.94% higher than that of the whole white full-film mulching, 19.27% and 20.03% higher than that of bare land cultivation, respectively. The black full-film mulching increased 1 529.82 yuan/hm 2 and 1 599.76 yuan/hm 2 respectively compared with the white full-film mulching, and 3 025.38 yuan/hm 2 and 3 215.52 yuan/hm 2 respectively compared with the bare one.【Conclusion】It is suggested that black full-film mulching should be used instead of the traditional white full-film mulching in sorghum production in rain-fed arid areas, so as to promote the high yield of sorghum.

    Table and Figures | Reference | Related Articles | Metrics
    Effect of Sowing Date on Agronomic Traits and Starch Physicochemical Properties of Proso Millet
    LUO Yan, QU Yang, YANG QingHua, ZHANG WeiLi, GONG XiangWei, LI Jing, GAO XiaoLi, GAO JinFeng, YANG Pu, WANG PengKe, FENG BaiLi
    Scientia Agricultura Sinica    2019, 52 (22): 4154-4165.   DOI: 10.3864/j.issn.0578-1752.2019.22.019
    Abstract252)   HTML28)    PDF (2950KB)(254)       Save

    【Objective】 The purpose of this study was to analyze the effects of different sowing date on proso millet (Panicum miliaceum L.) agronomic traits and grain starch physiochemical properties, provide theoretical basis for the subsequent study of the mechanism of sowing date on proso millet.【Method】The experiment was carried out in a pot, and Shaanmei No. 1 was used as the test material. Four kinds of sowing dates were set on April 20 (B1), May 10 (B2), May 30 (B3), and June 20 (B4). Different sowing dates, the soil moisture was sufficient during the whole growth period. In 2017, the morphological indexes, grain shape and grain physicochemical properties of the seeds of the proso millet were studied. The plant height, ear length, ear stem length, number of ear branches, 1 000-grain weight, the seeds length, width and roundness of proso millet were analyzed under different sowing dates. In the meantime, the crystal structure, particle size distribution, amylose content, and the enthalpy and gelatinization properties of starch were studied. The correlation of amylose content, enthalpy characteristics and gelatinization properties of starch with morphological index, particle size distribution and particle size parameters were analyzed. 【Result】 The results showed that with the delay of sowing date, the plant height, ear length and ear stem length of proso millet were significantly increased, the main stem tillers and branches were significantly decreased, and the number of secondary spike branches and grain width were significantly decreased. The size distribution of grain starch granules showed a bimodal distribution, and compared with other sowing dates, the particles proportion of B1 had the highest > 28 μm (25.5%) and the lowest 5-28 μm (67.5%) starch granule. The X-ray diffraction pattern showed that changing the sowing date couldn’t affect the crystal type of the proso millet starch, but affected the diffraction peak intensity of the X-ray diffraction pattern. The amylose content (1.3%) of B1 was significantly higher than that in the other sowing dates (0.18%-0.53%). Among the indicators related to the enthalpy characteristics of grain starch in different sowing dates, the gelatinization onset temperature (To), peak temperature (Tp) and conclusion temperature (Tc) showed a tendency of increasing first and then decreasing, while the thermal enthalpy (ΔH) had no significant difference. There were significant differences in the gelatinization properties of proso millet starch under different sowing dates. The peak viscosity (Pv), through viscosity (Tv), final viscosity (Fv) and breakdown (BD) of B3 were significantly higher than the others, while the setback (SB) and peak temperature (PT) were significantly lower than other treatments. With the delay of sowing date, the Pv and BD of proso millet starch increased first and then decreased. B1 starch had the strongest hot paste stability, B3 starch had the strongest cold paste stability and the worst hot paste stability. The cold paste stability of B2 starch was the worst, while the cold paste and hot paste stability of B4 were at an intermediate level. 【Conclusion】 Appropriate sowing date could provide sufficient light and temperature conditions to provide a better environment for the growth of proso millet. Early sowing date significantly increased the 1 000-grain weight of proso millet kernels, the grain was fuller, and the average grain size of grain starch increased, with higher amylose content and nutritional value, which was more suitable for processing hot foods. The sowing date didn’t affect the crystal type of starch, but affected the intensity of the X-ray diffraction peak, the gelatinization characteristics and other indicators of the starch.

    Table and Figures | Reference | Related Articles | Metrics
    Responses of Fertilization on Sorghum Grain Yield, Quality and Nutrient Utilization to Soil Fertility
    WANG JinSong,DONG ErWei,WU AiLian,BAI WenBin,WANG Yuan,JIAO XiaoYan
    Scientia Agricultura Sinica    2019, 52 (22): 4166-4176.   DOI: 10.3864/j.issn.0578-1752.2019.22.020
    Abstract337)   HTML24)    PDF (443KB)(289)       Save

    【Objective】Responses of sorghum grain yield , quality and NPK utilization to inherent soil fertility, and their interaction were explored to provide theoretical basis for best nutrient management according to soil fertility. 【Method】Pot experiment was conducted in greenhouse. Soil was collected from three treatments of long-term fertilizer application experiment for 6 years, which were without fertilizer, NPK application and NPK application along with animal manure and straw returning to field, respectively. They were termed as low soil fertility (LSF), medium soil fertility (MSF) and high soil fertility (HSF), correspondingly. For each soil fertility, there were two treatments for pot experiment: without fertilizer (NF) and fertilizer application (CF). Plant and grain of sorghum were harvested after maturity. NPK accumulation in plant above ground and grain were calculated according to NPK concentration and biomass of each part of plant. The contents of starch, tannic and protein of grain were determined. 【Result】For LSF, MSF and HSF, a similar biomass and yield were gained if fertilizer was applied. They were significantly affected by inherent soil fertility if fertilizer was withdrawn. Soil fertility did not affect starch content of grain, which was 67.99%-69.33%, if fertilizer was not applied. However, HSF combined with fertilizer application resulted in 60.75% starch content in grain. For all treatments, the highest of tannin content was observed in grain of LSF without fertilizer. Fertilizer application significantly decreased tannin content of grain when sorghum was cultivated with LSF and HSF, only 70% of that was produced by LSF combined with NF. Protein content was promoted with the increase of inherent soil fertility, and was doubled by fertilizer application whatever soil fertility was. When fertilizer was applied, the contributions of soil fertility to yield were 90.25%, 51.75% and 8.5% for LSF, MSF and HSF, respectively. NPK accumulation of both grain and plant aboveground was regulated by inherent soil fertility. Fertilizer enhanced NPK absorption for all soil fertility treatments. For example, N accumulation in grain and plant, induced by fertilizer application, were 1.8 and 1.9 times of those when fertilizer was withdrawn under conditions of HSL. NPK harvest indices were enhanced by fertilizer application if soil fertility was either low or medium; whereas diminished NPK harvest indices were noticed with high soil fertility.【Conclusion】The potential sorghum grain yield can be gained for low soil fertility by means of fertilizer application. Without fertilizer, inherent soil fertility has a significant effect on grain yield. However its impacts on content of starch, tannin and protein can be neglected. Low soil fertility, combined withdrawn fertilizer, promotes starch and tannin accumulation in grain. Fertilizer application has relative more influence on grain protein content than soil fertility does. Fertilizer application diminishes nutrient harvest index and nutrient use efficiency if inherent soil fertility is high.

    Table and Figures | Reference | Related Articles | Metrics
    Effect of Fertilization Location and Amount on Dry Matter Accumulation, Translocation and Yield of Hybrid Millet
    LI YongHu,CAO MengLin,DU HuiLing,GUO PingYi,ZHANG HaiYing,GUO MeiJun,YUAN XiangYang
    Scientia Agricultura Sinica    2019, 52 (22): 4177-4190.   DOI: 10.3864/j.issn.0578-1752.2019.22.021
    Abstract419)   HTML23)    PDF (1987KB)(430)       Save

    【Objective】 This study was to probe the effects of nitrogen, phosphorus and potassium fertilizer amount and location on dry matter accumulation, translocation and yield of hybrid millet, provide theoretical basis for high yield and efficient planting and development of light simplified cultivation techniques. 【Method】 Taking hybrid millet (Setaria italica) cultivar of Zhangzagu10 as the tested material, a field experiment, cultivated with plastic film mulching, was conducted during 2016-2017 at the Innovation Zone of Shanxi Agricultural University by quadratic regression orthogonal rotation combination design. These 5 factors included nitrogen, phosphorus, potassium fertilizer rates, the horizontal distance to seed and depth of application, and each factor had 5 levels. All the fertilizers were basal applied in the designed rate and position, Nitrogen fertilizer is urea containing 46%N, phosphate fertilizer is superphosphate containing 16%P2O5, and potassium is sulfate containing 50%K2O. At elongation, heading, flowering, maturity, 3 clumps of millet plants were taken to examine dry matter accumulation. Harvested in early October, weighted and calculated the yield after threshing and drying, to study the effects of fertilization amount and fertilization position on dry matter accumulation, transport and yield in different growth stages of millet. The correlation between the tested index with the fertilizer rate and position were established using multivariate linear regression model 【Result】 (1) Higher yield levels requires higher supply levels of N, P and K, and the ratio of P and K increase relatively. (2) The order in the response degree on dry matter accumulation was nitrogen>phosphorus>potassium>fertilization horizontal distance>fertilization application depth; the order in the response degree on dry matter translocation was potassium>fertilization application depth>phosphorus>nitrogen>fertilization horizontal distance; the order in the response degree on yield was nitrogen>phosphorus>potassium>fertilization application depth>fertilization horizontal distance. (3) Nitrogen, phosphorus had an extremely significant effect on dry matter accumulation in main growth periods. The interaction between nitrogen and phosphorus in vegetative growth stage was negative, while in reproductive growth stage was positive. (4) As crop growth period goes on, the effects of potassium, fertilizer horizontal distance,and fertilizer application depth on dry matter accumulation change from negative to positive, and the degree of effect increases. The distance between the best fertilization location and the sowing location increased first and then decreased. (5) The regression between five factors and dry matter accumulation and translocation was extremely significant, and the fitting degree was higher. Therefore, it can be used in the actual production forecast. 【Conclusion】 Under the conditions of this experiment, the optimal scheme for Zhangzagu 10 was 16.80-18.75 cm of fertilization horizontal distance, 20.80-23.75 cm of fertilization application depth, 225 kg·hm -2 of N, 136.35-153.63 kg·hm -2 of P2O5, 93.56-108.63 kg·hm -2of K2O.

    Table and Figures | Reference | Related Articles | Metrics
      First page | Prev page | Next page | Last page Page 1 of 1, 7 records