Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (9): 1816-1829.doi: 10.3864/j.issn.0578-1752.2025.09.011

• HORTICULTURE • Previous Articles     Next Articles

Genetic and Interaction Analysis of High Soluble Solid Content Loci in Processing Tomato

ZHANG Min1(), LI Xin1, ZHANG Yong2, ZHONG DePing1, LU XiaoXiao1, HE ShuMin1, CHEN DongHong3, LI Ye2, LI RongXia4, HUANG ZeJun1, WANG XiaoXuan1, GUO YanMei1, DU YongChen1, LIU HongHai2(), LI JunMing1(), LIU Lei1()   

  1. 1 Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences/State Key Laboratory of Vegetable Biobreeding, Beijing 100081
    2 Chalks Health Industry Co., Ltd, Urumqi 830000
    3 Bazhou Wuliang Agricultural Technology Co., Ltd, Yanqi 841100, Xinjiang
    4 Institute of Agricultural Science, the Sixth Division of Xinjiang Production and Construction Corps, Wujiaqu 831301, Xinjiang
  • Received:2024-12-09 Accepted:2025-01-22 Online:2025-05-01 Published:2025-05-08
  • Contact: LIU HongHai, LI JunMing, LIU Lei

Abstract:

【Objective】 This study aimed to explore the genetic effects and the interaction effects by utilizing the introgression lines with high soluble solid content sites, which could provide material and theoretical basis for genetic improvement of high-quality, gene pyramiding, and hybrid vigor prediction of tomatoes. 【Method】 Nine introgression lines (ILs) comprising high-SSC loci of S. pennellii LA0716 (IL1-4, IL2-6, IL4-4, IL5-4-5-44, IL7-3, IL7-5-5, IL8-3, IL9-2-5) and S. habrochaites LA1777 (LA3914) were selected to analyze the effects of genetic, intra-specific, and inter-specific interactions of soluble solids content, fruit weight, and plant yield. 【Result】 As the genetic effects, the high soluble solids loci contained in IL7-3 exhibit dominant effect, while the linkage drag of yield reducing show dominant effect. The high soluble solids loci in IL 9-2-5 exhibit dominant effect also, with the fruit weight and yield do not reduce. The yield increase loci in IL1-4 were over-dominant. The linkage drag loci responsible for reducing fruit weight in IL2-6 were dominant. In the interaction, some ILs or loci that can affect SSC and yield were selected. Such as, IL7-3 and IL9-2-5 have good epistatic and additive effects, both of which can significantly increase SSC in double hybrids, but the yield of double hybrids which contained IL7-3 was also reduced. IL2-6 can reduce the fruit weight of its interaction combination significantly. The yield of double hybrids which has IL5-4-5-44 or IL7-5-5 get increased. The alleles of IL1-4 and LA3914 both have better dominant or super-dominant effects on plant yield and horticultural yield. Our results showed that, the correlation between horticultural yield and plant yield was found to be high (with a correlation coefficient of 0.916). Thus, increasing SSC as part of genetic improvement must be performed under the premise of ensuring high yield.【Conclusion】 The total soluble solid content and horticultural yield could be improved effectively through pyramiding high soluble solids loci. In order to improve their interaction effects more effectively, the interaction of high soluble solids loci which has synergism in genetics and physiology could be better. Therefore, selecting suitable high solid content sites for multigene polymerization breeding is an effective way to improve the soluble solid content and yield of tomatoes.

Key words: tomato, soluble solid, introgression lines, genetic effects, interaction effects

Fig. 1

The Boxplot of SSC, fruit weight, and yield per plant with different years and different trials The dots beyond the whiskers represent outliers"

Fig. 2

The genetic effects analysis of high SSC ILs of S. pennellii LA0716 A, B, C, D represent the SSC, plant yield, fruit weight, and horticultural yield value of combinations than M82 and IL. *: Significance at the 0.05 level; **: Significance at the 0.01 level"

Fig. 3

The interaction effects analysis of SSC between high SSC ILs of S. pennellii LA0716"

Fig. 4

The interaction effects analysis of plant yield between high SSC ILs of S. pennellii LA0716"

Fig. 5

The interaction effects analysis of fruit weight between high SSC ILs of S. pennellii LA0716"

Fig. 6

The interaction effects analysis of horticultural yield between high SSC ILs of S. pennellii LA0716"

Fig. 7

The interspecific interaction effects analysis of SSC of high SSC loci in LA0716 and LA1777 ILs"

Fig. 8

The interaction effects analysis of plant yield of high SSC loci in LA0716 and LA1777 ILs"

Fig. 9

The interaction effects analysis of fruit weight of high SSC loci in LA0716 and LA1777 ILs"

Fig. 10

The interaction effects analysis of horticultural yield of high SSC loci in LA0716 and LA1777 ILs"

[1]
TIEMAN D M, ZEIGLER M, SCHMELZ E A, TAYLOR M G, BLISS P, KIRST M, KLEE H J. Identification of loci affecting flavour volatile emissions in tomato fruits. Journal of Experimental Botany, 2006, 57(4): 887-896.

doi: 10.1093/jxb/erj074 pmid: 16473892
[2]
ZHU G T, WANG S C, HUANG Z J, ZHANG S B, LIAO Q G, ZHANG C Z, LIN T, QIN M, PENG M, YANG C K, CAO X, HAN X, WANG X X, VAN DER KNAAP E, ZHANG Z H, CUI X, KLEE H, FERNIE A R, LUO J, HUANG S W. Rewiring of the fruit metabolome in tomato breeding. Cell, 2018, 172(1/2): 249-261.e12.
[3]
冯岩, 李朝平, 朱龙英, 刘雨婷, 杨学东, 张迎迎, 张辉, 朱为民. 番茄果实可溶性固形物研究进展. 分子植物育种, 2022, 20(15): 5158-5163.
FENG Y, LI C P, ZHU L Y, LIU Y T, YANG X D, ZHANG Y Y, ZHANG H, ZHU W M. Research progress of soluble solids content in tomato. Molecular Plant Breeding, 2022, 20(15): 5158-5163. (in Chinese)
[4]
LUENGWILAI K, FIEHN O E, BECKLES D M. Comparison of leaf and fruit metabolism in two tomato (Solanum lycopersicum L.) genotypes varying in total soluble solids. Journal of Agricultural and Food Chemistry, 2010, 58(22): 11790-11800.
[5]
李君明, 徐和金, 周永健. 有关番茄果实中可溶性固形物和番茄红素的研究进展. 园艺学报, 2001, 28 (增刊): 661-668.
LI J M, XU H J, ZHOU Y J. The advance of the research on soluble solid and lycopene in tomato fruit. Acta Horticulturae Sinica, 2001, 28 (Suppl.): 661-668. (in Chinese)
[6]
李守明, 王建江, 王诚军, 曾沂辉, 高明, 刘金虎, 祝晏兵. 我国加工番茄产业发展中的技术瓶颈与对策. 中国蔬菜, 2013, 7: 6-8.
LI S M, WANG J J, WANG C J, ZENG Y H, GAO M, LIU J H, ZHU Y B. Technical bottleneck and countermeasures in the development of processing tomato industry in China. Chinese Vegetables, 2013, 7: 6-8. (in Chinese)
[7]
BAXTER C J, SABAR M, PAUL QUICK W, SWEETLOVE L J. Comparison of changes in fruit gene expression in tomato introgression lines provides evidence of genome-wide transcriptional changes and reveals links to mapped QTLs and described traits. Journal of Experimental Botany, 2005, 56(416): 1591-1604.

doi: 10.1093/jxb/eri154 pmid: 15851417
[8]
ESHED Y, ZAMIR D. Introgressions from Lycopersicon pennellii can improve the soluble-solids yield of tomato hybrids. Theoretical and Applied Genetics, 1994, 88(6): 891-897.
[9]
GUR A, SEMEL Y, OSORIO S, FRIEDMANN M, SEEKH S, GHAREEB B, MOHAMMAD A, PLEBAN T, GERA G, FERNIE A R, ZAMIR D. Yield quantitative trait loci from wild tomato are predominately expressed by the shoot. Theoretical and Applied Genetics, 2011, 122(2): 405-420.

doi: 10.1007/s00122-010-1456-9 pmid: 20872209
[10]
ESHED Y, ZAMIR D. An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics, 1995, 141(3): 1147-1162.
[11]
BAXTER C J, CARRARI F, BAUKE A, OVERY S, HILL S A, QUICK P W, FERNIE A R, SWEETLOVE L J. Fruit carbohydrate metabolism in an introgression line of tomato with increased fruit soluble solids. Plant & Cell Physiology, 2005, 46(3): 425-437.
[12]
KANAYAMA Y. Sugar metabolism and fruit development in the tomato. The Horticulture Journal, 2017, 86(4): 417-425.
[13]
BERNACCHI D, BECK-BUNN T, EMMATTY D, ESHED Y, INAI S, LOPEZ J, PETIARD V, SAYAMA H, UHLIG J, ZAMIR D, TANKSLEY S. Advanced back-cross QTL analysis of tomato: II. Evaluation of near-isogenic lines carrying single-donor introgressions for desirable wild QTL-alleles derived from Lycopersicon hirsutum and L. pimpinellifolium. Theoretical and Applied Genetics, 1998, 97(7): 1191-1196.
[14]
LIPPMAN Z B, SEMEL Y, ZAMIR D. An integrated view of quantitative trait variation using tomato interspecific introgression lines. Current Opinion in Genetics & Development, 2007, 17(6): 545-552.
[15]
IKEDA H, HIRAGA M, SHIRASAWA K, NISHIYAMA M, KANAHAMA K, KANAYAMA Y. Analysis of a tomato introgression line, IL8-3, with increased Brix content. Scientia Horticulturae, 2013, 153: 103-108.
[16]
GUR A, ZAMIR D. Unused natural variation can lift yield barriers in plant breeding. PLoS Biology, 2004, 2(10): e245.

doi: 10.1371/journal.pbio.0020245 pmid: 15328532
[17]
MUIR C D, MOYLE L C. Antagonistic epistasis for ecophysiological trait differences between Solanum species. New Phytologist, 2009, 183(3): 789-802.
[18]
LI J M. Screening of wild relatives for enhanced stress tolerance in tomato[D]. The Netherlands: Wageningen University, 2010.
[19]
PRASANNA H C, SINHA D P, RAI G K, KRISHNA R, KASHYAP S P, SINGH N K, SINGH M, MALATHI V G. Pyramiding Ty-2 and Ty-3 genes for resistance to monopartite and bipartite tomato leaf curl viruses of India. Plant Pathology, 2015, 64(2): 256-264.
[20]
BHARANI M, NAGARAJAN P, RABINDRAN R, SARASWATHI R, BALASUBRAMANIAN P, RAMALINGAM J. Bacterial leaf blight resistance genes (Xa21, xa13andxa5) pyramiding through molecular marker assisted selection into rice cultivars. Archives of Phytopathology and Plant Protection, 2010, 43(10): 1032-1043.
[21]
CAICEDO A L, STINCHCOMBE J R, OLSEN K M, SCHMITT J, PURUGGANAN M D. Epistatic interaction between Arabidopsis FRI and FLC flowering time genes generates a latitudinal cline in a life history trait. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(44): 15670-15675.
[22]
WANG Y, ZANG J P, SUN Y, ALI J, XU J L, LI Z K. Background-independent quantitative trait loci for drought tolerance identified using advanced backcross introgression lines in rice. Crop Science, 2013, 53(2): 430-441.
[23]
TANKSLEY S D. The genetic, developmental, and molecular bases of fruit size and shape variation in tomato. The Plant Cell, 2004, 16(Suppl.): S181-S189.
[24]
SACCO A, DI MATTEO A, LOMBARDI N, TROTTA N, PUNZO B, MARI A, BARONE A. Quantitative trait loci pyramiding for fruit quality traits in tomato. Molecular Breeding, 2013, 31(1): 217-222.

doi: 10.1007/s11032-012-9763-2 pmid: 23316114
[25]
TIEMAN D, ZHU G T, RESENDE M F R Jr, LIN T, NGUYEN C, BIES D, RAMBLA J L, BELTRAN K S O, TAYLOR M, ZHANG B, IKEDA H, LIU Z Y, FISHER J, ZEMACH I, MONFORTE A, ZAMIR D, GRANELL A, KIRST M, HUANG S W, KLEE H. A chemical genetic roadmap to improved tomato flavor. Science, 2017, 355(6323): 391-394.

doi: 10.1126/science.aal1556 pmid: 28126817
[26]
CALAFIORE R, ALIBERTI A, RUGGIERI V, OLIVIERI F, RIGANO M M, BARONE A. Phenotypic and molecular selection of a superior Solanum pennellii introgression sub-line suitable for improving quality traits of cultivated tomatoes. Frontiers in Plant Science, 2019, 10: 190.
[27]
赵统敏, 余文贵, 杨玛丽, 赵丽萍. 番茄可溶性固形物含量的主基因+多基因遗传分析. 江苏农业学报, 2010, 26(3): 572-576.
ZHAO T M, YU W G, YANG M L, ZHAO L P. Genetic analysis of soluble solid content using mixed major gene plus polygenes inheritance model in tomato. Jiangsu Journal of Agricultural Sciences, 2010, 26(3): 572-576. (In Chinese)
[28]
周永健, 徐和金. 番茄几个主要加工性状的遗传分析. 遗传, 1990, 12(2): 1-3.
ZHOU Y J, XU H J. A genetic of several main processing characteristics in tomato. Hereditas (Beijing), 1990, 12(2): 1-3. (in Chinese)
[29]
FRIDMAN E, LIU Y S, CARMEL-GOREN L, GUR A, SHORESH M, PLEBAN T, ESHED Y, ZAMIR D. Two tightly linked QTLs modify tomato sugar content via different physiological pathways. Molecular Genetics and Genomics, 2002, 266(5): 821-826.

doi: 10.1007/s00438-001-0599-4 pmid: 11810256
[30]
XU X Y, MARTIN B, COMSTOCK J P, VISION T J, TAUER C G, ZHAO B G, PAUSCH R C, KNAPP S. Fine mapping a QTL for carbon isotope composition in tomato. Theoretical and Applied Genetics, 2008, 117(2): 221-233.

doi: 10.1007/s00122-008-0767-6 pmid: 18542914
[31]
MONFORTE A J, TANKSLEY S D. Fine mapping of a quantitative trait locus (QTL) from Lycopersicon hirsutum chromosome 1 affecting fruit characteristics and agronomic traits: Breaking linkage among QTLs affecting different traits and dissection of heterosis for yield. Theoretical and Applied Genetics, 2000, 100(3): 471-479.
[32]
SEMEL Y, NISSENBAUM J, MENDA N, ZINDER M, KRIEGER U, ISSMAN N, PLEBAN T, LIPPMAN Z, GUR A, ZAMIR D. Overdominant quantitative trait loci for yield and fitness in tomato. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(35): 12981-12986.
[33]
FRIDMAN E, CARRARI F, LIU Y S, FERNIE A R, ZAMIR D. Zooming in on a quantitative trait for tomato yield using interspecific introgressions. Science, 2004, 305(5691): 1786-1789.

doi: 10.1126/science.1101666 pmid: 15375271
[34]
MOYLE L C, NAKAZATO T. Complex epistasis for Dobzhansky- Muller hybrid incompatibility in Solanum. Genetics, 2009, 181(1): 347-351.
[35]
SANDHU N, SINGH A, DIXIT S, STA CRUZ M T, MATURAN P C, JAIN R K, KUMAR A. Identification and mapping of stable QTL with main and epistasis effect on rice grain yield under upland drought stress. BMC Genetics, 2014, 15: 63.

doi: 10.1186/1471-2156-15-63 pmid: 24885990
[36]
SHEN G J, ZHAN W, CHEN H X, XING Y Z. Dominance and epistasis are the main contributors to heterosis for plant height in rice. Plant Science, 2014, 215: 11-18.
[37]
YE G Y, SMITH K F. Marker-assisted gene pyramiding for cultivar development. Plant Breeding Reviews, 2009, 33: 219-256.
[38]
杨自凤. 基于SSSL的水稻抽穗期基因的等位基因变异及上位性分析[D]. 广州: 华南农业大学, 2020.
YANG Z F. Allele variation and epistasis analysis of rice heading date genes based on SSSL[D]. Guangzhou: South China Agricultural University, 2020. (in Chinese)
[39]
CHEN J B, LI X Y, CHENG C, WANG Y H, QIN M, ZHU H T, ZENG R Z, FU X L, LIU Z Q, ZHANG G Q. Characterization of epistatic interaction of QTLs LH8 and EH3 controlling heading date in rice. Scientific Reports, 2014, 4: 4263.

doi: 10.1038/srep04263 pmid: 24584028
[40]
SOYK S, MÜLLER N A, PARK S J, SCHMALENBACH I, JIANG K, HAYAMA R, ZHANG L, VAN ECK J, JIMÉNEZ-GÓMEZ J M, LIPPMAN Z B. Variation in the flowering gene SELF PRUNING 5G promotes day-neutrality and early yield in tomato. Nature Genetics, 2017, 49(1): 162-168.
[41]
LU J H, PAN C Y, LI X, HUANG Z J, SHU J S, WANG X X, LU X X, PAN F, HU J L, ZHANG H, SU W Y, ZHANG M, DU Y C, LIU L, GUO Y M, LI J M. OBV (obscure vein), a C2H2 zinc finger transcription factor, positively regulates chloroplast development and bundle sheath extension formation in tomato (Solanum lycopersicum) leaf veins. Horticulture Research, 2021, 8(1): 230.
[42]
PETREIKOV M, SHEN S, YESELSON Y, LEVIN I, BAR M, SCHAFFER A A. Temporally extended gene expression of the ADP-Glc pyrophosphorylase large subunit (AgpL1) leads to increased enzyme activity in developing tomato fruit. Planta, 2006, 224(6): 1465-1479.

doi: 10.1007/s00425-006-0316-y pmid: 16770584
[43]
ZAMIR D. Plant breeders go back to nature. Nature Genetics, 2008, 40: 269-270.

doi: 10.1038/ng0308-269 pmid: 18305476
[1] ZHANG YaFeng, DONG WeiJin, LI QiYun, LU Yang, ZHANG ZhengKun, SUI Li. Effect of Interaction Between Beauveria bassiana and Potassium on Tomato Fruit Quality [J]. Scientia Agricultura Sinica, 2025, 58(6): 1131-1144.
[2] WANG ShaoHua, SHEN NianQiao, CHU TianRan, WU YongHan, LI KangNing, SHI YanXia, XIE XueWen, LI Lei, FAN TengFei, LI BaoJu, CHAI ALi. Effects of Tomato-Rice Rotation on Physicochemical Properties and Microbial Communities of Soil with Continuous Cropping Obstacles in Cangnan, Zhejiang [J]. Scientia Agricultura Sinica, 2025, 58(4): 692-703.
[3] SUN ZhaoAn, ZHANG YiWen, JIANG LiHua, LI ZhaoJun, GUO Xin, CAO Hui, MENG FanQiao. Effects of Tomato Grafting and Nitrogen Fertilization on Fertilizer Nitrogen Fate and Nitrogen Balance [J]. Scientia Agricultura Sinica, 2024, 57(4): 755-764.
[4] PEI ShuYao, CAO HongXia, ZHANG ZeYu, ZHAO FangYang, LI ZhiJun. Physiological Response of Potted Tomatoes to NaCl and Na2SO4 Brackish Water Irrigation [J]. Scientia Agricultura Sinica, 2024, 57(3): 570-583.
[5] MA Jia, PENG JieLi, JIA Nan, WANG Xu, WANG ZhanWu, HU Dong. Effects of Streptomyces sp. TOR3209 on Chlorophyll Fluorescence Characteristics and Xanthophyll Cycle in Tomato Plants Under Cold Stress [J]. Scientia Agricultura Sinica, 2024, 57(22): 4522-4540.
[6] LI Jie, LIANG ZhiLin, SUN Yan, TAN GenJia, HUAI BaoYu. Functional Analysis of SlSnRK1.2 in Regulating Tomato Resistance to Grey Mould [J]. Scientia Agricultura Sinica, 2024, 57(21): 4238-4247.
[7] XIN Lang, SONG JiaWen, FU YuanYuan, TANG MaoSong, JING LingKun, WANG XingPeng. Effects of Saline-Fresh Water Rotation Irrigation on Photosynthetic Characteristics and Leaf Ultrastructure of Tomato Plants in Greenhouse [J]. Scientia Agricultura Sinica, 2024, 57(19): 3784-3798.
[8] LI YuShan, XIAO Jing, MA Yue, TIAN Chao, ZHAO LianJia, WANG Fan, SONG Yu, JIANG ChengYao. Identification and Evaluation of Phenotypic Characters and Genetic Diversity Analysis of 169 Tomato Germplasm Resources [J]. Scientia Agricultura Sinica, 2024, 57(18): 3671-3683.
[9] YOU Min, CHEN JinSong, CHEN YanYan, YANG Ping, ZHANG ChunHui, HUANG Feng. Effects of the Different Tomato Addition Ratios on the Eating Quality and Oxidation of Stewed Beef [J]. Scientia Agricultura Sinica, 2024, 57(15): 3071-3082.
[10] WANG Yuan, DU MengDan, LI ZhengGang, SHE XiaoMan, YU Lin, LAN GuoBing, DING ShanWen, HE ZiFu, TANG YaFei. Identification of Pathogen Causing Tomato White Tip and Curl Leaf Disease and Its Pathogenicity in Guangdong Province [J]. Scientia Agricultura Sinica, 2024, 57(12): 2350-2363.
[11] CAO Ke, CHEN ChangWen, YANG XuanWen, BIE HangLing, WANG LiRong. Genomic Selection for Fruit Weight and Soluble Solid Contents in Peach [J]. Scientia Agricultura Sinica, 2023, 56(5): 951-963.
[12] LIU MingHui, TIAN HongYu, LIU ZhiGuang, GONG Biao. Effects of Urea Slow-Release Functional Fertilizer Containing Melatonin on Growth, Yield and Phosphorus Use Efficiency of Tomato Under Reduced Phosphorus Application Conditions [J]. Scientia Agricultura Sinica, 2023, 56(3): 519-528.
[13] YIN ZiHe, YANG ChengCheng, ZHAO YuHui, ZHAO Li, LÜ XiuRong, YANG ZhenChao, WU YongJun. Sequencing and Functional Analysis of Tomato circRNA During Flowering Stage [J]. Scientia Agricultura Sinica, 2023, 56(21): 4288-4303.
[14] DONG JiZi, CHEN LinQu, GUO HaoRu, ZHANG MengYu, LIU ZhiXiao, HAN Lei, TIAN ZhaoSaShuang, XU NingHao, GUO QingJie, HUANG ZhenJie, YANG AoYu, ZHAO ChunHua, WU YongZhen, SUN Han, QIN Ran, CUI Fa. Analysis of Genetic and Breeding Selection Effects of A Major QTL-qSl-2D for Wheat Spike Length [J]. Scientia Agricultura Sinica, 2023, 56(20): 3917-3930.
[15] TENG YunFei, SHANG Bin, TAO XiuPing. Nutritional Effects of Liquid Digestate on Tomatoes Grown in Facility Substrates [J]. Scientia Agricultura Sinica, 2023, 56(19): 3869-3878.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!