Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (15): 3035-3052.doi: 10.3864/j.issn.0578-1752.2024.15.010

• HORTICULTURE • Previous Articles     Next Articles

Transcriptome Analysis of Paeonia lactiflora in Response to Alternaria tenuissima Infection

YU ShuHan(), QIN XiaoJie(), WU QiChao, LI Ling, ZANG DeKui, MA Yan()   

  1. College of Forestry, Shandong Agricultural University/Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River, Taian 271018, Shandong
  • Received:2024-01-21 Accepted:2024-03-21 Online:2024-08-05 Published:2024-08-05
  • Contact: MA Yan

Abstract:

ObjectivePaeonia lactiflora (P. lactiflora) is prone to pathogen infection during its growth and development. Leaf red spot disease caused by the Alternaria tenuissima (A.tenuissima) seriously affects both the quality and yield of the plant. However, the disease resistance mechanism of P. lactiflora is not clear at present. This study aimed to explore the physiological changes and molecular response pathways of P. lactiflora in response to the infection of A. tenuissima by using physiological and transcriptomic approaches.【Method】Taking P. lactiflora Dafugui as the experimental material, the leaves of them at 12, 24 and 96 h after A.tenuissima infection were taken respectively to determine the relevant physiological indexes and perform transcriptome sequencing analysis, used uninoculated leaves as the control.【Result】After pathogen inoculation, the activities of SOD, POD, CAT and PAL of the leaves of P. lactiflora increased, the content of soluble sugar, soluble protein and MDA increased, but the content of proline decreased. The differentially expressed genes (DEGs) in each stage were screened after 12, 24 and 96 h of A. tenuissima infection. There were 5 045, 5 961 and 2 748 DEGs up-regulated, and 4 284, 5 665 and 3 536 DEGs were down-regulated in each stage. GO enrichment analysis showed that these DEGs were mainly enriched in some biosynthesis and metabolic processes, photosynthesis-related, signal transduction-related and rhythm-related items. KEGG enrichment analysis showed that these DEGs were mainly enriched in carbon metabolism, amino acid biosynthesis, plant-pathogen interaction, plant hormone signal transduction, MAPK signaling, and other pathways. A total of 53 DEGs were enriched in three disease resistance pathways (plant-pathogen interaction, MAPK signaling and plant hormone signal transduction pathways). These DEGs included 1 MPK6, 2 PR1, 4 MKK4/5, and 46 BAK1. Nine differentially expressed genes of P. lactiflora in response to A. tenuissima infection were selected for qRT-PCR analysis. The gene expression pattern was consistent with the transcriptome sequencing results, which confirmed the accuracy of RNA-seq. The transcription factor families analysis showed that the AP2/ERF-ERF, WRKY, bHLH and MYB-related transcription factor families were the key transcription factor families of P. lactiflora in response to A.tenuissima.【Conclusion】After A.tenuissima infected, the antioxidant capacity of P. lactiflora was increased by increasing the activities of SOD, POD, CAT, and PAL, to remove the large amount of reactive oxygen species produced by disease stress, maintaining cell water by increasing the content of soluble sugars and soluble proteins and reducing the content of proline. The continuous increase of MDA content indicated that the cell membrane structure of plants was destroyed. The BAK1, PR1, MKK4/5 and MPK6 genes played important roles in response to A. tenuissima infection. It was preliminarily speculated that PlERF20, PlERF1b, PlWRKY41, PlMYC4, and PlMYB62 were disease resistance related transcription factor in response to A. tenuissima infection.

Key words: Paeonia lactiflora Pall., Alternaria tenuissima, transcriptomics, physiological index, resistance pathways

Table 1

Genes and primers for qPCR"

基因ID Gene ID 基因名称 Gene name 引物序列 Primer sequences (5′-3′)
Cluster-41615.4 Pl22kDa F-TGTTGATGACCCTCCCACTG
R-ACCTCCTTCGCTAAGACCCA
Cluster-25222.0 Pl2C F-TCGTCTGCTTCATCCTCGTC
R-TTCACCGTGTCCTCCATCTC
Cluster-33970.0 Pl73C F-GCTTTCCCATCCCTCACCCA
R-CCCTTCCTTATCCCCTTCGT
Cluster-44545.2 Plbeta12 F-GACTGCATCCTCGGCTTATC
R-GTCTCCATTGCTACCGTCCT
Cluster-39401.2 PlC4H F-GCGAGCACGACAGGAGTAAC
R-CACTCAATGGACCACAGCGT
Cluster-36613.1 PlCB-HEL F-TGGACTGCTTTCTGTGGACC
R-CCTTGGGCGTAACCTTTTCC
Cluster-48234.4 PlFBA2 F-CTGGTGCCATCCTCTTTGAG
R-CAGAGCGAGAAGCAAGTCCA
Cluster-39754.0 PlMPK3 F-GGTGATTTCCCGTCGGTTCG
R-CATCGCCACCATCTCATTCG
PlActin F-ACTGCTGAACGGGAAATT
R-ATGGCTGGAACAGGACTT

Fig. 1

Morphological changes of P. lactiflora detached leaves under A. tenuissima stress"

Fig. 2

Changes of related physiological indexes of P. lactiflora in response to A. tenuissima Different lowercase letters indicate significant difference (P<0.05)"

Fig. 3

Wayne diagram of differential genes in different groups A: Total number of differentially expressed genes; B: Up-regulated genes; C: Down-regulated genes"

Table 2

Antioxidant enzyme coding gene information in different periods"

编码基因类型
Coding gene type
基因ID
Gene ID
数量和表达情况 Numbers and expression
0 h-vs-12 h 0 h-vs-24 h 0 h-vs-96 h
SOD Cluster-21479.0、Cluster-38829.0 2↓ 2↓ 2↑
CAT Cluster-15271.0、Cluster-15271.4 2↓ 2↓ 2↑
PAL Cluster-29908.1、Cluster-43673.0 2↑ 2↓ 2↑
POD Cluster-29095.0、Cluster-12475.0、Cluster-31513.0、Cluster-31058.0、Cluster-39813.0、Cluster-35747.0、Cluster-36033.0、Cluster-34931.2、Cluster-8798.0、Cluster-14245.0、Cluster-29373.1、Cluster-34931.0、Cluster-34931.1、Cluster-14245.2、Cluster-14245.5、Cluster-29373.2、Cluster-29373.1、Cluster-14245.1 7↓11↑ 7↓11↑ 7↑11↓

Fig. 4

GO enrichment scatter plot of DEGs in different periods"

Fig. 5

KEGG enrichment scatter plot of DEGs in different periods A: 0 h-vs-12 h comparison group; B: 0 h-vs-24 h comparison group; C: 0 h-vs-96 h comparison group"

Fig.6

Wayne diagram of differential genes and partial differential gene heat map in disease resistance pathway"

Table 3

Common differential gene annotation information of three disease resistance pathways"

KEGG注释
KEGG annotation
基因ID
Gene ID
数量和表达情况 numbers and expression
0h-vs-12 h 0 h-vs-24 h 0 h-vs-96 h
K14512:MPK6 Cluster-14807.0 1↓ 1↑ 1↓
K13449:PR1 Cluster-12493.0、Cluster-15031.0 1↓1↑ 1↓1↑ 1↓1↑
K13413:MKK4/5 Cluster-12686.0、Cluster-23759.0、Cluster-23759.2、Cluster-33116.0 1↓3↑ 2↓2↑ 2↓2↑
K13416:BAK1 Cluster-17268.0、Cluster-19810.12、Cluster-19810.15、Cluster-22043.0、Cluster-27094.0、Cluster-27287.0、Cluster-27287.1、Cluster-27287.2、Cluster-27287.3、Cluster-27590.13、Cluster-27590.16、Cluster-27590.17、Cluster-27590.20、Cluster-27590.22、Cluster-27780.0、Cluster-28171.0、Cluster-29725.0、Cluster-29805.10、Cluster-31471.1、Cluster-31471.3、Cluster-3279.0、Cluster-3322.6、Cluster-33791.6、Cluster-34282.4、Cluster-34961.2、Cluster-34961.3、Cluster-35740.1、Cluster-36572.5、Cluster-41113.2、Cluster-43230.3、Cluster-43230.6、Cluster-44426.0、Cluster-44912.2、Cluster-44912.3、Cluster-44912.4、Cluster-44912.6、Cluster-46036.0、Cluster-47653.0、Cluster-47653.10、Cluster-47653.11、Cluster-47653.13、Cluster-47653.4、Cluster-47653.7、Cluster-48429.24、Cluster-5270.1、Cluster-5270.3 13↓33↑ 19↓27↑ 34↓12↑

Fig. 7

Comparison of RNA-seq and qRT-PCR expression of DEGs"

Fig. 8

The correlation between RNA-seq and qRT-PCR expression of DEGs"

Fig. 9

The number of different transcription factor family genes histogram"

[1]
王新悦, 王东辉, 岳桦. 芍药在北方园林中的应用. 北方园艺, 2007(5): 153-154.
WANG X Y, WANG D H, YUE H. Application of Paeonia lactiflora in northern gardens. Northern Horticulture, 2007(5): 153-154. (in Chinese)
[2]
王慧娟, 符真珠, 李艳敏, 蒋卉, 高杰, 张和臣. 观赏芍药杂交育种研究进展. 北方园艺, 2021(16): 144-149.
WANG H J, FU Z Z, LI Y M, JIANG H, GAO J, ZHANG H C. Research progress on the crossbreeding of ornamental herbaceous peony. Northern Horticulture, 2021(16): 144-149. (in Chinese)
[3]
蓝莹, 赵桂华, 郑彭彭. 芍药红斑病的研究. 南京林业大学学报(自然科学版), 1984, 8(1): 16-29.

doi: 10.3969/j.jssn.1000-2006.1984.01.002
LAN Y, ZHAO G H, ZHENG P P. Studies on cladosporium red spot of peony. Journal of Nanjing Forestry University (Natural Science Edition), 1984, 8(1): 16-29. (in Chinese)
[4]
俞思佳, 张佐双, 雷增普, 费玉珍. 北京地区牡丹和芍药主要病害的综合防治. 北京林业大学学报, 1993, 15(2): 103-108.
YU S J, ZHANG Z S, LEI Z P, FEI Y Z. The preliminary study of integrated management of major diseases of tree peony and peony in Beijing area. Journal of Beijing Forestry University, 1993, 15(2): 103-108. (in Chinese)
[5]
杨瑞先, 王祖华, 叶文雨. 洛阳牡丹、芍药4种真菌性病害鉴定. 亚热带农业研究, 2010, 6(2): 102-105.
YANG R X, WANG Z H, YE W Y. Identifcation of four kinds of fungal diseases on tree peony and herbaceous peony in Luoyang. Subtropical Agriculture Research, 2010, 6(2): 102-105. (in Chinese)
[6]
姜瑶, 葛金涛, 宁传龙, 陶俊. 芍药病害种类及其品种感病性调查. 江苏农业科学, 2013, 41(1): 125-127.
JIANG Y, GE J T, NING C L, TAO J. Investigation on disease types and susceptibility of Paeonia lactiflora varieties. Jiangsu Agricultural Sciences, 2013, 41(1): 125-127. (in Chinese)
[7]
石颜通, 张秀新, 薛璟祺, 吴蕊, 石丰瑞. 芍药病害调查及抗性品种筛选. 西南农业学报, 2014, 27(5): 1979-1983.
SHI Y T, ZHANG X X, XUE J Q, WU R, SHI F R. Diseases investigation of herbaceous peony and selection of resistant varieties. Southwest China Journal of Agricultural Sciences, 2014, 27(5): 1979-1983. (in Chinese)
[8]
王雪. 芍药PlWRKY13PlWRKY65基因表达模式及功能分析[D]. 泰安: 山东农业大学, 2020.
WANG X. Expression patterns and functional analysis of peony PlWRKY13 and PlWRKY65 genes[D]. Taian: Shandong Agricultural University, 2020. (in Chinese)
[9]
李丽. 山东地区芍药病害调查及主要真菌性病害的病原鉴定[D]. 泰安: 山东农业大学, 2014.
LI L. Disease investigation and the pathogen identification of the main fungai diseases in Paeonia lactifloria in Shandong province[D]. Taian: Shandong Agricultural University, 2014. (in Chinese)
[10]
李丽, 宋淑香, 刘会香, 郭先锋. 山东省芍药红斑病病原菌鉴定. 园艺学报, 2016, 43(2): 365-372.

doi: 10.16420/j.issn.0513-353x.2015-0590
LI L, SONG S X, LIU H X, GUO X F. Identification of red spot pathogens on peony in Shandong Province. Acta Horticulturae Sinica, 2016, 43(2): 365-372. (in Chinese)

doi: 10.16420/j.issn.0513-353x.2015-0590
[11]
陈悦, 翟亚娟, 刘丽玲, 冯玉娟, 孙于淼, 白庆荣. 黑龙江地区芍药红斑病病原鉴定及室内药剂筛选. 东北林业大学学报, 2020, 48(3): 116-119.
CHEN Y, ZHAI Y J, LIU L L, FENG Y J, SUN Y M, BAI Q R. Pathogen identification and screening of fungicides of Paeonia lactiflora red spot caused by dichocladosporium chlorocephalum in Heilongjiang. Journal of Northeast Forestry University, 2020, 48(3): 116-119. (in Chinese)
[12]
李培谦, 冯宝珍, 赵燕飞, 王琳. 芍药红斑病病原菌鉴定、生物学特性及有效药剂筛选. 核农学报, 2023, 37(8): 1533-1541.

doi: 10.11869/j.issn.1000-8551.2023.08.1533
LI P Q, FENG B Z, ZHAO Y F, WANG L. Identification, biological characteristics and screening of effective fungicides for red spot on peony. Journal of Nuclear Agricultural Sciences, 2023, 37(8): 1533-1541. (in Chinese)

doi: 10.11869/j.issn.1000-8551.2023.08.1533
[13]
陶航, 扎依娜·玛合巴提, 张烨, 孙李瞳, 黄沈鑫, 张子辉, 刘旺, 施宁雪, 陈孝仁. 芍药黑斑病病原菌鉴定及其对杀菌剂敏感性分析. 园艺学报, 2021, 48(1): 173-182.

doi: 10.16420/j.issn.0513-353x.2020-0236
TAO H, ZAYINA∙MAHABAT, ZHANG Y, SUN L T, HUANG S X, ZHANG Z H, LIU W, SHI N X, CHEN X R. Identification, growth conditions and fungicide sensitivity of the pathogen causing black spot disease on peony leaves. Acta Horticulturae Sinica, 2021, 48(1): 173-182. (in Chinese)
[14]
吴之涛, 张英英, 常浩, 杨克泽, 徐志鹏, 汪亮芳, 魏玉杰, 任宝仓, 杨宪忠. 甘肃省河西地区芍药白粉病病原鉴定及田间药效试验. 农药, 2023, 62(10): 758-762, 776.
WU Z T, ZHANG Y Y, CHANG H, YANG K Z, XU Z P, WANG L F, WEI Y J, REN B C, YANG X Z. Pathogen identification and field efficacy test of powdery mildew on Paeonia lactiflora in Hexi area of Gansu province. Agrochemicals, 2023, 62(10): 758-762, 776. (in Chinese)
[15]
李丽, 刘会香, 宋淑香, 郭先锋. 芍药炭疽病病原菌鉴定及其抑菌药剂筛选. 山东农业大学学报(自然科学版), 2017, 48(6): 906-910.
LI L, LIU H X, SONG S X, GUO X F. Identification of the pathogen causing peony anthracnose and screening of corresponding fungicides. Journal of Shandong Agricultural University (Natural Science Edition), 2017, 48(6): 906-910. (in Chinese)
[16]
杨克泽, 吴芳, 魏玉杰, 汪亮芳, 常浩, 吴之涛, 杨宪忠. 河西冷凉地区芍药根腐病病原鉴定及室内药剂筛选. 中国农业科技导报, 2023, 25(10): 144-151.
YANG K Z, WU F, WEI Y J, WANG L F, CHANG H, WU Z T, YANG X Z. Pathogen identification and laboratory drug screening of peony root rot in cold and cool region of Hexi. Journal of Agricultural Science and Technology, 2023, 25(10): 144-151. (in Chinese)
[17]
张纯, 唐承晨, 王吉永, 郭龙妹, 王莉莉, 黎万奎. 转录组学在植物应答逆境胁迫中的研究进展. 生物学杂志, 2017, 34(2): 86-90.
ZHANG C, TANG C C, WANG J Y, GUO L M, WANG L L, LI W K. Advances on transcriptome of plants under stresses. Journal of Biology, 2017, 34(2): 86-90. (in Chinese)
[18]
GAO M L, YAO S Y, LIU Y, YU H N, XU P S, SUN W H, PU Z J, HOU H M, BAO Y M. Transcriptome analysis of tomato leaf spot pathogen Fusarium proliferatum: de novo assembly, expression profiling, and identification of candidate effectors. International Journal of Molecular Sciences, 2017, 19(1): 31.
[19]
史敬芳, 胡春华, 李昊宸, 杨乔松, 盛鸥, 毕方铖, 董涛, 李春雨, 邓贵明, 高慧君, 何维弟, 刘思文, 易干军, 窦同心. 转录组分析超表达MpICE1香蕉抗枯萎病机理. 园艺学报, 2023, 50(10): 2242-2256.

doi: 10.16420/j.issn.0513-353x.2022-0682
SHI J F, HU C H, LI H C, YANG Q S, SHENG O, BI F C, DONG T, LI C Y, DENG G M, GAO H J, HE W D, LIU S W, YI G J, DOU T X. Molecular mechanism of MpICE1overexpressing banana resistant to Fusarium oxysporum based on transcriptome analysis. Acta Horticulturae Sinica, 2023, 50(10): 2242-2256. (in Chinese)
[20]
龚赛杰. 芍药灰霉病抗性差异的转录组测序分析研究[D]. 扬州: 扬州大学, 2016.
GONG S J. Transcriptome sequencing analysis of difference in herbaceous peony (Paeonia lactiflora Pall.) resistance to gray mold[D]. Yangzhou: Yangzhou University, 2016. (in Chinese)
[21]
ZHAO D Q, GONG S J, HAO Z J, TAO J. Identification of miRNAs responsive to Botrytis cinerea in herbaceous peony (Paeonia lactiflora Pall.) by high-throughput sequencing. Genes, 2015, 6(3): 918-934.
[22]
李玲, 何国振. 植物生理学实验指导. 北京: 高等教育出版社, 2021.
LI L, HE G Z. Plant Physiology Experiment Guidance. Beijing: Higher Education Press, 2021. (in Chinese)
[23]
LIU M, GAO J, YIN F Q, GONG G S, QIN C, YE K H, ZHANG M, SUN X F, ZHOU Y, ZHANG Y J. Transcriptome analysis of maize leaf systemic symptom infected by Bipolaris zeicola. PLoS ONE, 2015, 10(3): e0119858.
[24]
李海燕, 刘惕若, 甄艳. 辣椒品种对疫病的抗性研究: 氨酸、丙二醛与可溶性糖在抗病中的作用. 中国农学通报, 2006, 22(11): 315-317.
LI H Y, LIU T R, ZHEN Y. Study on the resistance to Phytophthora blight of pepper and the effect of PRO, MAD and dissolubility sugar. Chinese Agricultural Science Bulletin, 2006, 22(11): 315-317. (in Chinese)
[25]
SUZUKI N, MITTLER R. Reactive oxygen species and temperature stresses: A delicate balance between signaling and destruction. Physiologia Plantarum, 2006, 126(1): 45-51.
[26]
于良斌, 张园园, 王丹阳, 崔进, 徐林波, 闫丽英, 王慧, 崔艳伟. 苜蓿霜霉病接种方法及染病植株体内酶活性. 草业科学, 2023, 40(4): 935-941.
YU L B, ZHANG Y Y, WANG D Y, CUI J, XU L B, YAN L Y, WANG H, CUI Y W. Inoculation method of downy mildew of alfalfa and enzyme activity in infected plants. Pratacultural Science, 2023, 40(4): 935-941. (in Chinese)
[27]
WU Y, LU Z H, ZHU Y F, GUO X F. Physiological and gene expression analysis of herbaceous peony resistance to Alternaria tenuissima infection. Horticulturae, 2023, 9(8): 862.
[28]
袁蒲英. 桂花叶枯病病原菌生物学特性及对桂花叶片生理生化影响的研究[D]. 雅安: 四川农业大学, 2008.
YUAN P Y. Biological characteristics, physiological and biochemical effect of the pathogenic bacterium on sweet Osmanthus leaf blight[D]. Yaan: Sichuan Agricultural University, 2008. (in Chinese)
[29]
曾健强. 桢楠叶枯病的病原菌鉴定、对叶片生理生化的影响及室内药剂筛选[D]. 雅安: 四川农业大学, 2018.
ZENG J Q. Identification pathogen causing leaf blight of Phoebe zhennan and its physiological and biochemical effects on leaves and fungicide screening[D]. Yaan: Sichuan Agricultural University, 2018. (in Chinese)
[30]
李超汉, 朱丽华, 尤佳琪, 杨红娟, 吕铎, 曹碧婷, 顾卫红, 李青竹, 宋荣浩. 基于转录组测序的西瓜抗枯萎病相关基因表达分析. 分子植物育种, 1-16.
LI C H, ZHU L H, YOU J Q, YANG H J, D, CAO B T, GU W H, LI Q Z, SONG R H. Expression analysis of fusarium wilt resistance- related genes in watermelon based on transcriptome sequencing. Molecular Plant Breeding, 1-16. (in Chinese)
[31]
高鹏, 徐楠, 张曼琳, 刘泰, 丁卓, 崔浩楠, 张泰峰. 不同白粉病抗性甜瓜材料叶片组织病理学及接种后ROS代谢相关酶基因表达分析. 东北农业大学学报, 2022, 53(8): 44-53.
GAO P, XU N, ZHANG M L, LIU T, DING Z, CUI H N, ZHANG T F. Histopathology and expression analysis of ROS metabolism-related enzyme genes in leaves of melon with different powdery mildew resistance after inoculation. Journal of Northeast Agricultural University, 2022, 53(8): 44-53. (in Chinese)
[32]
张宝柱, 张蓉蓉, 范满良, 宁雪飞. 霜霉病对甜瓜生理生化及相关基因的影响. 分子植物育种, 1-18.
ZHANG B Z, ZHANG R R, FAN M L, NING X F. Effect of downy mildew infestation on the physiology, biochemistry and related genes of melon. Molecular Plant Breeding, 1-18. (in Chinese)
[33]
唐科志, 周常勇. 红橘响应褐斑病菌侵染的转录组学分析. 中国农业科学, 2020, 53(22): 4584-4600. doi: 10.3864/j.issn.0578-1752.2020.22.006.
TANG K Z, ZHOU C Y. Transcriptome analysis of Citrus reticulata Blanco, cv. Hongjv infected with Alternaria alternata tangerine pathotype. Scientia Agricultura Sinica, 2020, 53(22): 4584-4600. doi: 10.3864/j.issn.0578-1752.2020.22.006. (in Chinese)
[34]
董汉松. 植物诱导抗病性原理和研究. 北京: 科学出版社, 1995.
DONG H S. Induced Resistance Against Diseases in Plants Principle and Practice. Beijing: Science Press, 1995. (in Chinese)
[35]
李佐同, 靳学慧, 张亚玲, 吴成龙. 水稻幼苗可溶性糖及可溶性蛋白含量与抗瘟性的关系. 北方水稻, 2009, 39(4): 6-9.
LI Z T, JIN X H, ZHANG Y L, WU C L. The relationship between soluble protein, soluble sugar content and rice blast resistance of rice seedlings. North Rice, 2009, 39(4): 6-9. (in Chinese)
[36]
周丽. 栀子褐斑病病原菌侵染途径及转录组研究[D]. 南昌: 江西中医药大学, 2021.
ZHOU L. Study on pathogen infection path and transcriptome of Gardenia jasminoides Ellis brown spot[D]. Nanchang: Jiangxi University of Traditional Chinese Medicine, 2021. (in Chinese)
[37]
曹莹, 黄瑞冬, 曹志强. 铅胁迫对玉米生理生化特性的影响. 玉米科学, 2005, 13(3): 61-64.
CAO Y, HUANG R D, CAO Z Q. Effects of Pb stress on the physiological and biochemical traits of maize. Journal of Maize Sciences, 2005, 13(3): 61-64. (in Chinese)
[38]
刘裕强, 江玲, 孙立宏, 王春明, 翟虎渠, 万建民. 褐飞虱刺吸诱导的水稻一些防御性酶活性的变化. 植物生理与分子生物学学报, 2005, 31(6): 643-650.
LIU Y Q, JIANG L, SUN L H, WANG C M, ZHAI H Q, WAN J M. Changes in some defensive enzyme activity induced by the piercing- sucking of brown planthopper in rice. Acta Photophysiologica Sinica, 2005, 31(6): 643-650. (in Chinese)
[39]
武德功, 王俊, 张露雨, 杜存康, 杜军利, 黄伟东, 易克传, 余海兵. 抗、感玉米幼苗玉米蚜为害后不同时间的生理响应. 江苏农业学报, 2018, 34(3): 493-502.
WU D G, WANG J, ZHANG L Y, DU C K, DU J L, HUANG W D, YI K C, YU H B. Physiological response of resistant and susceptible maize seedlings at different time after Rhopalosiphum maidis stress. Jiangsu Journal of Agricultural Sciences, 2018, 34(3): 493-502. (in Chinese)
[40]
BAILLY C, BENAMAR A, CORBINEAU F, COME D. Changes in malondialdehyde content and in superoxide dismutase, catalase and glutathione reductase activities in sunflower seeds as related to deterioration during accelerated aging. Physiologia Plantarum, 1996, 97(1): 104-110.
[41]
田荣, 杨勇, 王晓峰. 植物受体激酶BAK1研究进展. 西北植物学报, 2014, 34(3): 636-644.
TIAN R, YANG Y, WANG X F. Research progress on BAK1 of a receptor kinase. Acta Botanica Boreali-Occidentalia Sinica, 2014, 34(3): 636-644. (in Chinese)
[42]
LIU F, ZENG M Z, SUN Y J, CHEN Z Y, CHEN Z D, WANG L, CUI J R, ZHANG F S, LV D, CHEN X, XU Y P, DUAN K X, WANG Y C. BAK1 protects the receptor-like kinase BIR2 from SNIPER2a/b-mediated degradation to promote pattern-triggered immunity in Nicotiana benthamiana. The Plant Cell, 2023, 35(9): 3566-3584.
[43]
杨辉, 闵东波, 黄吉, 唐亮, 黄云. 拟南芥BAK1基因转化及防御作用. 生物技术通报, 2012(8): 71-75.
YANG H, MIN D B, HUANG J, TANG L, HUANG Y. Transformation and the defense role of BAK1 in Arabidopsis thaliana. Biotechnology Bulletin, 2012(8): 71-75. (in Chinese)
[44]
YANG H, GOU X P, HE K, XI D H, DU J B, LIN H H, LI J. BAK1 and BKK1 in Arabidopsis thaliana confer reduced susceptibility to turnip crinkle virus. European Journal of Plant Pathology, 2010, 127(1): 149-156.
[45]
ZHANG S, LI C, REN H H, ZHAO T, LI Q, WANG S F, ZHANG Y F, XIAO F M. BAK1 mediates light intensity to phosphorylate and activate catalases to regulate plant growth and development. International Journal of Molecular Sciences, 2020, 21(4): 1437.
[46]
ZHANG B, SHAO L, WANG J L, ZHANG Y, GUO X S, PENG Y J, CAO Y R, LAI Z B. Phosphorylation of ATG18a by BAK1 suppresses autophagy and attenuates plant resistance against necrotrophic pathogens. Autophagy, 2021, 17(9): 2093-2110.
[47]
LI J J, LUO C, YANG X Z, PENG L H, LU T T, YANG J H, ZHANG X J, XIE Y Q, YANG Z Y, XU F, HE X H. Genome-wide identification of the mango pathogenesis-related 1 (PR1) gene family and functional analysis of MiPR1A genes in transgenic Arabidopsis. Scientia Horticulturae, 2023, 321: 112254.
[48]
WANG P, ZHOU J, SUN W B, LI H Y, LI D W, ZHUGE Q. Characteristics and function of the pathogenesis-related protein 1 gene family in poplar. Plant Science, 2023, 336: 111857.
[49]
LIU T F, CAO L, CHENG Y Y, JI J, WEI Y S, WANG C C, DUAN K X. MKK4/5-MPK3/ 6 cascade regulates Agrobacterium-mediated transformation by modulating plant immunity in Arabidopsis. Frontiers in Plant Science, 2021, 12: 731690.
[50]
LIU Y D, LEARY E, SAFFAF O, FRANK BAKER R, ZHANG S Q. Overlapping functions of YDA and MAPKKK3/MAPKKK5 upstream of MPK3/MPK6 in plant immunity and growth/development. Journal of Integrative Plant Biology, 2022, 64(8): 1531-1542.

doi: 10.1111/jipb.13309
[51]
PERSAK H, PITZSCHKE A. Tight interconnection and multi-level control of Arabidopsis MYB44 in MAPK cascade signalling. PLoS ONE, 2013, 8(2): e57547.
[52]
WANG C, HE X W, LI Y Z, WANG L J, GUO X L, GUO X Q. The cotton MAPK kinase GhMPK20 negatively regulates resistance to Fusarium oxysporum by mediating the MKK4-MPK20-WRKY40 cascade. Molecular Plant Pathology, 2018, 19(7): 1624-1638.
[53]
王芳, 张世子, 戴镕徽, 杨丽云, 罗丽娟, 蒋凌雁. 柱花草SgMPK6互作蛋白的筛选与验证. 草业学报, 2024, 33(7): 84-93.

doi: 10.11686/cyxb2023273
WANG F, ZHANG S Z, DAI R H, YANG L Y, LUO L J, JIANG L Y. Screening and verification of SgMPK6 interacting proteins of stylosanthes. Acta Prataculturae Sinica, 2024, 33(7): 84-93. (in Chinese)
[54]
TSUDA K, SOMSSICH I E. Transcriptional networks in plant immunity. The New Phytologist, 2015, 206(3): 932-947.
[55]
GATZ C. From pioneers to team players: TGA transcription factors provide a molecular link between different stress pathways. Molecular Plant-Microbe Interactions, 2013, 26(2): 151-159.

doi: 10.1094/MPMI-04-12-0078-IA pmid: 23013435
[56]
赵明奇, 刘晓洁, 梁玉青, 杨瑞瑞, 李小双. 新疆野苹果AP2/ERF转录因子家族鉴定与响应腐烂病的表达分析. 西北植物学报, 2022, 42(6): 930-942.
ZHAO M Q, LIU X J, LIANG Y Q, YANG R R, LI X S. Identification and expression analysis of AP2/ERF transcription factor family in Malus sieversii upon Valsa mali infection. Acta Botanica Boreali-Occidentalia Sinica, 2022, 42(6): 930-942. (in Chinese)
[57]
傅强. 枣疯病植原体基因组DNA分离和枣ERFs表达特性及功能预测[D]. 郑州: 河南农业大学, 2017.
FU Q. Isolation of Phytoplasma genomic DNA from jujube witches broom and the expression characteristics and functional prediction of AP2/ERF transcription factorsin jujube[D]. Zhengzhou: Henan Agricultural University, 2017. (in Chinese)
[58]
迟超. 小豆-锈菌(Uromyces vignae)互作的转录组分析及差异表达基因鉴定[D]. 大庆: 黑龙江八一农垦大学, 2019.
CHI C. Transcriptome analysis and differentially expressed genes identification of adzuki bean-Uromyces vignae interaction[D]. Daqing: Heilongjiang Bayi Agricultural University, 2019. (in Chinese)
[59]
CHEN L G, SONG Y, LI S J, ZHANG L P, ZOU C S, YU D Q. The role of WRKY transcription factors in plant abiotic stresses. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 2012, 1819(2): 120-128.
[60]
FAN Q Q, SONG A P, XIN J J, CHEN S M, JIANG J F, WANG Y J, LI X R, CHEN F D. CmWRKY15 facilitates Alternaria tenuissima infection of Chrysanthemum. PLoS ONE, 2015, 10(11): e0143349.
[61]
WANG X, LI J J, GUO J, QIAO Q, GUO X F, MA Y. The WRKY transcription factor PlWRKY65 enhances the resistance of Paeonia lactiflora (herbaceous peony) to Alternaria tenuissima. Horticulture Research, 2020, 7: 57.
[62]
何瑞. 基于转录组分析揭示亚麻抗感品种幼苗对尖镰孢菌胁迫的早期响应机制[D]. 太谷: 山西农业大学, 2022.
HE R. Transcriptom analysis of resistant and susceptible flax cultivars seedlings to Fusarium oxysporum stress revealed its early response mechanism[D]. Taigu: Shanxi Agricultural University, 2022. (in Chinese)
[63]
王蓓. WRKY转录因子在水淹诱导的荷花腐败病抗性中的功能研究[D]. 南京: 南京农业大学, 2018.
WANG B. Functional analysis of WRKY transcription factor in submergence-induced Lotus rot disease resistance[D]. Nanjing: Nanjing Agricultural University, 2018. (in Chinese)
[64]
于冰, 田烨, 李海英, 吕笑言, 王宇光, 端木慧子. 植物bHLH转录因子的研究进展. 中国农学通报, 2019, 35(9): 75-80.

doi: 10.11924/j.issn.1000-6850.casb18100098
YU B, TIAN Y, LI H Y, X Y, WANG Y G, DUANMU H Z. Research progress of plant bHLH transcription factor. Chinese Agricultural Science Bulletin, 2019, 35(9): 75-80. (in Chinese)

doi: 10.11924/j.issn.1000-6850.casb18100098
[65]
刘晓宇, 张欣, 彭悦, 于淼, 熊劲松, 程宗明. FabHLH37调控草莓抗灰霉病的功能分析. 南京农业大学学报, 2024, 47(2): 213-221.
LIU X Y, ZHANG X, PENG Y, YU M, XIONG J S, CHENG Z M. Function analysis of FabHLH37 regulating strawberry resistance to Botrytis cinerea. Journal of Nanjing Agricultural University, 2024, 47(2): 213-221. (in Chinese)
[66]
马亮. COI1-JAZ-bHLH功能模块在JA信号途径参与玉米禾谷镰孢菌茎腐病抗性中的机制研究[D]. 南京: 南京农业大学, 2019.
MA L. Mechanism study of COI1-JAZ-bHLH module functioning in JA signaling pathway mediated resistance to Gibberella stalk rot in maize[D]. Nanjing: Nanjing Agricultural University, 2019. (in Chinese)
[67]
LIU Y H, ZENG Y T, LI Y M, LIU Z, KUI L W, ESPLEY R V, ALLAN A C, ZHANG J L. Genomic survey and gene expression analysis of the MYB-related transcription factor superfamily in potato (Solanum tuberosum L.). International Journal of Biological Macromolecules, 2020, 164: 2450-2464.
[68]
GU Z Y, ZHU J, ZHANG L, YANG Y, LI S S, WANG L S. Transcription factors participate in response to powdery mildew infection in Paeonia lactiflora. Scientia Horticulturae, 2019, 257: 108535.
[69]
陈庆磊. 基于转录组学解析雷帕霉素靶蛋白调控黄瓜抗白粉病的分子机理[D]. 沈阳: 沈阳农业大学, 2022.
CHEN Q L. Analysis of molecular mechanism of rapamycin target protein regulating powdery mildew resistance of cucumber based on transcriptome[D]. Shenyang: Shenyang Agricultural University, 2022. (in Chinese)
[1] CHEN BingXian, ZHANG Qi, DAI ZhangYan, ZHOU Xu, LIU Jun. Physiological and Molecular Effects of Salicylic Acid on Rice Seed Germination at Low Temperature [J]. Scientia Agricultura Sinica, 2024, 57(7): 1220-1236.
[2] LIN XinYing,WANG PengJie,YANG RuXing,ZHENG YuCheng,CHEN XiaoMin,ZHANG Lei,SHAO ShuXian,YE NaiXing. The Albino Mechanism of a New High Theanine Tea Cultivar Fuhuang 1 [J]. Scientia Agricultura Sinica, 2022, 55(9): 1831-1845.
[3] ZHANG JianJun, DANG Yi, ZHAO Gang, WANG Lei, FAN TingLu, LI ShangZhong. Influences of Mulching Periods and Nitrogen Application Rates on Maize Yield as well as Water and Nitrogen Use Efficiencies in Loess Plateau of Eastern Gansu Province [J]. Scientia Agricultura Sinica, 2022, 55(3): 479-490.
[4] MENG Rui,LIU Ye,ZHAO Shuang,FANG WeiMin,JIANG JiaFu,CHEN SuMei,CHEN FaDi,GUAN ZhiYong. Effects of Rootstock and Scion Interaction on Salt Tolerance of Grafted Chrysanthemum Seedlings [J]. Scientia Agricultura Sinica, 2021, 54(3): 629-642.
[5] ZHAO Juan,YIN YiZhen,WANG XiaoLu,MA ChunYing,YIN MeiQiang,WEN YinYuan,SONG XiE,DONG ShuQi,YANG XueFang,YUAN XiangYang. Physiological Response of Millet Callus with Different Herbicide-Resistance to Sethoxydim Stress [J]. Scientia Agricultura Sinica, 2020, 53(5): 917-928.
[6] LI GuiRong,QUAN Ran,CHENG ShanShan,HOU XiaoJin,FAN XiuCai,HU HuiLing. The Influencing Factors of in-vitro Ovule Development in Seedless Grape and Its Physiological Changes [J]. Scientia Agricultura Sinica, 2020, 53(22): 4646-4657.
[7] PAN JiaoWen, LI Zhen, WANG QingGuo, GUAN YanAn, LI XiaoBo, DAI ShaoJun, DING GuoHua, LIU Wei. Transcriptomics Analysis of NaCl Response in Foxtail Millet (Setaria italica L.) Seeds at Germination Stage [J]. Scientia Agricultura Sinica, 2019, 52(22): 3964-3975.
[8] LI WanPing,LIU Min,WANG JieXing,YAO Heng,CHENG ZhengLong,DOU JunXia,ZHOU XiaoMing,FANG YuLin,SUN XiangYu. Influence of Anti-transpirant on Photosynthesis Characteristic and Qualities of Wines in Hot Climate [J]. Scientia Agricultura Sinica, 2019, 52(17): 3008-3019.
[9] TIAN ZhiTao, ZHAO YongGuo, LENKA Havlickova, HE Zhesi, ANDREA L Harper, IAN Bancroft, ZOU XiLing, ZHANG XueKun, LU GuangYuan. Dynamic and Associative Transcriptomic Analysis of Glucosinolate Content in Seeds and Silique Walls of Brassica napus [J]. Scientia Agricultura Sinica, 2018, 51(4): 635-651.
[10] LING BingQi, BAI XingXuan, ZHOU YongBin, WANG ChunXiao, XU ZhaoShi, MA YouZhi, CHEN Ming, ZHANG XiaoHong. Functional Analysis of AtTGA4 Transgenic Wheat Tolerance to Low Phosphorus Stress in Field [J]. Scientia Agricultura Sinica, 2018, 51(12): 2225-2234.
[11] ZHAO HaiYan, WANG JianShe, LIU LinQiang, CHEN YongQuan, LI MengFei, LU QuanWei, LIU Fang, PENG RenHai. Morphological and Physiological Mechanism of Salt Tolerance in Gossypium barbadense to Salt Stress at Seedling Stage [J]. Scientia Agricultura Sinica, 2017, 50(18): 3494-3505.
[12] MU TingTing, DU HuiLing, ZHANG FuYao, JING XiaoLan, GUO Qi, LI ZhiHua, LIU Zhang, TIAN Gang. Effects of Exogenous Selenium on the Physiological Activity, Grain Selenium Content, Yield and Quality of Foxtail Millet [J]. Scientia Agricultura Sinica, 2017, 50(1): 51-63.
[13] ZHAO PeiFang, ZHAO Jun, LIU JiaYong, ZAN FengGang, XIA HongMing, P.A. Jackson, J. Basnayake, N.G. Inman-Bamber, YANG Kun, ZHAO LiPing, QIN Wei, CHEN XueKuan, ZHAO XingDong, FAN YuanHong. Genetic Variation of Four Physiological Indexes as Impacted by Water Stress in Sugarcane [J]. Scientia Agricultura Sinica, 2017, 50(1): 28-37.
[14] WANG Wei-Bo, CUI Hai-Rui, LU Mei-Zhen, SHU Qing-Yao, SHEN Sheng-Quan. Research on Carbon Metabolism Characteristics of Transgenic Bt Rice [J]. Scientia Agricultura Sinica, 2013, 46(8): 1564-1570.
[15] ZHANG Lei, ZHANG Guo-Wei, MENG Ya-Li, CHEN Bing-Lin, WANG You-Hua, ZHOU Zhi-Guo. Changes of Related Physiological Characteristics of Cotton Under Salinity Condition and the Construction of the Cotton Water Stress Index [J]. Scientia Agricultura Sinica, 2013, 46(18): 3768-3775.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!