Scientia Agricultura Sinica ›› 2026, Vol. 59 ›› Issue (2): 322-335.doi: 10.3864/j.issn.0578-1752.2026.02.008

• PLANT PROTECTION • Previous Articles     Next Articles

Inhibitory Activities of Ethanol Extracts from 75 Plants Against Two Soil-Borne Pathogens

HOU PuXing1(), WANG Yong1,2, FENG JunTao1,2, MA ZhiQing1,2, WU Hua1,2()   

  1. 1 College of Plant Protection, Northwest A&F University, Yangling 712100 Shaanxi
    2 Shaanxi Research Center of Biopesticide Engineering & Technology, , Yangling 712100 Shaanxi
  • Received:2025-09-05 Accepted:2025-10-27 Online:2026-01-16 Published:2026-01-22
  • Contact: WU Hua

Abstract:

【Objective】 Soil-borne disease has become a prevalent and intractable issue in current agricultural production, while the existing chemical control agents often lead to pesticide residues and phytotoxicity to crops. In contrast, botanical fungicides possess distinct advantages, including broad-spectrum inhibitory activity, environmental friendliness, as well as easy metabolism and degradation in the ecosystem. This study aimed to target two typical soil-borne pathogens (Phytophthora capsici and Fusarium oxysporum f. sp. niveum), determine the inhibitory activities of extracts from 75 tested plants, and to screen out plant resources with high activity, thereby laying a foundation for the development of novel botanical fungicides. 【Method】 The growth rate method was employed to determine the inhibitory activities of ethanol extracts of 75 kinds of plants against P. capsici and F. oxysporum f. sp. niveum. The pot efficacy of the screened high-activity extracts against pepper phytophthora disease and watermelon fusarium wilt was determined by means of the root irrigation and the root injury method. 【Result】 The mycelial inhibition rates of five ethanol extracts of Magnolia officinalis, Notopterygium incisum, Syringa pinnatifolia, Platycladus orientalis and Ilex chinensis against P. capsici were over 60% at the concentration of 1 mg·mL-1. The inhibition rates of 11 other ethanol extracts, including Rubia cordifolia and Lindera aggregata, ranged from 30% to 60%, while the remaining 59 extracts showed no significant inhibitory activity. Among them, the ethanol extract of M. officinalis had the highest toxicity against P. capsici, with EC50 of 0.023 mg·mL-1. The mycelial inhibition rates of three ethanol extracts of M. officinalis, Ligusticum chuanxiong and Curcuma longa against F. oxysporum f. sp. niveum were over 60% at the concentration of 1 mg·mL-1. The inhibition rates of 12 other ethanol extracts, such as Alpinia officinarum and S. pinnatifolia, were between 30% and 60%, and the remaining 60 extracts displayed no significant inhibitory activity. Among them, the ethanol extract of C. longa had the highest toxicity against F. oxysporum f. sp. niveum, with EC50 of 0.606 mg·mL-1. Pot efficacy results showed that the ethanol extract of M. officinalis exhibited high protective and curative efficacy against pepper phytophthora disease at the concentration of 8 mg·mL-1, with efficacy rates of 64.74% and 63.25%, respectively. The ethanol extract of S. pinnatifolia showed high curative efficacy against pepper phytophthora disease at the concentration of 8 mg·mL-1, with efficacy rate of 63.14%. However, the efficacy of both extracts was lower than the control fungicide shenqinmycin (protective efficacy: 81.05%; curative efficacy: 73.72%). The ethanol extract of C. longa showed high protective efficacy against watermelon fusarium wilt at the concentration of 8 mg·mL-1, with efficacy rate of 69.94%, which was comparable to the control fungicide carbendazim (66.65%). When applied at 2 mg·mL-1, this extract demonstrated a high curative efficacy against watermelon fusarium wilt, with efficacy rate of 78.08%, which was better than the control fungicide carbendazim (62.42%). In contrast, the efficacy of A. officinarum ethanol extract against watermelon fusarium wilt was less than 50% at all tested concentrations. 【Conclusion】 Ethanol extracts from S. pinnatifolia, C. longa, and M. officinalis exhibit potent inhibitory activities against soil-borne pathogens, which provides a scientific basis for the subsequent development of new botanical fungicides.

Key words: plant extract, Phytophthora capsici, Fusarium oxysporum f. sp. niveum, antifungal activity, control efficacy, botanical fungicide

Table 1

Inhibitory activity of 75 plant ethanol extracts against F. oxysporum f. sp. niveum and P. capsici"

科名
Family
供试植物
Tested plant
供试部位
Tested part
抑制率Inhibition rate (%)
西瓜枯萎病菌
F. oxysporum f. sp. niveum (7 d)
辣椒疫霉
P. capsici (5 d)
伞形科Umbelliferae 川芎Ligusticum chuanxiong 根茎Rhizome 74.69±1.22 58.09±1.12
羌活Notopterygium incisum 根Root 51.65±0.76 70.34±0.25
小茴香Foeniculi fructus 全草The whole 4.59±0.85 8.82±0
姜科Zingiberaceae 姜黄Curcuma longa 根茎Rhizome 60.10±0.34 57.35±0
高良姜Alpinia officinarum 根茎Rhizome 48.51±0.75 57.58±0.54
木兰科Magnoliaceae 厚朴Magnolia officinalis 树皮Bark 78.26±0.13 95.59±0
地枫皮Illicium difengpi 树皮Bark 0.95±0.95 19.54±0.24
木犀科Oleaceae 山沉香Syringa pinnatifolia 根茎Rhizome 47.72±0.82 64.42±1.77
樟科Lauraceae 乌药Lindera aggregata 根Root 44.69±3.61 58.98±2.69
冬青科Aquifoliaceae 冬青Ilex chinensis 叶Leaf 47.27±0.01 67.50±0.68
唇形科Lamiaceae 广藿香Pogostemon cablin 全草The whole 39.87±2.26 54.41±0
益母草Leonurus artemisia 全草The whole 0 0
荆芥Nepeta cataria 全草The whole 1.43±1.43 1.29±0.25
黄芩Scutellaria baicalensis 根Root 43.97±1.59 23.53±0
豆科Leguminosae 黄芪Astragalus membranaceus 根Root 4.85±0.64 8.82±0
腊肠果Cassia fistula 果实Fruit 0 7.86±1.91
决明子Cassiae Semen 种子Seed 30.61±0.76 1.29±0.25
苦马豆Sphaerophysa salsula 果实、叶Fruit, leaf 14.54±1.98 0
大托叶云实Caesalpinia crista 种子Seed 0 0
鸡血藤Spatholobi caulis 根茎Rhizome 24.06±1.75 9.67±1.06
菊科Asteraceae 漏芦Rhaponticum uniflorum 根茎Rhizome 0 5.55±0.73
墨旱莲Eclipta prostrata 全草The whole 1.43±1.43 1.29±0.25
千里光Senecio scandens 全草The whole 2.95±2.65 6.04±1.30
小白蒿Artemisia frigida 全草The whole 10.13±1.68 0
柏科Cupressaceae 侧柏PLatycladus orientalis 叶Leaf 35.54±0.43 63.24±0
堇菜科Violaceae 紫花地丁Viola yedoensis 全草The whole 6.39±0.63 8.82±0
萝藦科Asclepiadaceae 白前Cynanchum glaucescens 根茎Rhizome 3.83±0.75 8.82±0
徐长卿Cynanchum paniculatum 根茎Rhizome 26.34±0.86 30.64±0.24
马鞭草科Verbenaceae 蔓荆子Vitex trifolia 果实Fruit 38.16±3.10 45.24±2.11
马鞭草Verbena officinalis 全草The whole 1.81±1.81 0
海州常山Clerodendron trichotomum 叶Leaf 2.96±2.32 0
毛茛科Ranunculaceae 升麻Cimicifuga foetida 根茎Rhizome 22.99±0.49 31.48±0.92
威灵仙Clematis chinensis 根茎Rhizome 14.62±1.58 22.84±0.81
泽兰Eupatorium japonicum 全草The whole 1.43±1.43 1.29±0.25
黑顺片Aconitum carmichaeli 根Root 3.83±0.75 8.82±0
白头翁Pulsatilla chinensis 根Root 10.84±3.11 3.75±0.21
天葵子Semiaquilegia adoxoides 根Root 0 0
爵床科Acanthaceae 穿心莲Andrographis paniculata 全草The whole 22.82±0.95 50.39±0.97
茜草科Rubiaceae 茜草Rubia cordifolia 根茎Rhizome 35.03±1.11 51.93±0.22
白花蛇舌草Hedyotis diffusa 全草The whole 3.32±0.65 7.35±0
鳞毛蕨科Dryopteridaceae 绵马贯众Dryopteris crassirhizoma 根茎Rhizome 3.83±0.75 19.12±0
兰科Orchidaceae 白及Bletilla striata 块茎Tuber 4.62±0.49 47.46±1.99
天南星科Araceae 千年健Homalomena occulta 根茎Rhizome 3.32±0.65 7.35±0
姜水半夏Rhizoma typhonii flagelliformis 根茎Rhizome 0.72±1.31 0
芸香科Rutaceae 佛手Citrus medica 果实Fruit 4.08±0.99 8.82±0
吴茱萸Evodia rutaecarpa 果实Fruit 37.34±0.50 15.68±1.58
龙胆科Gentianaceae 龙胆Gentiana scabra 根茎Rhizome 5.37±0.42 7.35±0
秦艽花Gentiana straminea 全草The whole 0 2.32±0.21
蚌壳蕨科Dicksoniaceae 狗脊Cibotium barometz 根茎Rhizome 5.36±1.30 8.82±0
商陆科Phytolaccaceae 商陆Phytolacca acinosa 根Root 4.85±0.64 14.71±0
川续断科Dipsacaceae 蓝盆花Scabiosa comosa 全草The whole 0 0
藜科Chenopodiaceae 地肤子Kochia scoparia 果实Fruit 1.43±1.43 1.29±0.25
三白草科Saururaceae 鱼腥草Houttuynia cordata 全草The whole 1.43±1.43 16.45±0.24
百合科Liliaceae 土茯苓Smilax glabra 根茎Rhizome 20.39±1.54 8.20±0.87
黄精Polygonatum sibiricum 根茎Rhizome 2.17±1.26 0
蓼科Polygonaceae 大黄Rheum palmatum 根茎Rhizome 8.38±1.89 27.49±1.33
萹蓄Polygonum aviculare 全草The whole 2.44±1.51 0
茄科Solanaceae 千年不烂心Solanum dulcamara 全草The whole 14.22±1.85 8.03±0.62
龙葵Solanum nigrum 全草The whole 4.89±2.57 0
使君子科Combretaceae 使君子Quisqualis indica 种子Seed 23.42±1.92 0
马齿苋科Portulacaceae 马齿苋Portulaca oleracea 全草The whole 0 0
锦葵科Malvaceae 木槿Hibiscus syriacus 叶Leaf 0 0
桑科Moraceae 构树Broussonetia papyrifera 叶Leaf 5.83±0.69 0
葎草Humulus scandens 全草The whole 3.25±1.30 0
漆树科Anacardiaceae 盐肤木Rhus chinensis 叶Leaf 15.94±3.59 0
黄连木Pistacia chinensis 叶Leaf 16.57±3.35 0
广枣Choerospondias axillaris 果实Fruit 0 0
大戟科Euphorbiaceae 乌桕Sapium sebiferum 叶Leaf 13.90±2.12 0
蔷薇科Rosaceae 郁李Cerasus japonica 种子Seed 0 0
石竹科Caryophyllaceae 瞿麦Dianthus superbus 全草The whole 0 0
罂粟科Papaveraceae 秃疮花Dicranostigma leptopodum 茎、花Stem, flower 0 0
锁阳科Cynomoriaceae 锁阳Cynomorium songaricum 茎Stem 0 0
玄参科Scrophulariaceae 齿叶草Odontites serotina 全草The whole 0 0
桔梗科Campanulaceae 半边莲Lobelia chinensis 全草The whole 5.36±0.74 5.88±0
葫芦科Cucurbitaceae 绞股蓝Gynostemma pentaphyllum 全草The whole 4.85±0.64 10.29±0

Table 2

Toxicity of three plant ethanol extracts against F. oxysporum f. sp. niveum"

供试植物
Tested plant
毒力回归方程
Toxicity regression equation (y=)
抑制中浓度
EC50 (mg·mL-1)
95%置信区间
95% CI (mg·mL-1)
卡方值
Chrisquare value (χ2)
决定系数
R2
山沉香S. pinnatifolia 1.107x-3.341 1.045 0.894-1.257 5.021 0.975
高良姜A. officinarum 1.673x-4.749 0.690 0.573-0.871 7.780 0.921
姜黄C. longa 1.607x-4.473 0.606 0.505-0.758 7.620 0.942
多菌灵(阳性对照)
Carbendazim (Positive control)
5.949x-0.475 0.0012 0.0011-0.0013 1.840 0.989

Table 3

Toxicity of two plant ethanol extracts against P. capsici"

供试植物
Tested plant
毒力回归方程
Toxicity regression equation (y=)
抑制中浓度
EC50 (mg·mL-1)
95%置信区间
95% CI (mg·mL-1)
卡方值
Chrisquare value (χ2)
决定系数
R2
厚朴M. officinalis 2.265x-3.091 0.023 0.014-0.032 0.696 0.990
山沉香S. pinnatifolia 1.298x-3.589 0.582 0.519-0.659 1.232 0.987
申嗪霉素(阳性对照)
Shenqinmycin (Positive control)
4.570x-9.560 0.124 0.115-0.132 7.664 0.982

Table 4

Efficacy of two plant ethanol extracts on control of pepper phytophthora disease"

供试植物
Tested plant
浓度
Concentration (mg·mL-1)
保护作用Protective effect 治疗作用Curative effect
病情指数
Disease index
防治效果
Efficacy (%)
病情指数
Disease index
防治效果
Efficacy (%)
CK 82.22±2.22a 84.45±2.22a
申嗪霉素Shenqinmycin 1 15.55±0.22f 81.05±0.68a 22.22±2.22f 73.72±2.31a
厚朴
M. officinalis
0.5 46.67±1.93c 43.27±1.30d 53.33±1.93c 36.86±1.16d
2 35.55±2.22de 56.84±1.49c 51.11±1.11c 39.42±1.47d
8 28.89±2.22e 64.74±3.29b 31.11±2.22e 63.25±1.71b
山沉香
S. pinnatifolia
0.5 62.22±2.22b 24.36±0.64e 68.89±2.22b 18.38±2.38e
2 40.00±3.33d 47.74±1.56d 37.78±2.22d 55.35±1.50c
8 37.78±2.22d 54.06±2.41c 31.11±1.11e 63.14±1.15b

Fig. 1

Efficacy of two plant extracts on control of pepper phytophthora disease (protective effect)"

Fig. 2

Efficacy of two plant extracts on control of pepper phytophthora disease (curative effect)"

Table 5

Efficacy of two plant ethanol extracts on control of watermelon fusarium wilt"

供试植物
Tested plant
浓度
Concentration (mg·mL-1)
保护作用Protective effect 治疗作用Curative effect
病情指数
Disease index
防治效果
Efficacy (%)
病情指数
Disease index
防治效果
Efficacy (%)
CK 83.34±1.67a 88.89±2.00a
多菌灵Carbendazim 1 27.78±1.55g 66.65±0.67a 33.33±1.96e 62.42±1.83c
姜黄
C. longa
0.5 38.89±0.99e 53.31±1.35c 25.00±1.88f 71.83±1.37b
2 33.33±1.15f 59.97±1.62b 19.44±1.44g 78.08±1.01a
8 25.00±0.96g 69.94±1.68a 44.45±2.22d 50.06±1.47d
高良姜
A. officinarum
0.5 44.44±2.00c 46.72±1.37d 55.56±2.00c 37.53±0.86e
2 41.66±0.88de 49.94±1.9cd 69.44±1.56b 21.82±1.18f
8 63.89±0.59b 23.25±2.08e 86.11±1.56a 3.05±1.61g

Fig. 3

Efficacy of two plant extracts on control of watermelon fusarium wilt (protective effect)"

Fig. 4

Efficacy of two plant extracts on control of watermelon fusarium wilt (curative effect)"

[1]
曹坳程, 张大琪, 方文生, 宋兆欣, 任立瑞, 李青杰, 李文静, 王秋霞, 颜冬冬, 李园, 靳茜, 郝征. 土传病害防治技术进展及面临的挑战. 植物保护, 2023, 49(5): 260-269.
CAO A C, ZHANG D Q, FANG W S, SONG Z X, REN L R, LI Q J, LI W J, WANG Q X, YAN D D, LI Y, JIN X, HAO Z. Progresses and challenges in soil-borne disease prevention and control technology. Plant Protection, 2023, 49(5): 260-269. (in Chinese)
[2]
李孝刚, 张桃林, 王兴祥. 花生连作土壤障碍机制研究进展. 土壤, 2015, 47(2): 266-271.
LI X G, ZHANG T L, WANG X X. Advances in mechanism of peanut continuous cropping obstacle. Soils, 2015, 47(2): 266-271. (in Chinese)
[3]
吴孔明. 中国农作物病虫害防控科技的发展方向. 农学学报, 2018, 8(1): 35-38.
WU K M. Development direction of crop pest control science and technology in China. Journal of Agriculture, 2018, 8(1): 35-38. (in Chinese)

doi: 10.46876/ja.1676926
[4]
DESNEUX N, DECOURTYE A, DELPUECH J M. The sublethal effects of pesticides on beneficial arthropods. Annual Review of Entomology, 2007, 52: 81-106.

pmid: 16842032
[5]
MOSSA A T H. Green pesticides: Essential oils as biopesticides in insect-pest management. Journal of Environmental Science and Technology, 2016, 9(5): 354-378.

doi: 10.3923/jest.2016.354.378
[6]
郭宇俊, 韩俊艳, 李志强, 杨诗博. 植物源农药的研究与应用. 黑龙江农业科学, 2019(4): 131-133.
GUO Y J, HAN J Y, LI Z Q, YANG S B. Research and application of botanical pesticides. Heilongjiang Agricultural Sciences, 2019(4): 131-133. (in Chinese)
[7]
张兴, 吴志凤, 李威, 马志卿, 冯俊涛. 植物源农药研发与应用新进展——特殊生物活性简介. 农药科学与管理, 2013, 34(4): 24-31.
ZHANG X, WU Z F, LI W, MA Z Q, FENG J T. New progress in the research, development and application of botanical pesticides - introduction to special biological activities. Pesticide Science and Administration, 2013, 34(4): 24-31. (in Chinese)
[8]
张兴, 杨崇珍, 王兴林. 西北地区杀虫植物的筛选. 西北农林科技大学学报, 1999, 27(2): 21-27.
ZHANG X, YANG C Z, WANG X L. Screening on the resources of botanical insecticides in Northwestern China. Journal of Northwest A&F University, 1999, 27(2): 21-27. (in Chinese)
[9]
杨欣蕊, 廖艳凤, 赵鹏飞, 覃勇梅, 欧阳霞辉. 植物源农药及其开发利用研究进展. 南方农业, 2022, 16(11): 33-36.
YANG X R, LIAO Y F, ZHAO P F, QIN Y M, OUYANG X H. Research progress on botanical pesticides and their development and utilization. South China Agriculture, 2022, 16(11): 33-36. (in Chinese)
[10]
AMRI I, HAMROUNI L, HANANA M, JAMOUSSI B. Reviews on phytotoxic effects of essential oils and their individual components: News approach for weeds management. International Journal of Applied Biology and Pharmaceutical Technology, 2013, 4(1): 96-114.
[11]
潘家新, 李林生, 粟月萍. 我国生物农药登记产品特点分析及发展建议. 农药, 2025, 64(2): 87-93, 118.
PAN J X, LI L S, SU Y P. Characteristics analysis and development suggestions of registered produce of biological pesticides in China. Agrochemicals, 2025, 64(2): 87-93, 118. (in Chinese)
[12]
王佳丽, 马燕, 高倩, 路兆军, 张建梅, 王连红, 王文苹. 我国植物源杀菌剂的活性组分和应用概况. 浙江农业科学, 2025, 66(1): 138-145.

doi: 10.16178/j.issn.0528-9017.20231018
WANG J L, MA Y, GAO Q, LU Z J, ZHANG J M, WANG L H, WANG W P. Overview of active components and applications of plant-derived fungicides in China. Journal of Zhejiang Agricultural Sciences, 2025, 66(1): 138-145. (in Chinese)
[13]
贾正燕, 王昌梅, 张啸, 赵兴玲, 吴凯, 尹芳, 杨斌, 梁承月, 张无敌. 8种中药水提液对尖孢镰刀菌的抑制效果. 湖南农业大学学报(自然科学版), 2022, 48(4): 454-459.
JIA Z Y, WANG C M, ZHANG X, ZHAO X L, WU K, YIN F, YANG B, LIANG C Y, ZHANG W D. Antifungal effects of water extracts from 8 kinds of Chinese medicines on Fusarium oxysporum. Journal of Hunan Agricultural University (Natural Sciences), 2022, 48(4): 454-459. (in Chinese)
[14]
MONGALO N I, DIKHOBA P M, SOYINGBE S O, MAKHAFOLA T J. Antifungal, anti-oxidant activity and cytotoxicity of South African medicinal plants against mycotoxigenic fungi. Heliyon, 2018, 4(11): e00973.

doi: 10.1016/j.heliyon.2018.e00973
[15]
赵晴, 张智蕊, 徐凤波, 李庆山, 李娇. 川芎、 干姜和穿心莲提取物及其组合抑菌活性研究. 植物保护, 2022, 48(5): 149-157.
ZHAO Q, ZHANG Z R, XU F B, LI Q S, LI J. Antifungal activities of the extracts from Ligusticum chuanxiong, Zingiber officinale (dried rhizome) and Andrographis paniculata and their combinations. Plant Protection, 2022, 48(5): 149-157. (in Chinese)
[16]
李治伟, 陆德玲, 冯俊涛, 张秀云, 张兴. 巴东醉鱼草不同方法提取物的杀虫活性. 西北农业学报, 2009, 18(5): 109-112.
LI Z W, LU D L, FENG J T, ZHANG X Y, ZHANG X. The insecticidal activity of extracts with different methods from Buddleja albiflora Hemsl. Acta Agriculturae Boreali-Occidentalis Sinica, 2009, 18(5): 109-112. (in Chinese)
[17]
方中达. 植病研究方法. 北京: 中国农业出版社, 1998: 151-154.
FANG Z D. Research Methods of Plant Diseases. Beijing: China Agriculture Press, 1998: 151-154. (in Chinese)
[18]
马辉刚, 何烈干, 张海良, 李湘民, 蒋军喜. 江西省辣椒疫霉生理小种构成及其对烯酰吗啉的敏感性分析. 植物保护学报, 2013, 40(4): 374-378.
MA H G, HE L Q, ZHANG H L, LI X M, JIANG J X. Physiological races of Phytophthora capsici and their sensitivity to dimethomorph in Jiangxi Province. Acta Phytophylacica Sinica, 2013, 40(4): 374-378. (in Chinese)
[19]
ZHANG S A, WHITE T L, MARTINEZ M C, MCINROY J A, KLOEPPER J W, KLASSEN W. Evaluation of plant growth- promoting rhizobacteria for control of phytophthora blight on squash under greenhouse conditions. Biological Control, 2010, 53(1): 129-135.

doi: 10.1016/j.biocontrol.2009.10.015
[20]
顾美玲, 白雪, 孙蕾, 崔晶, 周默, 白庆荣, 赵廷昌. 防治西瓜枯萎病药剂配方筛选及盆栽防效测定. 吉林农业大学学报, 2020, 42(3): 280-285.
GU M L, BAI X, SUN L, CUI J, ZHOU M, BAI Q R, ZHAO T C. Screening of formulations for controlling watermelon fusarium wilt and determination of pot control efficiency. Journal of Jilin Agricultural University, 2020, 42(3): 280-285. (in Chinese)
[21]
郝凤梅, 陈禄廷, 刘晓帆, 孙刚强, 郭慧. 克萎星防治西瓜枯萎病田间药效试验. 河南农业科学, 2003(12): 43-44.

doi: 10.3969/j.issn.1004-3268.2003.12.014
HAO F M, CHEN L T, LIU X F, SUN G Q, GUO H. Field efficacy test of Kewei Xing in controlling watermelon fusarium wilt. Journal of Henan Agricultural Sciences, 2003(12): 43-44. (in Chinese)
[22]
冯俊涛, 祝木金, 于平儒, 李玉平, 韩建华, 邵红军, 丁海新, 张兴. 西北地区植物源杀菌剂初步筛选. 西北农林科技大学学报(自然科学版), 2002, 30(6): 129-133, 137.
FENG J T, ZHU M J, YU P Y, LI Y P, HAN J H, SHAO H J, DING H X, ZHANG X. Preliminary screening of botanical fungicides in the Northwest Region. Journal of Northwest A&F University (Natural Science Edition), 2002, 30(6): 129-133, 137. (in Chinese)
[23]
于忻滢, 张国良, 范松, 黄志炜, 张叶. 植物源农药研究进展. 黑龙江农业科学, 2021(7): 123-129.
YU X Y, ZHANG G L, FAN S, HUANG Z W, ZHANG Y. Research progress of botanical pesticides. Heilongjiang Agricultural Sciences, 2021(7): 123-129. (in Chinese)
[24]
BOZHADZE A D, VACHNADZE V I, DZHOKHADZE M S, BERASHVILI D T, BAKURIDZE A D. Study on the separation process of pharmacological active total alkaloids from Chelidonium majus L. growing in Georgia. Georgian Medical News, 2013, 217: 61-65.
[25]
WINK M. Alkaloids:Properties and determination// Encyclopedia of Food and Health. Amsterdam: Elsevier, 2016: 97-105.
[26]
王静, 毛自文, 范黎明, 刘林, 叶敏, 肖春, 查友贵. 30种植物提取物抑菌活性研究. 安徽农业科学, 2012, 40(10): 5918-5919, 6185.
WANG J, MAO Z W, FAN L M, LIU L, YE M, XIAO C, ZHA Y G. Study on antibacterial activity of 30 kinds of plant extracts. Journal of Anhui Agricultural Sciences, 2012, 40(10): 5918-5919, 6185. (in Chinese)
[27]
王彩霞, 兰妍彦, 孟衍朴, 王志颖, 封英建, 钟明娟, 马树杰, 张利辉, 董金皋. 87种植物提取物抑菌活性初步研究. 植物保护, 2023, 49(4): 293-301, 308.
WANG C X, LAN Y Y, MENG Y P, WANG Z Y, FENG Y J, ZHONG M J, MA S J, ZHANG L H, DONG J G. Preliminary study on antibacterial activity of 87 kinds of plant extracts. Plant Protection, 2023, 49(4): 293-301, 308. (in Chinese)
[28]
李凌峰, 常晓涵, 许汝冰, 许雯慧, 周子豪, 杨勇, 向海波, 黎妍妍. 丁香酚诱导烟草抗青枯病的效果及促生作用. 中国烟草科学, 2025, 46(1): 33-39.
LI L F, CHANG X H, XU R B, XU W H, ZHOU Z H, YANG Y, XIANG H B, LI Y Y. Induction of eugenol for tobacco resistance to bacterial wilt disease and its growth promotion effect. Chinese Tobacco Science, 2025, 46(1): 33-39. (in Chinese)
[29]
阿拉嘎, 图门乌力吉, 陈苏依勒. 贺兰山丁香(山沉香)的资源调查报告. 中国民族医药杂志, 2007(6): 41.
TU M W L J, CHEN S Y L. Resource investigation report of Syringa pinnatifolia Hemsl. (Shan Chenxiang) in Helan Mountain. Journal of Medicine and Pharmacy of Chinese Minorities, 2007(6): 41. (in Chinese)
[30]
孙雨辉, 张烨, 薛培凤. 蒙药山沉香化学成分的研究进展. 中国医药导报, 2019, 16(9): 59-63.
SUN Y H, ZHANG Y, XUE P F. Phytochemical progress on a Mongolian folk medicine named Syringa pinnatifolia Hemsl. China Medical Herald, 2019, 16(9): 59-63. (in Chinese)
[31]
高坤, 刘长鑫, 陈佳琪, 孙静静, 李晓娟, 黄志强, 张烨, 薛培凤, 陈苏依勒, 董馨, 柴兴云. 蒙古族药山沉香的化学与药理研究新进展. 中国中药杂志, 2025, 50(8): 2080-2089.
GAO K, LIU C X, CHEN J Q, SUN J J, LI X J, HUANG Z Q, ZHANG Y, XUE P F, CHEN S Y L, DONG X, CHAI X Y. Chemical and pharmacological research progress on Mongolian folk medicine Syringa pinnatifolia. China Journal of Chinese Materia Medica, 2025, 50(8): 2080-2089. (in Chinese)
[32]
陈维. 山沉香抑菌活性成分分离及其乙醇提取物可溶性液剂研制[D]. 杨凌: 西北农林科技大学, 2024.
CHEN W. Isolation of antimicrobial active components of Syringa pinnatifolia and formulation of soluble liquids of its ethanol extracts[D]. Yangling: Northwest A&F University, 2024. (in Chinese)
[33]
仉瑜, 张洪兵, 郭虹, 陈常青, 张铁军, 刘昌孝. 姜黄的研究进展及质量标志物(Q-Marker)的预测分析. 中草药, 2021, 52(15): 4700-4710.
ZHANG Y, ZHANG H B, GUO H, CHEN C Q, ZHANG T J, LIU C X. Research progress of Curcuma longa L. and predictive analysis of its quality markers (Q-Marker). Chinese Traditional and Herbal Drugs, 2021, 52(15): 4700-4710. (in Chinese)
[34]
牛赡光, 杜丰玉. 茜草等25种中药材对5种植物病原真菌的抑制活性. 植物保护, 2015, 41(4): 111-116.
NIU S G, DU F Y. Inhibitory activity of 25 Chinese medicinal herbs such as Rubia cordifolia L. against 5 plant pathogenic fungi. Plant Protection, 2015, 41(4): 111-116. (in Chinese)
[35]
郭芳, 顾哲, 贾训利, 牟燕, 李忠睿, 李瑶, 沈立荣, 张丽霞. 药用植物姜黄的研究进展. 安徽农业科学, 2022, 50(16): 14-19.
GUO F, GU Z, JIA X L, MU Y, LI Z R, LI Y, SHEN L R, ZHANG L X. Research progress on medicinal plant Curcuma longa L. Journal of Anhui Agricultural Sciences, 2022, 50(16): 14-19. (in Chinese)
[36]
JIA S L, DU Z F, SONG C W, JIN S N, ZHANG Y, FENG Y L, XIONG C M, JIANG H L. Identification and characterization of curcuminoids in turmeric using ultra-high performance liquid chromatography-quadrupole time of flight tandem mass spectrometry. Journal of Chromatography A, 2017, 1521: 110-122.

doi: S0021-9673(17)31368-7 pmid: 28951052
[37]
韦棪婷, 郝二伟, 杜正彩, 潘王芸, 谭德超, 陈晓璐, 谢安然, 侯小涛, 邓家刚. 基于传统性效及现代研究的姜黄质量标志物分析. 中草药, 2020, 51(14): 3830-3839.
WEI Y T, HAO E W, DU Z C, PAN W Y, TAN D C, CHEN X L, XIE A R, HOU X T, DENG J G. Analysis of quality markers of Curcuma longa L. based on traditional efficacy and modern research. Chinese Traditional and Herbal Drugs, 2020, 51(14): 3830-3839. (in Chinese)
[38]
IBÁÑEZ M D, BLÁZQUEZ M A. Curcuma longa L. rhizome essential oil from extraction to its agri-food applications. A review. Plants, 2020, 10(1): 44.
[39]
PAW M, GOGOI R, SARMA N, PANDEY S K, BORAH A, BEGUM T, LAL M. Study of anti-oxidant, anti-inflammatory, genotoxicity, and antimicrobial activities and analysis of different constituents found in rhizome essential oil of Curcuma caesia Roxb., collected from North East India. Current Pharmaceutical Biotechnology, 2020, 21(5): 403-413.

doi: 10.2174/1389201020666191118121609
[40]
高富涛, 孙淑君, 游秀峰, 窦涛, 蔡玉彪, 周琳, 刘向阳. 肉桂精油和姜黄油对四种植物病原菌的抑制作用. 湖北农业科学, 2023, 62(9): 74-77.
GAO F T, SUN S J, YOU X F, DOU T, CAI Y B, ZHOU L, LIU X Y. Inhibitory effects of cinnamon essential oil and turmeric oil against four plant pathogens. Hubei Agricultural Sciences, 2023, 62(9): 74-77. (in Chinese)
[41]
董雪容. 姜黄油的抑菌机理及脂质体制备与性能研究[D]. 长沙: 中南林业科技大学, 2022.
DONG X R. Study on antibacterial mechanism, liposome preparation and of properties of turmeric oil[D]. Changsha: Central South University of Forestry and Technology, 2022. (in Chinese)
[42]
宋方帅, 刘晓鹏, 姜宁. 药用植物厚朴研究进展. 中国民族民间医药, 2020, 29(1): 59-62.
SONG F S, LIU X P, JIANG N. Research progress on medicinal plant Magnolia officinalis. Chinese Journal of Ethnomedicine and Ethnopharmacy, 2020, 29(1): 59-62. (in Chinese)
[43]
燕银芳. 天然源和厚朴酚与异黄腐酚的抗菌活性评价及(和)厚朴酚的复配增效研究[D]. 兰州: 兰州大学, 2021.
YAN Y F. Evaluation of antifungal activity of natural honokiol and isoxanthohumol, and synergistic effects of magnolol and honokiol[D]. Lanzhou: Lanzhou University, 2021. (in Chinese)
[44]
陈听听. 和厚朴酚对葡萄座腔菌的抑菌机理[D]. 贵阳: 贵州大学, 2023.
CHEN T T. Antifungal mechanism of honokiol against Botryosphaeria dothidea[D]. Guiyang: Guizhou University, 2023. (in Chinese)
[45]
汪娴娴. 药用植物提取物筛选及和厚朴酚对烟草疫霉的抑制作用[D]. 青岛: 青岛农业大学, 2022.
WANG X X. Screening of medicinal plant extracts and inhibition action of honokiol against Phytophthora nicotianae[D]. Qingdao: Qingdao Agricultural University, 2022. (in Chinese)
[46]
曹海潮, 刘庆顺, 白海秀, 韩君, 杨士玲, 薛明, 刘峰. 30%噻虫胺·吡唑醚菌酯·苯醚甲环唑悬浮种衣剂的研制及其在花生田应用的效果 中国农业科学, 2019, 52(20): 3595-3604. doi: 10.3864/j.issn.0578-1752.2019.20.010.
CAO H C, LIU Q S, BAI H X, HAN J, YANG S L, XUE M, LIU F. Development of 30% clothianidin·pyraclostrobin·difenoconazole flowable concentrate for seed-coating and its application effect in peanut field. Scientia Agricultura Sinica, 2019, 52(20): 3595-3604. doi: 10.3864/j.issn.0578-1752.2019.20.010. (in Chinese)
[1] SHI CaiHua, JIN Jie, HUA DengKe, HU JingRong, ZHANG YouJun, HUANG ShengLin, WU MingYue, KONG XiangYi, XIE Wen. Development and Application of Novel Physical Control Technologies Based on the Correlation Between Megalurothrips usitatus Outbreaks and Cowpea Flower Development Dynamics [J]. Scientia Agricultura Sinica, 2025, 58(21): 4382-4392.
[2] LIAO HongJuan, JIANG YuMei, YE Xia, ZHANG ZhiBin, MA TongYu, ZHU Du. Optimization of Solid State Fermentation for Production of Active Substances Against Plant Pathogenic Fungi from Chaetomium globosum [J]. Scientia Agricultura Sinica, 2023, 56(11): 2106-2117.
[3] Fen LU,RunJie MENG,Jie WU,JianJiang ZHAO,Yang LI,QiuYan BI,XiuYing HAN,JingHua LI,WenQiao WANG. Monitoring of Resistance Dynamics of Phytophthora infestans to Cymoxanil and Control Efficacy Validation of Cymoxanil-Containing Fungicides Against Potato Late Blight [J]. Scientia Agricultura Sinica, 2022, 55(18): 3556-3564.
[4] ZHOU JingLong,FENG ZiLi,WEI Feng,ZHAO LiHong,ZHANG YaLin,ZHOU Yi,FENG HongJie,ZHU HeQin. Biocontrol Effect and Mechanism of Cotton Endophytic Bacterium YUPP-10 and Its Secretory Protein CGTase Against Fusarium Wilt in Cotton [J]. Scientia Agricultura Sinica, 2021, 54(17): 3691-3701.
[5] XIE KunLun,LIU LiMing,LIU Mei,PENG Bin,WU HuiJie,GU QinSheng. Prokaryotic Expression of dsRNA of Zucchini yellow mosaic virus and Its Control Efficacy on ZYMV [J]. Scientia Agricultura Sinica, 2020, 53(8): 1583-1593.
[6] HuaFei ZHOU,HongFu YANG,KeBing YAO,YiQing ZHUANG,ZhaoLin SHU,ZhiYi CHEN. FliZ Regulated the Biofilm Formation of Bacillus subtilis Bs916 and Its Biocontrol Efficacy on Rice Sheath Blight [J]. Scientia Agricultura Sinica, 2020, 53(1): 55-64.
[7] GONG AnDong, ZHU ZiYu, LU YaNan, WAN HaiYan, WU NanNan, Cheelo Dimuna, GONG ShuangJun, WEN ShuTing, HOU Xiao. Functional Analysis of Burkholderia pyrrocinia WY6-5 on Phosphate Solubilizing, Antifungal and Growth-Promoting Activity of Maize [J]. Scientia Agricultura Sinica, 2019, 52(9): 1574-1586.
[8] CHUAI HongYun,SHI YanXia,CHAI ALi,YANG Jie,XIE XueWen,LI BaoJu. Development of 10% Diethofencarb·Procymidone Micropowder and Its Control Efficacy to Cucumber Corynespora Leaf Spot [J]. Scientia Agricultura Sinica, 2019, 52(6): 1009-1020.
[9] BAI RuXia,ZENG HuiWen,FAN Qian,YIN Jie,SUI ZongMing,YUAN Ling. Effects of Ceriporia lacerata on Gummy Stem Blight Control, Growth Promotion and Yield Increase of Cucumbers [J]. Scientia Agricultura Sinica, 2019, 52(15): 2604-2615.
[10] Bo LIU,QianQian CHEN,JiePing WANG,ChuanQing RUAN,YanPing CHEN,JiangPing XIA,JianMei CHE,Zheng CHEN,ZhiZhen PAN,Xiao WEN,YuJing ZHU,HaiFeng ZHANG,XueFang ZHENG. Proposition, Development and Application of the Integrated Microbiome Agent (IMA) [J]. Scientia Agricultura Sinica, 2019, 52(14): 2450-2467.
[11] HE LiFei, CHEN LeLe, XIAO Bin, ZHAO ShiFeng, LI XiuHuan, MU Wei, LIU Feng. Establishment of Sensitivity Baseline and Evaluation of Field Control Efficacy of Fludioxonil Against Fulvia fulva [J]. Scientia Agricultura Sinica, 2018, 51(8): 1475-1483.
[12] WEI XinYan, HUANG YuanYuan, HUANG YaLi, DU KeJiu. Antagonism of Bacillus methylotrophicus Strain BH21 to Botrytis cinerea [J]. Scientia Agricultura Sinica, 2018, 51(5): 883-892.
[13] HaiChao CAO,XiuHuan LI,XiaoKun WANG,HaiXiu BAI,Wei MU,Feng LIU. Control Efficacy of Pyraclostrobin and Triazole Fungicides Against Tomato Crown and Root Rot [J]. Scientia Agricultura Sinica, 2018, 51(21): 4065-4075.
[14] HUANG XuePing, SONG YuFei, LUO Jian, ZHAO ShiFeng, MU Wei, LIU Feng. Sensitivity of Sclerotinia sclerotiorum to Fluopyram and Evaluation of Its Application Potential in Controlling Sclerotinia Stem Rot [J]. Scientia Agricultura Sinica, 2018, 51(14): 2711-2718.
[15] LU Fen, ZHAO JianJiang, LIU XiaoYun, MENG RunJie, WU Jie, HAN XiuYing, WANG WenQiao. Monitoring of Resistance of Phytophthora infestans on Potato to Metalaxyl and the Control Efficacy of Alternative Fungicides [J]. Scientia Agricultura Sinica, 2018, 51(14): 2700-2710.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!