Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (14): 2739-2750.doi: 10.3864/j.issn.0578-1752.2025.14.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Identification of GmSZFP-Interacting Proteins and Functional Analysis of GmERF7 in Soybean Resistance to SMV Infection

QI MengNan1(), ZHAO DingLing1, ZHANG XueYan1, ZHANG YuJie1, WANG RongNa1, LIU BingQiang2, YAN Long2, ZHANG Jie1,*(), WANG DongMei1,*()   

  1. 1 College of Life Sciences, Hebei Agricultural University/State Key Laboratory of North China Crop Improvement and Regulation/ Hebei Provincial Key Laboratory of Plant Physiology and Molecular Pathology, Baoding 071001, Hebei
    2 Institute of Cereals and Oils Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035
  • Received:2025-01-27 Accepted:2025-03-10 Online:2025-07-17 Published:2025-07-17
  • Contact: ZHANG Jie, WANG DongMei

Abstract:

【Objective】Soybean, an important economic and oil crop, is frequently threatened by soybean mosaic virus (SMV) disease, which is caused by the soybean mosaic virus (SMV). Previous studies identified a differentially expressed C2H2 single zinc finger protein gene, GmSZFP, which positively regulated soybean resistance to SMV infection. Using a yeast two-hybrid library, we screened for proteins that interact with GmSZFP and explored their functions in the soybean-SMV interaction. This research provides a theoretical basis for further elucidating the regulatory network of transcription factors involved in soybean resistance to SMV infection. 【Method】In this study, the compatible (Jidou 7 and SMV strain SC-8) and incompatible (Jidou 7 and SMV strain N3) combinations were used to screen the potential interaction proteins of GmSZFP by yeast two-hybrid library. the protein-protein interactions were validated through yeast two-hybrid system (Y2H) and bimolecular fluorescence complementation (BiFC). Real-time quantitative PCR (qPCR) and Tobacco rattle virus (TRV)-based virus-induced gene silencing (VIGS) were employed to analyze the transcriptional expression levels and functions of the identified interaction proteinin the soybean-SMV interaction. 【Result】We identified GmERF7 as apotential target protein of GmSZFP through yeast two-hybrid system. The interaction between GmSZFP and GmERF7 was confirmed by Y2H and BiFC. GmERF7 is a 393 -amino acid protein containing an AP2/ERF domain and two nuclear localization signals (NLS). qPCR results showed that the expression levels of GmERF7 were significantly higher in the compatible combination than those in the incompatible combination at 4, 12, and 24 hours after infection, peaking at 24 hours. VIGS-mediated silencing of GmERF7 in Jidou 7 plants infected with SC-8 (compatible combination) results in increased callose deposition at the inoculation site compared to the control. At the 14 days after inoculation, the expression of SMV coat protein CP gene was undetectable in the upper leaves of the GmERF7-silenced plants, and no SMV infection symptoms were observed. In contrast, the CP gene was detected in the control plants, which exhibited typical susceptibility symptoms such as mosaic and green-loss. These results indicate silencing GmERF7 weakened virus transport and spread between cells, thereby enhancing plant resistance to SMV. This suggest that GmERF7 negatively regulates soybean resistance to SMV. 【Conclusion】The ERF transcription factor GmERF7 interacts with the zinc finger protein GmSZFP, and negatively regulates soybean resistance to SMV.

Key words: Soybean mosaic virus, GmSZFP, GmERF7, interacting proteins, yeast two-hybrid system, BiFC

Table 1

Primer information"

引物名称Primer name 引物序列Primer sequence (5′-3′) 用途<BOLD>A</BOLD>pplication
GmSZFP编码区-F
GmSZFP coding region-F
ATGGTTTCTTTTACAAGTTATT 扩增GmSZFP
Amplify GmSZFP
GmSZFP编码区-R
GmSZFP coding region-R
TCAATCAATATTATCATCTTCAGA
GmERF7编码区-F
GmERF7 coding region-F
ATGTGTGGTGGTGCGATTATC 扩增GmERF7
Amplify GmERF7
GmERF7编码区-R
GmERF7 coding region-R
TCAGAAGACTCCTGCCATGG
pGBDT7-GmSZFP-F gaattcATGGTTTCTTTTACAAGTTATTTC pGBDT7-GmSZFP载体构建
pGBDT7-GmSZFP vector construction
pGBDT7-GmSZFP-R ggatccTCAATCAATATTATCATCTTCAGA
pGADT7-GmSZFP-F catatgTATGGGCCTCTGCACCTCT pGADT7-GmSZFP载体构建
pGADT7-GmSZFP vector construction
pGADT7-GmSZFP-R ggatccCCTTGGAAACACTCCGTGGAGTT
pGADT7-GmERF7-F catatgATGTGTGGTGGTGCGATTATC pGADT7-GmERF7载体构建
pGADT7-GmERF7 vector construction
pGADT7-GmERF7-R gagctcTCAGAAGACTCCTGCCATGG
pGBDT7-GmERF7-F catatgATGTGTGGTGGTGCGATTATC pGBDT7-GmERF7载体构建
pGBDT7-GmERF7 vector construction
pGBDT7-GmERF7-R gagctcTCAGAAGACTCCTGCCATGG
pxy104-GmERF7-F ATTACAGGTACCCGG-
ggatccATGTGTGGTGGTGCGATT
pxy104-GmERF7载体构建
pxy104-GmERF7 vector construction
pxy104-GmERF7-R CACGCTGCCACCGCC-
gtcgacGAAGACTCCTGCCATGGA
pxy106-GmSZFP-F ATCGAGGACGCCGGC-
ggatccATGGTTTCTTTTACAAGTTAT
pxy106-GmSZFP载体构建
pxy106-GmSZFP vector construction
pxy106-GmSZFP-R GAACGAAAGCTCTGC-
gtcgacATCAATATTATCATCTTCAGA
qRT-GmERF7-F AAGCCCTTTGGGTTCTCTCG 检测GmERF7的转录水平表达量
To detect the transcription level of GmERF7
qRT-GmERF7-R GCATCGTAAGCTCTTGCAGC
EF1b-F CCACTGCTGAAGAAGATGATGATG 检测EF1b的转录水平表达量
To detect the transcription level of EF1b
EF1b-R AAGGACAGAAGACTTGCCACTC
pTRV2-GmERF7-F ggatccGCTGCTCCTTTGGACGGT pTRV2-GmERF7载体构建
pTRV2 -GmERF7 vector construction
pTRV2-GmERF7-R ggtaccTCAGAAGACTCCTGCCATGGA
SMV-CP PCR-F GAGTGGGACAGGAGCAAAGAGCTTA 检测SMV-CP的表达量
To detect the expression of SMV-CP
SMV-CP PCR-R TCAAGCAAGTGGTCCAAGCTAAGAA

Table 2

Notes on screening related genes by yeast two-hybrid"

编号
Number
序列名
Sequence ID
注释
Annotation
预测功能
Predictive function
1 Glyma.13G145000 苯丙氨酸解氨酶3
Phenylalanine ammonia-lyase 3
在植物生物和非生物胁迫方面发挥作用
Plays a role in plant biotic and abiotic stresses
2 Glyma.06G242900 金属硫蛋白MT3
Metallothionein MT3
在重金属胁迫下诱导表达
Expression was induced under heavy metal stress
3 Glyma.07G044300 乙烯应答转录因子(ERF7)
Ethylene Response Transcription Factor (ERF7)
在植物生物和非生物胁迫方面发挥作用
Plays a role in plant biotic and abiotic stresses
4 Glyma.10G251900 多聚泛素 Polyubiquitin 调节蛋白质的降解 Regulates the degradation of proteins
5 Glyma.05G190300 果胶酯酶
Pectin esterase
促进植物细胞壁修饰和随后的分解
Promotes the modification of plant cell walls and subsequent decomposition
6 Glyma.10G090500 腺苷甲硫氨酸
Adenosylmethionine
多种甲基转移酶催化反应的甲基供体;与多种酶的活性相关
Methyl donors for multiple methyltransferase-catalyzed reactions; Associated with the activity of a variety of enzymes
7 Glyma.18G036400 核酮糖二磷酸羧化酶 Ribulose diphosphate carboxylase 激活RuBisCO Activate RuBisCO
8 Glyma.02G147400 跨膜GTPase FZO样
Transmembrane GTPase FZO-like
在类囊体和叶绿体形态的中起作用
Plays a role in thylakoid and chloroplast morphology
9 Glyma.04G003700 异戊二烯化植物蛋白
Isoprenylated plant protein
在重金属胁迫下诱导表达
Expression was induced under heavy metal stress
10 Glyma.13G046200 RBCS1核酮糖二磷酸羧化酶小链1
RBCS1 ribulose diphosphate carboxylase small chain 1
二氧化碳固定中发挥作用
Carbon dioxide fixation

Fig. 1

Screening and rotation validation of GmSZFP interacting proteins U: Uncharacterized proteins; 1-10: The number of the positive clone; +: Positive control: B: Negative control; SD-TL, SD-TLH, SD-TLHA, SD-TLHA+30 mmol·L-1 3AT+X-α-gal were the second, third and fourth defective mediums containing 30 mmol·L-1 3AT and X-α-gal"

Fig. 2

Yeast two-hybrid identification of the interaction between GmSZFP and GmERF7"

Fig. 3

BiFC analysis of GmSZFP and GmERF7 protein interactions Bars=20 μm"

Fig. 4

Expression pattern of GmERF7 in soybean-SMV interaction Lowercase letters indicate significant differences at the P<0.05 level. The same as below"

Fig. 5

Statistics and fluorescence of the callosum area of GmERF7 silencing plant leaves A: Schematic representation of the position of TRV-VIGS targeting fragments on mRNAs of GmERF7; B: The silencing efficiency of GmERF7 gene; C: Statistics of callose area on silent plants; D: Observation of callose fluorescence in silenced plants"

Fig. 6

Phenotype observation and virus detection in the upper leaves of GmERF7 silenced plants inoculated with SMV A: Phenotype of the upper leaves at 14 d following SMV inoculation; B: Detection of SMV CP gene; M: DL 2000 Marker; +: SC-8; -: H2O"

[1]
LI H, LIU J Y, YUAN X X, CHEN X, CUI X Y. Comparative transcriptome analysis reveals key pathways and regulatory networks in early resistance of Glycine max to soybean mosaic virus. Frontiers in Microbiology, 2023, 14: 1241076.
[2]
PEDERSEN P, GRAU C, CULLEN E, KOVAL N, HILL J H. Potential for integrated management of soybean virus disease. Plant Disease, 2007, 91(10): 1255-1259.

doi: 10.1094/PDIS-91-10-1255 pmid: 30780527
[3]
XIE M M, SUN J H, GONG D P, KONG Y Z. The roles of Arabidopsis C1-2i subclass of C2H2-type zinc-finger transcription factors. Genes, 2019, 10(9): 653.
[4]
ZHANG Z Y, LIU H H, SUN C, MA Q B, HUAI Y B, KANG C, XU Y Y. A C2H2 zinc-finger protein OsZFP213 interacts with OsMAPK3 to enhance salt tolerance in rice. Journal of Plant Physiology, 2018, 229: 100-110.
[5]
NGUYEN X C, KIM S H, LEE K, KIM K E, LIU X M, HAN H J, HOANG M H T, LEE S W, HONG J C, MOON Y H, CHUNG W S. Identification of a C2H2-type zinc finger transcription factor (ZAT10) from Arabidopsis as a substrate of MAP kinase. Plant Cell Reports, 2012, 31(4): 737-745.
[6]
KE Y D, HUANG Y W, VISWANATH K K, HU C C, YEH C M, MITSUDA N, LIN N S, HSU Y H. NbNAC42 and NbZFP3 transcription factors regulate the virus inducible NbAGO5 promoter in Nicotiana benthamiana. Frontiers in Plant Science, 2022, 13: 924482.
[7]
PENG J Y, LI Z H, WEN X, LI W Y, SHI H, YANG L S, ZHU H Q, GUO H W. Salt-induced stabilization of EIN3/EIL1 confers salinity tolerance by deterring ROS accumulation in Arabidopsis. PLoS Genetics, 2014, 10(10): e1004664.
[8]
倪晓详, 王晓荣, 陆军, 从青, 程龙军. 巨桉锌指结构蛋白基因EgrZFP7在低温胁迫中的功能研究. 农业生物技术学报, 2018, 26(8): 1288-1295.
NI X X, WANG X R, LU J, CONG Q, CHENG L J. Study on the function of zinc finger protein gene EgrZFP7 in cold stress response of Eucalyptus grandis. Journal of Agricultural Biotechnology, 2018, 26(8): 1288-1295. (in Chinese)
[9]
SAKUMA Y, LIU Q, DUBOUZET J G, ABE H, SHINOZAKI K, YAMAGUCHI S K. DNA-binding specifi city of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration and cold-inducible gene expression. Biochemical and Biophysical Research Communications, 2002, 290(3): 998-1009.
[10]
ZHAI Y, WANG Y, LI Y J, LEI T T, YAN F, SU L T, LI X W, ZHAO Y, SUN X, LI J W, WANG Q Y. Isolation and molecular characterization of GmERF7, a soybean ethylene-response factor that increases salt stress tolerance in tobacco. Gene, 2013, 513(1): 174-183.

doi: 10.1016/j.gene.2012.10.018 pmid: 23111158
[11]
MA N, SUN P, LI Z Y, ZHANG F J, WANG X F, YOU C X, ZHANG C L, ZHANG Z L. Plant disease resistance outputs regulated by AP2/ERF transcription factor family. Stress Biology, 2024, 4(1): 2.

doi: 10.1007/s44154-023-00140-y pmid: 38163824
[12]
HUANG P Y, ZHANG J S, JIANG B E, CHAN C, YU J H, LU Y P, CHUNG K, ZIMMERLI L. NINJA-associated ERF19 negatively regulates Arabidopsis pattern-triggered immunity. Journal of Experimental Botany, 2019, 70(3): 1033-1047.
[13]
邵文靖, 石洁, 张普, 郎明林. ERF转录因子调控生物胁迫反应的研究进展. 生物技术通报, 2021, 37(3): 136-143.

doi: 10.13560/j.cnki.biotech.bull.1985.2020-0736
SHAO W J, SHI J, ZHANG P, LANG M L. Research progress of ERF transcription factors in regulating biological stress responses. Biotechnology Bulletin, 2021, 37(3): 136-143. (in Chinese)
[14]
赵玎玲, 王梦璇, 孙天杰, 苏伟华, 赵志华, 肖付明, 赵青松, 闫龙, 张洁, 王冬梅. 大豆单锌指蛋白基因GmSZFP的克隆及其在SMV与寄主互作中的功能. 中国农业科学, 2022, 55(14): 2685-2695. doi: 10.3864/j.issn.0578-1752.2022.14.001.
ZHAO D L, WANG M X, SUN T J, SU W H, ZHAO Z H, XIAO F M, ZHAO Q S, YAN L, ZHANG J, WANG D M. Cloning of the soybean single zinc finger protein gene GmSZFP and its functional analysis in SMV-host interactions. Scientia Agricultura Sinica, 2022, 55(14): 2685-2695. doi: 10.3864/j.issn.0578-1752.2022.14.001. (in Chinese)
[15]
王月明. 河北省大豆品种对SMV的抗性鉴定及感染后的细胞学研究[D]. 保定: 河北农业大学, 2006.
WANG Y M. Identification of resistance of soybean varieties to SMV in Hebei Province and cytological study after infection[D]. Baoding: Hebei Agricultural University, 2006. (in Chinese)
[16]
苏伟华, 赵志华, 齐梦楠, 孙天杰, 王冬梅, 张洁. 病程相关蛋白基因GmPR1-6的克隆及其在大豆抵抗SMV侵染过程中的功能初探. 河北农业大学学报, 2023, 46(4): 8-15.
SU W H, ZHAO Z H, QI M N, SUN T J, WANG D M, ZHANG J. Cloning and functional analysis of pathogenesis-related protein gene GmPR1-6 in soybean resistance to SMV. Journal of Hebei Agricultural University, 2023, 46(4): 8-15. (in Chinese)
[17]
孙天杰, 麻楠, 孙立永, 王梦璇, 孙希哲, 张洁, 王冬梅. 一种基于TRV-VIGS的高通量大豆基因功能验证方法. 农业生物技术学报, 2020, 28(11): 2080-2090.
SUN T J, MA N, SUN L Y, WANG M X, SUN X Z, ZHANG J, WANG D M. A TRV-VIGS-based approach for high throughput gene function verification in soybean (Glycine max). Journal of Agricultural Biotechnology, 2020, 28(11): 2080-2090. (in Chinese)
[18]
SUN T J, SUN X Z, LI F K, MA N, WANG M X, CHEN Y, LIU N, JIN Y, ZHANG J, HOU C Y, YANG C Y, WANG D M. H2O2 mediates transcriptome reprogramming during soybean mosaic virus-induced callose deposition in soybean. The Crop Journal, 2022, 10(1): 262-272.
[19]
王梦璇, 孙希哲, 孙天杰, 张洁, 王冬梅. GmGSL7c在大豆抗SMV过程中的作用. 河北大学学报(自然科学版), 2021, 41(1): 47-54.

doi: 10.3969/j.issn.1000-1565.2021.01.007
WANG M X, SUN X Z, SUN T J, ZHANG J, WANG D M. Effect of GmGSL7c in SMV infected soybean. Journal of Hebei University (Natural Science Edition), 2021, 41(1): 47-54. (in Chinese)
[20]
LI W L, ZHAO Y S, LIU C J, YAO G B, WU S S, HOU C Y, ZHANG M C, WANG D M. Callose deposition at plasmodesmata is a critical factor in restricting the cell-to-cell movement of Soybean mosaic virus. Plant Cell Reports, 2012, 31(5): 905-916.

doi: 10.1007/s00299-011-1211-y pmid: 22200865
[21]
DENG H Q, LIU H B, LI X H, XIAO J H, WANG S P. A CCCH- type zinc finger nucleic acid-binding protein quantitatively confers resistance against rice bacterial blight disease. Plant Physiology, 2012, 158(2): 876-889.
[22]
GUO Y H, YU Y P, WANG D, WU C G, YANG G D, HUANG J G, ZHENG C C. GhZFP1, a novel CCCH-type zinc finger protein from cotton, enhances salt stress tolerance and fungal disease resistance in transgenic tobacco by interacting with GZIRD21A and GZIPR5. New Phytologist, 2009, 183(1): 62-75.
[23]
WANG L H, CHEN J, ZHAO Y Q, WANG S P, YUAN M. OsMAPK 6 phosphorylates a zinc finger protein OsLIC to promote downstream OsWRKY30 for rice resistance to bacterial blight and leaf streak. Journal of Integrative Plant Biology, 2022, 64(5): 1116-1130.
[24]
WEBER H, HELLMANN H. Arabidopsis thaliana BTB/ POZ-MATH proteins interact with members of the ERF/AP2 transcription factor family. The FEBS Journal, 2009, 276(22): 6624-6635.
[25]
SUN L J, DONG X X, SONG X S. PtrABR1 increases tolerance to drought stress by enhancing lateral root formation in Populus trichocarpa. International Journal of Molecular Sciences, 2023, 24(18): 13748.
[26]
ZHU Z G, SHI J L, XU W R, LI H E, HE M Y, XU Y, XU T F, YANG Y Z, CAO J L, WANG Y J. Three ERF transcription factors from Chinese wild grapevine Vitis pseudoreticulata participate in different biotic and abiotic stress-responsive pathways. Journal of Plant Physiology, 2013, 170(10): 923-933.
[27]
MCGRATH K C, DOMBRECHT B, MANNERS J M, SCHENK P M, EDGAR C I, MACLEAN D J, SCHEIBLE W R, UDVARDI M K, KAZAN K. Repressor- and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression. Plant Physiology, 2005, 139(2): 949-959.
[28]
LIU D F, CHEN X J, LIU J Q, YE J C, GUO Z J. The rice ERF transcription factor OsERF922 negatively regulates resistance to Magnaporthe oryzae and salt tolerance. Journal of Experimental Botany, 2012, 63(10): 3899-3911.
[29]
LEE J H, HONG J P, OH S K, LEE S, CHOI D, KIM W T. The ethylene-responsive factor like protein 1 (CaERFLP1) of hot pepper (Capsicum annuum L.) interacts in vitro with both GCC and DRE/CRT sequences with different binding affinities: Possible biological roles of CaERFLP1 in response to pathogen infection and high salinity conditions in transgenic tobacco plants. Plant Molecular Biology, 2004, 55(1): 61-81.
[30]
ZANG Z Y, LV Y, LIU S, YANG W, CI J B, REN X J, WANG Z, WU H, MA W Y, JIANG L Y, YANG W G. A novel ERF transcription factor, ZmERF105, positively regulates maize resistance to Exserohilum turcicum. Frontiers in Plant Science, 2020, 11: 850.
[31]
HUANG Y, ZHANG B L, SUN S, XING G M, WANG F, LI M Y, TIAN Y S, XIONG A S. AP2/ERF transcription factors involved in response to tomato yellow leaf curly virus in tomato. The Plant Genome, 2016, 9(2): 1-15.
[32]
LIANG H X, LU Y, LIU H X, WANG F D, XIN Z Y, ZHANG Z Y. A novel activator-type ERF of Thinopyrum intermedium, TiERF1, positively regulates defence responses. Journal of Experimental Botany, 2008, 59(11): 3111-3120.
[33]
CUI H T, TSUDA K, PARKER J E. Effector-triggered immunity: From pathogen perception to robust defense. Annual Review of Plant Biology, 2015, 66: 487-511.

doi: 10.1146/annurev-arplant-050213-040012 pmid: 25494461
[34]
KAZAN K, MANNERS J M. MYC2: The master in action. Molecular Plant, 2013, 6(3): 686-703.

doi: 10.1093/mp/sss128 pmid: 23142764
[35]
WANG X, DING Y L, LI Z Y, SHI Y T, WANG J L, HUA J, GONG Z Z, ZHOU J M, YANG S H. PUB25 and PUB26 promote plant freezing tolerance by degrading the cold signaling negative regulator MYB15. Developmental Cell, 2019, 51(2): 222-235.

doi: S1534-5807(19)30691-4 pmid: 31543444
[1] ZHAO DingLing,WANG MengXuan,SUN TianJie,SU WeiHua,ZHAO ZhiHua,XIAO FuMing,ZHAO QingSong,YAN Long,ZHANG Jie,WANG DongMei. Cloning of the Soybean Single Zinc Finger Protein Gene GmSZFP and Its Functional Analysis in SMV-Host Interactions [J]. Scientia Agricultura Sinica, 2022, 55(14): 2685-2695.
[2] ZHANG HuiYuan,LIU YongWei,YANG JunFeng,ZHANG ShuangXi,YU TaiFei,CHEN Jun,CHEN Ming,ZHOU YongBin,MA YouZhi,XU ZhaoShi,FU JinDong. Identification and Analysis of Salt Tolerance of Wheat Transcription Factor TaWRKY33 Protein [J]. Scientia Agricultura Sinica, 2018, 51(24): 4591-4602.
[3] YUAN Min, XING JiHong, WANG Li, GE WeiNa, GUO Di, ZHANG Lan. Interaction Between TFL1 and GRFs in Arabidopsis thaliana [J]. Scientia Agricultura Sinica, 2017, 50(10): 1772-1780.
[4] ZHANG He-cui, LIU Jing, LIAN Xiao-ping, ZENG Jing, YANG Kun, ZHANG Xue-jie, YANG Dan, SHI Song-mei, GAO Qi-guo, ZHU Li-quan. Expression and Interaction Between ROH1 and EXO70A1 in Reproductive Development [J]. Scientia Agricultura Sinica, 2016, 49(4): 775-783.
[5] HE Yi-kun, ZHONG Min, HU Tong-le, WANG Shu-tong, DUAN Hao, DING Li, WANG Ya-nan, CAO Ke-qiang. Screening of the Host Factors Interacting with CP of Apple chlorotic leaf spot virus by Yeast Two-Hybrid System [J]. Scientia Agricultura Sinica, 2014, 47(24): 4821-4829.
[6] YU Tai-Fei-1, 2 , XU Zhao-Shi-2, LI Pan-Song-2, CHEN Ming-2, LI Lian-Cheng-2, ZHANG Jun-Hua-1, MA You-Zhi-2. Screening and Identification of Proteins Interacting with TaMAPK2 in Wheat [J]. Scientia Agricultura Sinica, 2014, 47(13): 2494-2503.
[7] LOU Wang-Huai, AN Juan, SONG Ai-Ping, CHEN Su-Mei, JIANG Jia-Fu, CHEN Fa-Di, FANG Wei-Min, GUAN Zhi-Yong. Cloning and Expression Analysis of Eukaryotic Translation Initiation Factor 4E Gene and Screening of the Interactive Protein from Chrysanthemum×morifolium [J]. Scientia Agricultura Sinica, 2013, 46(9): 1881-1891.
[8] ZHANG Yue-Juan, ZHAO Ting-Chang, YANG Yu-Wen. Screening of the Interactive Proteins of Avirulent Proteins AvrPto or AvrPtoB in Susceptible Tomato Cultivar Zhongshusihao by Yeast Two-Hybrid System  [J]. Scientia Agricultura Sinica, 2011, 44(23): 4939-4944.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!