Scientia Agricultura Sinica ›› 2026, Vol. 59 ›› Issue (1): 1-16.doi: 10.3864/j.issn.0578-1752.2026.01.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Functions of ABC Transporter OsARG1 in Rice Heading Date Regulation

WANG ZhongNi(), LEI Yue, LI JiaLi, GONG YanLong, ZHU SuSong*()   

  1. Rice Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006
  • Received:2025-06-18 Accepted:2025-08-08 Online:2026-01-01 Published:2026-01-07
  • Contact: ZHU SuSong

Abstract:

【Objective】Heading date is a critical agronomic trait influencing rice yield and quality, regulated by complex networks involving histone-modifying enzymes, transcription factors, protein kinases, florigens, and phytochromes. While ATP-binding cassette (ABC) transporters are known for their roles in substrate transport, their functions in heading date regulation remain unclear. This study investigates the role of the ABC transporter gene OsARG1 in the regulation of rice heading date, which will provide evidence for enriching the heading date regulation network.【Method】A comparative analysis was conducted between wild-type Nipponbare and the osarg1 mutant. Key agronomic traits, including heading date, plant height, tiller number, and panicle length, were assessed. Chlorophyll contents in leaf of Nipponbare (WT), albino leaf (WL), yellow-green leaf (YL) and green leaf (GL) of osarg1 were measured. Metal element contents such as cobalt, nickel, calcium, magnesium and iron in WT, WL, YL and GL were determined by ICP-MS. Hormone profiling, transcriptome sequencing, and integrative analysis were performed on WT, WL and GL to explore the regulatory function of OsARG1.【Result】The osarg1 mutant exhibited an earlier heading date than wild-type in both Guiyang and Changchun. It also showed reduced plant height, tiller number, and panicle length. Chlorophyll levels in WL and YL were significantly lower, accompanied by disrupted metal element homeostasis. Hormonal analysis revealed elevated levels of gibberellins, auxin-related, and cytokinin-related hormones in GL and WL, particularly in WL. Transcriptome analysis identified 2 001 and 6 555 differentially expressed genes (DEGs) in GL_vs_WT and WL_vs_WT comparisons, respectively. Over 20 heading date-associated genes, including Hd3a, OsMADS14, and chromatin methyltransferase genes, were differentially expressed. GO and KEGG analyses of DEGs from GL vs WT comparison highlighted enrichment in pathways related to metabolism, development, and environmental responses. Integrated transcriptomic and hormonal analysis suggested that OsARG1 may influence gibberellin and cytokinin levels by modulating diterpene and zeatin metabolism and hormone signaling pathways. Expression levels of the selected genes by qRT-PCR were consistent with the transcriptome data, validating the transcriptomic findings. 【Conclusion】The osarg1 mutant heads earlier than the wild-type, with OsARG1 likely regulating heading date through modulating the expression of heading date related genes. Additionally, OsARG1 plays roles in maintaining chlorophyll content and metal element (such as nickel, iron, and magnesium) balance in rice leaves.

Key words: rice, heading date, OsARG1, metal element content, phytohormone, transcriptome sequencing

Table 1

Primers for qRT-PCR"

类别
Classification
基因
Gene
基因ID
Gene ID
正向引物
Forward primer (5′-3′)
反向引物
Reverse primer (5′-3′)
抽穗期相关基因
Heading date related genes
Hd3a LOC4340185 AGCCCAAGTGACCCTAACCT GTTGTAGAGCTCGGCGAAGT
OsMADS14 LOC4334140 TGAAGCGGATCGAGAACA CATGAGTCGGTGGCGTAC
激素信号相关基因
Hormone signaling related genes
OsEBF2 LOC4328647 TGGCATCAGCAAAGCACC ATGTCGCACCACCAGAGC
GID1 LOC4338764 GCCCATCCTTGAGTTCCTGAC ACACCACGACGCCCTTGCTC
激素代谢相关基因
Hormone metabolism related genes
OsIPT7 LOC4339535 GCGAGGATACGAGGATGGTGG CAGCGTCCACCATGTCGTCC
ZEATIN LOC4336630 CGCACCCGATGTTCAAAGA GCCGAATGACACGTAGAGGA
CPS4 LOC4335090 TCCAACCCATCCTCTGTCA GGCCCACTTGTCCTTCATT
GA20ox LOC4336431 AGCAGGCAAGGCTGTTCCG GTGAGGTCTCCAAAGTCGCAAT
内参基因
Internal reference gene
ACTIN1 LOC4333919 TGCTATGTACGTCGCCATCCAG AATGAGTAACCACGCTCCGTCA

Fig. 1

Heading dates and agronomic traits of WT and osarg1 mutant A: Heading dates of WT and osarg1 mutant in Changchun, Jilin province; B: Heading dates of WT and osarg1 mutant in Guiyang, Guizhou province; C: Statistics of heading date of WT and osarg1 in Changchun (CC) and Guiyang (GY); D-F: Panicle length, grain length and grain width of WT and osarg1; G: osarg1 mutant produced higher tillers. The arrow shows the higher tiller in osarg1 after heading; H: Leaf color. It shows the leaf of WT, yellow-green leaf (YL), albino leaf (WL) and green leaf (GL) of osarg1 from left to right. bar=1 cm"

Table 2

Agronomic traits of wild type and osarg1 in Guiyang"

名称
Name
株高
PH (cm)
分蘖数
TN
穗长
PL (cm)
穗粒数
SPP
结实率
SR (%)
千粒重
TGW (g)
粒长
SL (mm)
粒宽
SW (mm)
WT 73.8±3.2 11.7±2.4 17.8±1.2 85.7±17.2 94.3±4.3 25.5±0.6 7.6±0.2 3.7±0.1
osarg1 40.0±4.0 5.4±1.7 11.3±1.6 27.3±5.5 70.9±1.7 20.6±0.1 7.2±0.1 3.2±0.1

Fig. 2

Chlorophyll content in different color leaves of rice osarg1 mutant A: Chlorophyll a contents; B: Chlorophyll b contents; C: Total chlorophyll contents. WT: Leaves of wildtype; WL: Albino leaf; YL: Yellow-green leaf; GL: Green leaf. *: Significant difference at P<0.05 level; **: Significant difference at P<0.01 level. The same as below"

Table 3

Metal element contents in leaves of different colors (μg·g-1)"

名称Name Na Mg K Ca Mn Fe Co Ni Cu Zn As Se Rb Sr Pb
野生型WT 68.70 266.41 4020.38 3.75 166.21 227.17 0.06 0.11 3.75 11.58 0.14 0.24 0.73 6.84 0.17
白化叶WL 86.08 499.72 8058.26 3.16 162.70 73.35 0.07 - 3.16 12.81 6.44 0.18 3.13 3.97 0.31
黄绿叶YL 40.76 305.40 4155.11 1.74 231.35 129.06 0.04 0.03 1.74 7.33 0.11 0.14 1.34 6.91 0.17
绿色叶GL 165.38 769.00 3892.28 5.13 711.47 219.34 0.08 0.49 5.13 10.28 0.61 0.23 0.94 27.47 0.62

Table 4

Hormone contents in leaves of different colors (ng·g-1)"

激素
Hormone
名称
Name
激素含量 Hormone contents
野生型
WT1
野生型
WT2
野生型
WT3
白化叶
WL1
白化叶
WL2
白化叶
WL3
绿色叶
GL1
绿色叶
GL2
绿色叶
GL3
赤霉素
Gibberellin
GA3 0.00 0.00 0.00 20.53 20.82 19.57 10.48 10.40 9.82
GA1 14.53 21.81 19.69 112.36 112.36 98.82 26.55 29.56 30.92
生长素
Auxin
ICA 18.41 22.11 26.29 138.08 106.76 147.49 57.25 37.83 40.56
MEIAA 0.00 0.00 0.00 31.02 33.18 33.39 5.15 4.16 7.01
3-IPA 0.00 0.00 0.00 142.97 0.00 0.00 0.00 0.00 0.00
tIAA 5.43 5.92 4.34 16.12 17.40 17.68 4.92 5.08 6.55
IAA 43.50 50.14 52.72 437.59 399.94 434.50 60.11 53.33 58.79
细胞分裂素
Cytokinin
IP 0.00 0.00 0.00 4.41 0.00 0.00 0.00 0.00 0.00
cZ 109.15 92.10 86.79 334.13 288.51 251.73 9.88 9.87 11.77
Dx 120.69 124.34 118.61 112.59 97.99 103.45 212.56 183.52 190.03
Dh-Z 104.88 87.15 103.32 17.77 18.11 16.71 31.41 33.13 37.42
IPA 203.75 202.39 194.53 89.58 107.28 119.08 106.11 122.79 122.02
水杨酸
Salicylic acid
MESA 0.00 0.00 0.00 2043.71 1945.56 1960.40 0.00 0.00 0.00
SA 262841.1 208707.3 226887.3 148707.0 143286.1 191767.7 140563.7 151651.5 170172.6
茉莉酸
Jasmonic acid
H2JA 2.36 1.83 2.76 3.06 2.60 3.11 2.75 2.88 3.03
JA 93.82 83.59 76.27 63.44 50.83 59.65 377.76 393.99 492.27
脱落酸
Abscisic acid
ABA 57.47 47.28 45.39 150.24 120.25 97.19 55.13 49.21 36.48
乙烯
Ethylene
ACC 838.67 778.14 822.08 5323.73 5453.37 5235.46 3885.59 3295.39 3467.53

Fig. 3

Contents of common differential hormone in WL and GL of osarg1 mutant A: Gibberellin; B: Auxin; C: Cytokinin; D: ACC. Different lowercase letters represent significant difference"

Table 5

Quality and genome comparison of transcriptome sequencing data"

样品名称Samples 过滤后总数据量
Clean bases
GC含量
GC content (%)
≥Q30
(%)
序列总数
Total clean reads
总比对(比对率)
Total mapped (Mapping ratio, %)
唯一比对(比对率)
Uniquely mapped (Mapping ratio, %)
多方比对(比对率)
Multiple mapped (Mapping ratio, %)
绿色叶GL1 7302373276 50.47 91.07 48819940 46388953 (95.02) 44247888 (90.63) 2141065 (4.39)
绿色叶GL2 7434294208 50.05 91.25 49705204 47042791 (94.64) 43805600 (88.13) 3237191 (6.51)
绿色叶GL3 7271079057 49.14 91.54 48606466 45884410 (94.40) 43524507 (89.54) 2359903 (4.86)
白化叶WL1 6830948082 50.15 92.11 45672892 43865510 (96.04) 42366504 (92.76) 1499006 (3.28)
白化叶WL2 7148140757 49.58 91.73 47793474 45823105 (95.88) 43672117 (91.38) 2150988 (4.50)
白化叶WL3 7944166308 49.72 97.67 53103966 52271280 (98.43) 49985049 (94.13) 2286231 (4.31)
野生型WT1 6591969488 53.31 93.37 44115034 41355884 (93.75) 37259893 (84.46) 4095991 (9.28)
野生型WT2 6763621452 50.12 92.11 45189738 43024853 (95.21) 41764281 (92.42) 1260572 (2.79)
野生型WT3 8854258271 53.17 95.02 59169498 56245607 (95.06) 50550176 (85.43) 5695431 (9.63)

Fig. 4

Transcriptome analysis of heading date related genes in osarg1 A: Up-regulated and down-regulated DEGs in WL and GL; B: Heat map of expression levels of heading date related genes in WT and GL"

Fig. 5

Enrichment analysis of differential expressed genes in GL_vs_WT A: GO enrichment analysis of differential expressed genes; B: Enriched chord map of top 10 GO items in biological process. Lines between genes and GO entries represent enrichment relationship between them; C: KEGG enrichment analysis of differential expressed genes in biological process"

Fig. 6

KEGG enrichment analysis of hormone content changes in green leaf of osarg1 A: KEGG enrichment bubble plot of differential genes/metabolites. Bubble shapes represent different omics, circles represent transcriptomes, and triangles represent metabolomes; B-C: KEGG pathway diagrams of gibberellin and cytokinin, respectively. Boxes indicate genes, and circles indicate metabolites. Red indicates upregulated genes/metabolites, green indicates downregulated genes/metabolites, blue indicates upregulated and downregulated genes/metabolites. Gene expression levels are represented by heat map. The left and right three squares in heat map are genes expression levels in WT and GL, respectively. The solid line represents specific reaction, while the dashed line represents omitted multiple reactions"

Fig. 7

Enrichment analysis of differential expressed genes in WL and GL of osarg1 A:Venn diagrams of differential expressed genes in WT, GL and WL; B: KEGG analysis of 3 497 differential expressed genes"

Fig. 8

Relative expression levels of differential expressed genes in osarg1 A: FPKM values of DEGs from RNA-seq; B: Relative expression levels of DEGs by qRT-PCR"

[1]
YUAN L P. Hybrid rice technology for food security in the world. Crop Research, 2004, 18(4): 185-186.
[2]
KHUSH G S. Origin, dispersal, cultivation and variation of rice. Plant Molecular Biology, 1997, 35(1/2): 25-34.

doi: 10.1023/A:1005810616885
[3]
ZHOU S R, ZHU S S, CUI S, HOU H G, WU H Q, HAO B Y, CAI L, XU Z, LIU L L, JIANG L, et al. Transcriptional and post- transcriptional regulation of heading date in rice. New Phytologist, 2021, 230(3): 943-956.

doi: 10.1111/nph.v230.3
[4]
LEE Y S, AN G. Regulation of flowering time in rice. Journal of Plant Biology, 2015, 58(6): 353-360.

doi: 10.1007/s12374-015-0425-x
[5]
孔德艳, 陈守俊, 周立国, 高欢, 罗利军, 刘灶长. 水稻开花光周期调控相关基因研究进展. 遗传, 2016, 38(6): 532-542.
KONG D Y, CHEN S J, ZHOU L G, GAO H, LUO L J, LIU Z C. Research progress of photoperiod regulated genes on flowering time in rice. Hereditas, 2016, 38(6): 532-542. (in Chinese)
[6]
KOMIYA R, IKEGAMI A, TAMAKI S, YOKOI S, SHIMAMOTO K. Hd3a and RFT1 are essential for flowering in rice. Development, 2008, 135(4): 767-774.

doi: 10.1242/dev.008631 pmid: 18223202
[7]
KOJIMA S, TAKAHASHI Y, KOBAYASHI Y, MONNA L, SASAKI T, ARAKI T, YANO M. Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant and Cell Physiology, 2002, 43(10): 1096-1105.

doi: 10.1093/pcp/pcf156
[8]
TAOKA K I, OHKI I, TSUJI H, FURUITA K, HAYASHI K, YANASE T, YAMAGUCHI M, NAKASHIMA C, PURWESTRI Y A, TAMAKI S, et al. 14-3-3 proteins act as intracellular receptors for rice Hd3a florigen. Nature, 2011, 476(7360): 332-335.

doi: 10.1038/nature10272
[9]
KOBAYASHI K, YASUNO N, SATO Y, YODA M, YAMAZAKI R, KIMIZU M, YOSHIDA H, NAGAMURA Y, KYOZUKA J. Inflorescence meristem identity in rice is specified by overlapping functions of three AP1/FUL-Like MADS box genes and PAP2, a SEPALLATA MADS box gene. The Plant Cell, 2012, 24(5): 1848-1859.

doi: 10.1105/tpc.112.097105
[10]
YANO M, KATAYOSE Y, ASHIKARI M, YAMANOUCHI U, MONNA L, FUSE T, BABA T, YAMAMOTO K, UMEHARA Y, NAGAMURA Y, et al. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. The Plant Cell, 2000, 12(12): 2473-2483.

doi: 10.1105/tpc.12.12.2473
[11]
IZAWA T, OIKAWA T, SUGIYAMA N, TANISAKA T, YANO M, SHIMAMOTO K. Phytochrome mediates the external light signal to repress FT orthologs in photoperiodic flowering of rice. Genes & Development, 2002, 16(15): 2006-2020.

doi: 10.1101/gad.999202
[12]
DOI K, IZAWA T, FUSE T, YAMANOUCHI U, KUBO T, SHIMATANI Z, YANO M, YOSHIMURA A. Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes & Development, 2004, 18(8): 926-936.

doi: 10.1101/gad.1189604
[13]
LIU B, WEI G, SHI J L, JIN J, SHEN T, NI T, SHEN W H, YU Y, DONG A W. SET DOMAIN GROUP 708, a histone H3 lysine 36-specific methyltransferase, controls flowering time in rice (Oryza sativa). New Phytologist, 2016, 210(2): 577-588.

doi: 10.1111/nph.13768 pmid: 26639303
[14]
LIU B, LIU Y H, WANG B H, LUO Q, SHI J L, GAN J H, SHEN W H, YU Y, DONG A W. The transcription factor OsSUF4 interacts with SDG725 in promoting H3K36me3 establishment. Nature Communications, 2019, 10: 2999.

doi: 10.1038/s41467-019-10850-5 pmid: 31278262
[15]
LIU K P, YU Y, DONG A W, SHEN W H. SET DOMAIN GROUP701 encodes a H3K4-methytransferase and regulates multiple key processes of rice plant development. New Phytologist, 2017, 215(2): 609-623.

doi: 10.1111/nph.14596 pmid: 28517045
[16]
JIANG P F, WANG S L, ZHENG H, LI H, ZHANG F, SU Y H, XU Z T, LIN H Y, QIAN Q, DING Y. SIP 1 participates in regulation of flowering time in rice by recruiting OsTrx1 to Ehd1. New Phytologist, 2018, 219(1): 422-435.

doi: 10.1111/nph.2018.219.issue-1
[17]
XIE S Y, CHEN M, PEI R, OUYANG Y D, YAO J L. OsEMF2b acts as a regulator of flowering transition and floral organ identity by mediating H3K27me3 deposition at OsLFL1 and OsMADS4 in rice. Plant Molecular Biology Reporter, 2015, 33(1): 121-132.

doi: 10.1007/s11105-014-0733-1
[18]
SAKAMOTO T, KOBAYASHI M, ITOH H, TAGIRI A, KAYANO T, TANAKA H, IWAHORI S, MATSUOKA M. Expression of a gibberellin 2-oxidase gene around the shoot apex is related to phase transition in rice. Plant Physiology, 2001, 125(3): 1508-1516.

doi: 10.1104/pp.125.3.1508 pmid: 11244129
[19]
ZHANG S, DENG L, CHENG R, HU J, WU C Y. RID 1 sets rice heading date by balancing its binding with SLR1 and SDG722. Journal of Integrative Plant Biology, 2022, 64(1): 149-165.

doi: 10.1111/jipb.v64.1
[20]
ZHAO Z, CHEN T K, YUE J C, PU N, LIU J Z, LUO L X, HUANG M, GUO T, XIAO W M. Small Auxin Up RNA 56 (SAUR56) regulates heading date in rice. Molecular Breeding, 2023, 43(8): 62.

doi: 10.1007/s11032-023-01409-w
[21]
CHO L H, YOON J, TUN W, BAEK G, PENG X, HONG W J, MORI I C, HOJO Y, MATSUURA T, KIM S R, et al. Cytokinin increases vegetative growth period by suppressing florigen expression in rice and maize. The Plant Journal, 2022, 110(6): 1619-1635.

doi: 10.1111/tpj.v110.6
[22]
VERRIER P J, BIRD D, BURLA B, DASSA E, FORESTIER C, GEISLER M, KLEIN M, KOLUKISAOGLU Ü, LEE Y, MARTINOIA E, et al. Plant ABC proteins-a unified nomenclature and updated inventory. Trends in Plant Science, 2008, 13(4): 151-159.

doi: 10.1016/j.tplants.2008.02.001
[23]
DO T H T, MARTINOIA E, LEE Y. Functions of ABC transporters in plant growth and development. Current Opinion in Plant Biology, 2018, 41: 32-38.

doi: S1369-5266(17)30151-6 pmid: 28854397
[24]
HUANG C F, YAMAJI N, MITANI N, YANO M, NAGAMURA Y, MA J F. A bacterial-type ABC transporter is involved in aluminum tolerance in rice. The Plant Cell, 2009, 21(2): 655-667.

doi: 10.1105/tpc.108.064543
[25]
LI H X, LIU Y, QIN H H, LIN X L, TANG D, WU Z J, LUO W, SHEN Y, DONG F Q, WANG Y L, et al. A rice chloroplast-localized ABC transporter ARG 1 modulates cobalt and nickel homeostasis and contributes to photosynthetic capacity. New Phytologist, 2020, 228(1): 163-178.

doi: 10.1111/nph.v228.1
[26]
ZENG X Y, TANG R, GUO H R, KE S W, TENG B, HUNG Y H, XU Z J, XIE X M, HSIEH T F, ZHANG X Q. A naturally occurring conditional albino mutant in rice caused by defects in the plastid- localized OsABCI8 transporter. Plant Molecular Biology, 2017, 94(1): 137-148.

doi: 10.1007/s11103-017-0598-4
[27]
GAO H, JIN M N, ZHENG X M, CHEN J, YUAN D Y, XIN Y Y, WANG M Q, HUANG D Y, ZHANG Z, ZHOU K N, et al. Days to heading 7, a major quantitative locus determining photoperiod sensitivity and regional adaptation in rice. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(46): 16337-16342.
[28]
肖冬冬, 宗伍辈, 孙康莉, 李加俊, 刘耀光, 郭晶心. Ghd7和DTH8协同调控水稻抽穗期和部分农艺性状. 华南农业大学学报, 2022, 43(3): 18-25.
XIAO D D, ZONG W B, SUN K L, LI J J, LIU Y G, GUO J X. Synergistic regulation of rice heading date and some agronomic traits by Ghd7 and DTH8. Journal of South China Agricultural University, 2022, 43(3): 18-25. (in Chinese)
[29]
BAO S J, HUA C M, SHEN L S, YU H. New insights into gibberellin signaling in regulating flowering in Arabidopsis. Journal of Integrative Plant Biology, 2020, 62(1): 118-131.

doi: 10.1111/jipb.v62.1
[30]
BLABY C E, MERCHANT S S. Metal Homeostasis: Sparing and Salvaging Metals in Chloroplasts. New Jersey, USA: John Wiley & Sons, 2013: 51-62.
[31]
SHIMONI-SHOR E, HASSIDIM M, YUVAL-NAEH N, KEREN N. Disruption of Nap14, a plastid-localized non-intrinsic ABC protein in Arabidopsis thaliana results in the over-accumulation of transition metals and in aberrant chloroplast structures. Plant, Cell & Environment, 2010, 33(6): 1029-1038.

doi: 10.1111/pce.2010.33.issue-6
[32]
DUY D, STÜBE R, WANNER G, PHILIPPAR K. The chloroplast permease PIC1 regulates plant growth and development by directing homeostasis and transport of iron. Plant Physiology, 2011, 155(4): 1709-1722.

doi: 10.1104/pp.110.170233 pmid: 21343424
[33]
JEONG J, COHU C, KERKEB L, PILON M, CONNOLLY E L, GUERINOT M L. Chloroplast Fe (Ⅲ) chelate reductase activity is essential for seedling viability under iron limiting conditions. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(30): 10619-10624.
[34]
KIM D Y, BOVET L, MAESHIMA M, MARTINOIA E, LEE Y. The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. The Plant Journal, 2007, 50(2): 207-218.

doi: 10.1111/tpj.2007.50.issue-2
[35]
STRADER L C, BARTEL B. The Arabidopsis PLEIOTROPIC drug resistance8/abcg36 ATP binding cassette transporter modulates sensitivity to the auxin precursor indole-3-butyric acid. The Plant Cell, 2009, 21(7): 1992-2007.

doi: 10.1105/tpc.109.065821
[36]
SUH S J, WANG Y F, FRELET A, LEONHARDT N, KLEIN M, FORESTIER C, MUELLER-ROEBER B, CHO M H, MARTINOIA E, SCHROEDER J I. The ATP binding cassette transporter AtMRP5 modulates anion and calcium channel activities in Arabidopsis guard cells. Journal of Biological Chemistry, 2007, 282(3): 1916-1924.

doi: 10.1074/jbc.M607926200
[37]
NAGY R, GROB H, WEDER B, GREEN P, KLEIN M, FRELET- BARRAND A, SCHJOERRING J K, BREARLEY C, MARTINOIA E. The Arabidopsis ATP-binding cassette protein AtMRP5/AtABCC5 is a high affinity inositol hexakisphosphate transporter involved in guard cell signaling and phytate storage. Journal of Biological Chemistry, 2009, 284(48): 33614-33622.

doi: 10.1074/jbc.M109.030247
[1] FEI YaoYing, WANG Di, TANG WeiJie, GUO CaiLi, ZHANG XiaoHu, QIU XiaoLei, CHENG Tao, YAO Xia, JIANG ChongYa, ZHU Yan, CAO WeiXing, ZHENG HengBiao. Estimation of Rice Grain Protein Content Using Fusion Imagery from UAV-based Multi-Sensors [J]. Scientia Agricultura Sinica, 2026, 59(1): 41-56.
[2] DONG GuiChun, WANG ZiHan, WANG ShuShen, LI Jie, HUO XiaoQing, YANG Rui, ZHOU Juan, SHU XiaoWei, LI Yan, CAO LiangJing, WANG ZiRui, YAO YouLi, HUANG JianYe. Technical Approaches for Enhancing Rice Yield and Nitrogen Use Efficiency with Sulfur-Coated Controlled-Release Fertilizers [J]. Scientia Agricultura Sinica, 2026, 59(1): 57-77.
[3] WANG AiDong, LI RuiJie, FENG XiangQian, HONG WeiYuan, LI ZiQiu, ZHANG XiaoGuo, WANG DanYing, CHEN Song. Multi-Angle Imaging and Machine Learning Approaches for Accurate Rice Leaf Area Estimation [J]. Scientia Agricultura Sinica, 2025, 58(9): 1719-1734.
[4] WEI Ping, PAN JuZhong, ZHU DePing, SHAO ShengXue, CHEN ShanShan, WEI YaQian, GAO WeiWei. The Function of OsDREB1J in Regulating Rice Grain Size [J]. Scientia Agricultura Sinica, 2025, 58(8): 1463-1478.
[5] LIU JinSong, WU LongMei, BAO XiaoZhe, LIU ZhiXia, ZHANG Bin, YANG TaoTao. Effects of a Short-Term Reduction in Nitrogen Fertilizer Application Rates on the Grain Yield and Rice Quality of Early and Late-Season Dual-Use Rice in South China [J]. Scientia Agricultura Sinica, 2025, 58(8): 1508-1520.
[6] WANG Bin, WU PengHao, LU JianWei, REN Tao, CONG RiHuan, LU ZhiFeng, LI XiaoKun. Water Demand Characteristics of Rice-Oilseed Rape Rotation System in the Middle Reaches of the Yangtze River [J]. Scientia Agricultura Sinica, 2025, 58(7): 1355-1365.
[7] XIONG JiaNi, LI ZongYue, HU HengLiang, GU TianYu, GAO Yan, PENG JiaShi. Influence of Expressing OsNRAMP5 Under the Driving of the OsLCT1 Promoter on Cadmium Migration to Rice Seeds [J]. Scientia Agricultura Sinica, 2025, 58(7): 1259-1268.
[8] JIN YiDan, HE NiQing, CHENG ZhaoPing, LIN ShaoJun, HUANG FengHuang, BAI KangCheng, ZHANG Tao, WANG WenXiao, YU MinXiang, YANG DeWei. Screening and Identification of Pigm-1 Interaction Proteins for Disease Resistance of Rice Blast [J]. Scientia Agricultura Sinica, 2025, 58(6): 1043-1051.
[9] JIN YaRu, CHEN Bin, WANG XinKai, ZHOU TianTian, LI Xiao, DENG JingJing, YANG YuWen, GUO DongShu, ZHANG BaoLong. Generation of Low-Glutelin Rice (Oryza sativa L.) Germplasm Through Long Fragment Deletion Using CRISPR/Cas9-Mediated Targeted Mutagenesis [J]. Scientia Agricultura Sinica, 2025, 58(6): 1052-1064.
[10] ZOU XiaoWei, XIA Lei, ZHU XiaoMin, SUN Hui, ZHOU Qi, QI Ji, ZHANG YaFeng, ZHENG Yan, JIANG ZhaoYuan. Analysis of Disease Resistance Induced by Ustilago maydis Strain with Overexpressed UM01240 Based on Transcriptome Sequencing [J]. Scientia Agricultura Sinica, 2025, 58(6): 1116-1130.
[11] XIAO ChangChun, WEI XinYu, ZENG YueHui, HUANG JianHong, XU XuMing. Accumulation Characteristics of Anthocyanins in Black Rice Under Different Sowing Dates and Its Relationship with Meteorological Factors [J]. Scientia Agricultura Sinica, 2025, 58(5): 890-906.
[12] XU YuanYuan, JIA DongSheng, BIN Yu, WEI TaiYun. PGRP6 Negatively Regulates Symbiotic Bacteria to Prevent the Transovarial Transmission of RDV in Nephotettix cincticeps [J]. Scientia Agricultura Sinica, 2025, 58(5): 907-917.
[13] CHEN Ge, GU Yu, WEN Jiong, FU YueFeng, HE Xi, LI Wei, ZHOU JunYu, LIU QiongFeng, WU HaiYong. Effects of Fallow Weeds Returning to the Field on Photosynthetic Matter Production and Yield of Rice [J]. Scientia Agricultura Sinica, 2025, 58(4): 647-659.
[14] WANG ShaoHua, SHEN NianQiao, CHU TianRan, WU YongHan, LI KangNing, SHI YanXia, XIE XueWen, LI Lei, FAN TengFei, LI BaoJu, CHAI ALi. Effects of Tomato-Rice Rotation on Physicochemical Properties and Microbial Communities of Soil with Continuous Cropping Obstacles in Cangnan, Zhejiang [J]. Scientia Agricultura Sinica, 2025, 58(4): 692-703.
[15] LI Lu, XIE Zhuang, XIE KeYing, ZHANG Han, ZHAO ZhuoWen, XIANG AoNi, LI QiaoLong, LING YingHua, HE GuangHua, ZHAO FangMing. Construction of Single and Dual-Segment Substitution Lines from Rice CSSL-Z492 and Genetic Dissection of QTL for Grain Size [J]. Scientia Agricultura Sinica, 2025, 58(3): 401-415.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!