Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (7): 1269-1283.doi: 10.3864/j.issn.0578-1752.2025.07.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Molecular Characteristics and Resistance Evaluation of Transgenic Maize LD05 with Stacked Insect and Herbicide Resistance Traits

YUE RunQing(), LI WenLan, DING ZhaoHua, MENG ZhaoDong   

  1. Maize Research Institute, Shandong Academy of Agricultural Sciences/Shandong Key Laboratory of Maize Biological Breeding/ National Engineering Center of Wheat and Maize, Jinan 250100
  • Received:2024-08-19 Accepted:2024-09-26 Online:2025-04-08 Published:2025-04-08

Abstract:

【Objective】To clarify the molecular characteristics and the effectiveness of target traits of transgenic maize LD05 with composite insect and herbicide resistance, and to provide data basis, technical support and product reserve for industrial application.【Method】Using biological information analysis, we designed and modified the proprietary insect-resistant fusion gene m2cryAb-vip3A, and selected BC4F3, BC4F4 and BC4F5 generations of the newly created transgenic hybrid insect-resistant and herbicide-tolerant maize LD05 to carry out experimental research. Specific PCR and Southern blot were used to analyze the stability of genomic integration. qRT-PCR and ELISA were used to analyze the expression stability. The resistance to target pests was evaluated by bioassay and field trials, and the herbicide tolerance was tested by field spraying of glufosinate. 【Result】A new insect-resistant fusion gene m2cryAb-vip3A with independent property right was discovered and designed, and a multivalent insect-resistant and herbicide resistant maize transformant LD05 was created. The exogenous T-DNA was integrated into the maize genome in the form of a single copy. The qRT-PCR results indicated that m2cryAb-vip3A and bar were both expressed in various tissues and organs across three generations, and the variation trend of expression quantities was largely consistent. Specifically, the expression level of m2cryAb-vip3A was the highest in the leaves at the seedling stage of the three consecutive generations, with an average expression quantity of 36.73, while the expression level was the lowest in the cob at the mature stage, with an average of merely 0.91. The expression pattern of bar was similar to that of m2cryAb-vip3A, with the highest expression level in the leaves at the seedling stage, averaging 7.35, and the expression level decreased after the jointing stage. The ELISA results demonstrated that M2CryAb-VIP3A could stably accumulate in different organs and at different periods in the three generations, and the protein accumulation amounts in different generations were similar. Among them, the accumulation amount was the highest in the leaves at the seedling stage of different generations, all exceeding 19.67 μg·g-1 fresh weight. The expression of the targeted protein at a relatively high level could be detected in different tissues of the PAT transgenic plants of three consecutive generations, and there was no significant difference in the expression quantity between different generations. Among them, the expression level was the highest in the leaves at the seedling stage of different generations, with an average content of 16.61 μg·g-1 fresh weight, while the accumulation amount was the lowest in the roots at the mature stage, with an average content of 0.30 μg·g-1 fresh weight. The bioassay result showed that the corrected mortality of Ostrinia furnacalis, Spodoptera fragiperda and Mythimna separata reached 100% after feeding on V5 maize leaf tissue of LD05 for 96 h, which was a high resistance level. The results of field trials showed that LD05 transformants had high resistance to Ostrinia furnacalis at V5 stage and silking stage, to Mythimna separata at V5 stage, and to Helicoverpa armigera at silking stage. The results of glufosinate tolerance test showed that transgenic maize LD05 could tolerate 4-fold glufosinate. Agronomic character investigation showed that there was no difference between transgenic maize LD05 and control maize Zheng 58.【Conclusion】A novel insect-resistant fusion gene m2cryAb-vip3A with independent property rights was developed, and a transgenic hybrid insect-resistant and herbicide-tolerant maize LD05 was created with clear molecular characteristics, genetic stability and outstanding functional traits.

Key words: transgenic maize, stacked trait, m2cryAb-vip3A, bar, molecular characteristic, resistance evaluation

Table 1

Primers were used in this study"

引物 Primers 序列 Primer sequence (5′-3′) 用途 Purpose
23A0496 CGCATAGAAACAACAGAAGTG 左边界Left boundary
23A0497 TCCTAAAACCAAAATCCAGTA
23A0498 GGCAGAGGCATCTTCAACG 右边界Right boundary
23A0499 AAACCCCAAGTCCAAGTAAC
LC0797 ATCTCGTCCAGCGTCAGGT 检测m2cryAb-vip3A
Detection of m2cryAb-vip3A
LC0798 TCAACATCGGCATCAACAA
LCH001 TTGCCCAGCTATCTGTCACTTT 检测m2cryAb-vip3A启动子CaMV 35S promoter
Detection of m2cryAb-vip3A promoter CaMV 35S promoter
LCH002 TGTTCGGGTTGTTGTCCATTCT
LCH003 AAAACCCATCTCATAAATAACG 检测m2cryAb-vip3A终止子NOS terminator
Detection of m2cryAb-vip3A terminator NOS terminator
LCH004 GAACAACAACTTGGAGGACTAC
LC0234 CTGAAGTCCAGCTGCCAGAA 检测bar
Detection of bar
LC0235 ATGAGCCCAGAACGACGC
LCH005 GAGGAAGGTCTTGCGAAGGATAGT 检测bar启动子CaMV35S promoter (enhanced)
Detection of bar promoter CaMV 35S promoter (enhanced)
LCH006 AGCATAAAGTGTAAAGCCTGGGGT
LC0787 TTATCTGGGAACTACTCAC 检测bar终止子CaMV poly(A)
Detection of bar terminator CaMV poly(A)
LC0788 GACTGGGCTCCACGCTCTA
23A0349 GTTCTTGGTGACGCTCTTC m2cryAb-vip3A的Southern blot探针合成
Synthesis of m2cryAb-vip3A by Southern blot probe
23A0350 GCTCAGCAGCACGCTCTAC
23A0345 GGCTGGCTGGTGGCAGGATATATT bar的Southern blot探针合成
Synthesis of bar by Southern blot probe
23A0346 ACGAAGTTCGAGAAGGACA
23C073 GTTTCCTTTACCGGGGACGA m2cryAb-vip3A定量PCR
qRT-PCR primers of m2cryAb-vip3A
23C074 ACCACCCCCTTCAACTTCAG
23C007 CAGGAACCGCAGGAGTGGAC bar定量PCR
qRT-PCR primers of bar
23C008 CTTCAGCAGGTGGGTGTAGAGC
LC0378 CGGTGGATGCTAAGGCTG zSSⅡb定量PCR
qRT-PCR primers of zSSⅡb
LC0379 AAAGGGCCAGGTTCATTATCCTC

Fig. 1

Domain prediction of M2cryAb-vip3A protein A: Predicted conserved domains of M2CryAb-VIP3A; B: Prediction of ubiquitination site of M2CryAb-VIP3A protein; C: Prediction of phosphorylation site of M2CryAb-VIP3A protein; D: Prediction of N-glycosylation site of M2CryAb-VIP3A protein"

Fig. 2

Structure diagram of T-DNA insertion of D05 transformant and results of transformant specific PCR A: Structure diagram of T-DNA insertion of D05 transformant; B: Amplification results of LB; C: Amplification results of RB. M: DNA Marker; N: Water; 1: BC4F3 generation LD05 transformant; 2: BC4F4 generation LD05 transformant; 3: BC4F5 generation LD05 transformant; 4: Positive control plasmid pCAMBIA3300+m2cryAb-vip3A; 5: Zheng 58"

Fig. 3

Results of PCR detection of LD05 transformant target genes and elements A: m2cryAb-vip3A gene; B: m2cryAb-vip3A promoter CaMV 35S promoter; C: m2cryAb-vip3A terminator NOS terminator; D: bar gene; E: bar promoter CaMV35S promoter(enhanced); F: bar terminator CaMV poly(A). M: DNA Marker; N: Water; 1: Positive control plasmid pCAMBIA3300+m2cryAb-vip3A; 2: Zheng 58; 3: BC4F3 generation LD05 transformant; 4: BC4F4 generation LD05 transformant; 5: BC4F5 generation LD05 transformant"

Fig. 4

Results of Southern blot of target genes m2cryAb-vip3A and bar A: Hybridization results of target gene m2cryAb-vip3A by HindⅢ digestion; B: Hybridization results of target gene m2cryAb-vip3A by KpnI digestion; C: Hybridization results of target gene bar by HindⅢ digestion; D: Hybridization results of target gene bar by BamHI digestion; the arrow on the right of the figure marks the target band. M: DNA marker; N: Negative control; 1: Positive control plasmid; 2: BC4F4 transformation LD05; 3: BC4F5 transformation LD05"

Fig. 5

Relative expression pattern of the exogenous genes in LD05 transformants A: Heterologous gene m2cryAb-vip3A; B: Heterologous gene bar. The letters represent the significant difference (P<0.05). The same as below"

Fig. 6

Expression analysis of heterologous protein of LD05 A: Heterologous protein M2cryAb-VIP3A; B: Heterologous protein PAT"

Fig. 7

Results of laboratory bioassay analysis of target pests by LD05"

Fig. 8

Statistical results of laboratory bioassay on target pests A: Ostrinia furnacalis; B: Spodoptera fragiperda; C: Mythimna separata; D: Helicoverpa armigera"

Table 2

Analysis field trials of Ostrinia furnacalis, Mythimna separata, and Helicoverpa armigera"

材料
Material
玉米螟 Ostrinia furnacalis 黏虫 Mythimna separata 棉铃虫 Helicoverpa armigera
心叶期 V5 stage 花丝期 Silking stage 心叶期 V5 stage 花丝期 Silking stage
危害级别
Damage level
抗性
Resistance
危害级别
Damage level
抗性
Resistance
危害级别
Damage level
抗性
Resistance
危害级别
Damage level
抗性
Resistance
LD05(BC4F3 1.00 高抗
High resistance
1.00 高抗
High resistance
1.02 高抗
High resistance
1.00 高抗
High resistance
LD05(BC4F4 1.00 高抗
High resistance
1.00 高抗
High resistance
1.01 高抗
High resistance
1.00 高抗
High resistance
LD05(BC4F5 1.00 高抗
High resistance
1.00 高抗
High resistance
1.03 高抗
High resistance
1.00 高抗
High resistance
郑58
Zheng 58
8.85 高感
High sense
8.99 高感
High sense
8.61 高感
High sense
6.72
Sense
先达205
Xianda 205
8.69 高感
High sense
8.43 高感
High sense
8.05 高感
High sense
6.95
Sense

Table 3

Tolerance of LD05 of BC4F5 generation to glufosinate herbicide"

药后时间(周)
Time after herbicide spraying (weeks)
材料
Material
剂量(倍)
Dose(times)
成苗率
Planting percent (%)
受害率
Damage rate (%)
1 郑58
Zheng 58
100.00±0.00a -
0.00±0.00b 100.00±0.00a
LD05 100.00±0.00a -
100.00±0.00a 0.00±0.00b
100.00±0.00a 0.00±0.00b
100.00±0.00a 10.67±6.93b
2 郑58
Zheng 58
100.00±0.00a -
0.00±0.00b 100.00±0.00a
LD05 100.00±0.00a -
100.00±0.00a 0.00±0.00b
100.00±0.00a 0.00±0.00b
100.00±0.00a 0.00±0.00b
4 郑58
Zheng 58
100.00±0.00a -
0.00±0.00b 100.00±0.00a
LD05 100.00±0.00a -
100.00±0.00a 0.00±0.00b
100.00±0.00a 0.00±0.00b
100.00±0.00a 0.00±0.00b

Table 4

Comparative analysis of agronomic characters between LD05 of BC4F5 generation and Zheng58"

农艺性状
Agronomic trait
LD05
(BC4F5)
郑58
Zheng58
抽雄期Tasseling stage (d) 59±1.0a 59±1.0a
生育期Growth stage (d) 108.7±1.5a 109.3±1.5a
株高Plant height (cm) 163.0±2.6a 164.0±2.0a
穗位高Ear height (cm) 56.0±2.0a 55.3±1.5a
穗行数Rows per ear 12±0a 12±0a
穗粗Ear diameter (cm) 3.8±0.1a 3.8±0.1a
百粒重100-kernel weight (g) 33.4±0.5a 33.5±0.7a
[1]
韩长赋. 玉米论略. 农业经济问题, 2012, 33(6): 4-9.
HAN C F. On the strategy of corn industry. Issues in Agricultural Economy, 2012, 33(6): 4-9. (in Chinese)
[2]
李婷婷, 李文娟. 我国玉米空间格局演变及其影响因素研究进展. 中国农业资源与区划, 2021, 42(2): 87-95.
LI T T, LI W J. Research progress on the evolution of maize spatial pattern and its influencing factors in China. Chinese Journal of Agricultural Resources and Regional Planning, 2021, 42(2): 87-95. (in Chinese)
[3]
王红军, 郭书亚. 玉米螟对夏玉米果穗的危害及产量的影响. 江苏农业科学, 2017, 45(8): 95-97.
WANG H J, GUO S Y. Effects of corn borer Ostrinia furnacalis on corn ears and yield of summer corn. Jiangsu Agricultural Sciences, 2017, 45(8): 95-97. (in Chinese)
[4]
鲁新, 张国红, 李丽娟, 刘宏伟, 汪洋洲. 吉林省亚洲玉米螟的发生规律. 植物保护学报, 2005, 32(3): 241-245.
LU X, ZHANG G H, LI L J, LIU H W, WANG Y Z. The occurrence of the Asian corn borer in Jilin Province. Journal of Plant Protection, 2005, 32(3): 241-245. (in Chinese)
[5]
姜玉英, 刘杰, 谢茂昌, 李亚红, 杨俊杰, 张曼丽, 邱坤. 2019年我国草地贪夜蛾扩散为害规律观测. 植物保护, 2019, 45(6): 10-19.
JIANG Y Y, LIU J, XIE M C, LI Y H, YANG J J, ZHANG M L, QIU K. Observation on law of diffusion damage of Spodoptera frugiperda in China in 2019. Plant Protection, 2019, 45(6): 10-19. (in Chinese)
[6]
FAO. Briefing note on FAO actions on fall armyworm. Accessed 2019.
[7]
WANG H, LV S, ZHAO R, LIANG P, ZHANG S, GAO X, ZHANG L, GU S. Establishment of the relative susceptible baselines of Spodoptera frugiperda (Lepidoptera: Noctuidae) larvae to commonly used insecticides. Acta Entomologica Sinica, 2021, 64(12): 1427-1432.
[8]
沈平, 章秋艳, 林友华, 李文龙, 李昂, 宋贵文. 推进我国转基因玉米产业化的思考. 中国生物工程杂志, 2016, 36(4): 24-29.
SHEN P, ZHANG Q Y, LIN Y H, LI W L, LI A, SONG G W. Thinking to promote the industrialization of genetically modified corn of our country. China Biotechnology, 2016, 36(4): 24-29. (in Chinese)
[9]
LIU Q S, HALLERMAN E, PENGY F, LI Y H. Development of Bt rice and Bt maize in China and their efficacy in target pest control. International Journal of Molecular Sciences, 2016, 17(10): 1561.
[10]
SAVARY S, WILLOCQUET L, PETHYBRIDGE S J, ESKER P, MCROBERTS N, NELSON A. The global burden of pathogens and pests on major food crops. Nature Ecology & Evolution, 2019, 3(3): 430-439.
[11]
AKBAR N, EHSANULLAH, JABRAN K, ALI M A. Weed management improves yield and quality of direct seeded rice. Australian Journal of Crop Science, 2011, 5(6): 688-694.
[12]
张玉池, 王晓蕾, 徐文蓉, 刘琪, 相世刚, 戴伟民, 强胜, 宋小玲. 国内外抗除草剂基因专利的分析. 杂草学报, 2017, 35(2): 1-22.
ZHANG Y C, WANG X L, XU W R, LIU Q, XIANG S G, DAI W M, QIANG S, SONG X L. Analysis on the patents of herbicide resistance gene at home and abroad. Journal of Weed Science, 2017, 35(2): 1-22. (in Chinese)
[13]
SALIM M, MASIH R. Efficacy of insecticides against rice borers at NARC, Islamabad. Pakistan Journal of Agricultural Research, 1988, 8(4): 477-479.
[14]
STEVENS J, DUNSE K, FOX J, EVANS S, ANDERSO M. Biotechnological approaches for the control of insect pests in crop plants//Pesticides advances in chemical and botanical pesticides. Rijeka, Croatia: InTech, 2013.
[15]
MAKKAR G S, BENTUR J. Breeding for Stem Borer and Gall Midge Resistance in Rice. Berlin, Germany, 2017.
[16]
OMOTO C, BERNARDI O, SALMERON E, SORGATTO R J, DOURADO P M, CRIVELLARI A, CARVALHO R A, WILLSE A, MARTINELLI S, HEAD G P. Field-evolved resistance to Cry1Ab maize by Spodoptera frugiperda in Brazil. Pest Management Science, 2016, 72(9): 1727-1736.
[17]
Maize (Zea mays L.) GM Events (238 Events). [2020-11-16]. https://www.isaaa.org/gmapp.
[18]
纪逸媚. 转基因抗虫作物的安全性研究[D]. 福州: 福建农林大学, 2014.
JI Y M. Safety of transgenic insect-resistant crops[D]. Fuzhou: Fujian Agriculture and Forestry University, 2014. (in Chinese)
[19]
CHAKROUN M, BEL Y, CACCIA S, ABDELKEFI-MESRATI L, ESCRICHE B, FERRÉ J. Susceptibility of Spodoptera frugiperda and S. exigua to Bacillus thuringiensis Vip3Aa insecticidal protein. Journal of Invertebrate Pathology, 2012, 110(3): 334-339.
[20]
DONOVAN W P, DONOVAN J C, ENGLEMAN J T. Gene knockout demonstrates that vip3A contributes to the pathogenesis of Bacillus thuringiensis toward Agrotis ipsilon and Spodoptera exigua. Journal of Invertebrate Pathology, 2001, 78(1): 45-51.
[21]
JURAT-FUENTES J L, HECKEL D G, FERRÉ J. Mechanisms of resistance to insecticidal proteins from Bacillus thuringiensis. Annual Review of Entomology, 2020, 66: 121-140.
[22]
ESTRUCH J J, WARREN G W, MULLINS M A, NYE G J, CRAIG J A, KOZIEL M G. Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(11): 5389-5394.
[23]
罗莲. 抗草地贪夜蛾Bt基因的筛选及应用[D]. 雅安: 四川农业大学, 2022.
LUO L. Screening and application of Bt gene resistant to fall armyworm Spodoptera frugiperda[D]. Yaan: Sichuan Agricultural University, 2022. (in Chinese)
[24]
BATES S L, ZHAO J Z, ROUSH R T, SHELTON A M. Insect resistance management in GM crops: Past, present and future. Nature Biotechnology, 2005, 23: 57-62.

pmid: 15637622
[25]
TABASHNIK B E, BRÉVAULT T, CARRIÈRE Y. Insect resistance to Bt crops: Lessons from the first billion acres. Nature Biotechnology, 2013, 31(6): 510-521.

doi: 10.1038/nbt.2597 pmid: 23752438
[26]
CARRIÈRE Y, FABRICK J A, TABASHNIK B E. Can pyramids and seed mixtures delay resistance to Bt crops. Trends in Biotechnology, 2016, 34(4): 291-302.
[27]
ZHAO S Y, YANG X M, LIU D Z, SUN X X, LI G P, WU K M. Performance of the domestic Bt corn event expressing pyramided Cry1Ab and Vip3Aa19 against the invasive Spodoptera frugiperda (J. E. Smith) in China. Pest Management Science, 2023, 79(3): 1018-1029.
[28]
张思雨, 林朝阳, 叶雨轩, 沈志成. 转cry1Ab vip3Af2cp4 epsps基因的抗虫耐除草剂水稻的研究. 浙江农业学报, 2023, 35(8): 1823-1833.

doi: 10.3969/j.issn.1004-1524.20230491
ZHANG S Y, LIN Z Y, YE Y X, SHEN Z C. Characterization of transgenic insect resistance and glyphosate tolerance rice expressing cry1Ab vip3Af2 and cp4 epsps. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1823-1833. (in Chinese)

doi: 10.3969/j.issn.1004-1524.20230491
[29]
林海燕. 表达Cry-VIP3和CP4EPSPS蛋白的转基因抗虫耐草甘膦豇豆的研究[D]. 杭州: 浙江大学, 2021.
LIN H Y. A transgenic insect resistance and herbicide tolerance cowpea expression Cry-VIP3 and cp4 epsps[D]. Hangzhou: Zhejiang University, 2021. (in Chinese)
[30]
岳润清. 抗虫融合基因M2CryAb-VIP3A、其表达载体、产物及应用: 中国, ZL 2021 l 1346791.X. 2021-11-15.
YUE R Q. Insect-resistant fusion gene M2CryAb-VIP3A, its expression vector, product and application: China, ZL 2021 l 1346791.X. 2021.11.15. (in Chinese)
[31]
岳润清. 抗虫耐除草剂玉米转化事件LD05的核酸分子、检测方法及其应用: 中国, ZL 2023 1 0132752.2. 2023-02-16.
YUE R Q. Nucleic acid molecule, detection method and application of insect-resistant and herbicide-tolerant maize transformation event LD05: China, ZL 2023 1 0132752.2. 2023-02-16. (in Chinese)
[32]
岳润清, 李文兰, 孟昭东. 转基因抗虫耐除草剂玉米自交系LG11的获得及抗性分析. 作物学报, 2024, 50(1): 89-99.

doi: 10.3724/SP.J.1006.2024.33016
YUE R Q, LI W L, MENG Z D. Acquisition and resistance analysis of transgenic Maize Inbred Line LG11 with insect and herbicide resistance. Acta Agronomica Sinica, 2024, 50(1): 89-99. (in Chinese)
[33]
TABASHNIK B E, CUSHING N L, FINSON N, JOHNSON M W. Field development of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae). Journal of Economic Entomology, 1990, 83(5): 1671-1676.
[34]
ZHAO J Z, COLLINS H L, TANG J D, CAO J, EARLE E D, ROUSH R T, HERRERO S, ESCRICHE B, FERRÉ J, SHELTON A M. Development and characterization of diamondback moth resistance to transgenic broccoli expressing high levels of Cry1C. Applied and Environmental Microbiology, 2000, 66(9): 3784-3789.

doi: 10.1128/AEM.66.9.3784-3789.2000 pmid: 10966391
[35]
YU C G, MULLINS M A, WARREN G W, KOZIEL M G, ESTRUCH J J. The Bacillus thuringiensis vegetative insecticidal protein Vip3A lyses midgut epithelium cells of susceptible insects. Applied and Environmental Microbiology, 1997, 63(2): 532-536.
[36]
陈建武, 余健秀, 胡晓晖, 庞义. 苏云金杆菌营养期杀虫蛋白的研究. 中国生物工程杂志, 2002, 22(3): 33-36.
CHEN J W, YU J X, HU X H, PANG Y. Research on progress vegetative insecticidal proteins of Bacillus thuringiensis. China Biotechnology, 2002, 22(3): 33-36. (in Chinese)
[37]
赫福霞, 郎志宏, 张杰, 陆伟, 何康来, 黄大昉. 转Btcry1Ah/2mG2- epsps双价基因抗虫/耐除草剂玉米研究. 作物杂志, 2012, 6: 29-33.
HE F X, LANG Z H, ZHANG J, LU W, HE K L, HUANG D F. Insect-resistant and glyphosate-tolerant transgenic maize transformed by Bt cry1Ah and 2mG2-epsps genes. Crops, 2012, 6: 29-33. (in Chinese)
[38]
杨小艳, 翁建峰, 谢树章, 雷开荣. 转cry1Ab_Ma基因抗虫玉米植株的获得及其后代分析. 分子植物育种, 2015, 13(9): 1943-1948.
YANG X Y, WENG J F, XIE S Z, LEI K R. Construction and genetic transformation of plant expression vector harboring insect resistant gene cry1Ab-Ma in maize. Molecular Plant Breeding, 2015, 13(9): 1943-1948. (in Chinese)
[39]
WANG Y Q, LIANG C Z, WU S J, ZHANG X Y, TANG J Y, JIAN G L, JIAO G L, LI F G, CHU C C. Significant improvement of cotton Verticillium wilt resistance by manipulating the expression of Gastrodia antifungal proteins. Molecular Plant, 2016, 9(10): 1436-1439.
[40]
CHEN M, SHELTON A, YE G Y. Insect-resistant genetically modified rice in China: From research to commercialization. Annual Review of Entomology, 2011, 56: 81-101.

doi: 10.1146/annurev-ento-120709-144810 pmid: 20868281
[41]
李国平, 吴孔明. 中国转基因抗虫玉米的商业化策略. 植物保护学报, 2022, 49(1): 17-32.
LI G P, WU K M. Commercial strategy of transgenic insect-resistant maize in China. Journal of Plant Protection, 2022, 49(1): 17-32. (in Chinese)
[42]
HEAD G P, GREENPLATE J. The design and implementation of insect resistance management programs for Bt crops. GM Crops & Food, 2012, 3(3): 144-153.
[1] CAO Peng, ZHOU JinHuan, WANG XinLiang, LI ChuXin, LI JiaXIN, JIANG Pei, LIU JinXiang, SONG Zhen. Optimization and Application of Rapid Evaluation System for Citrus Huanglongbing Resistance Mediated by Agrobacterium rhizogenes [J]. Scientia Agricultura Sinica, 2024, 57(16): 3182-3191.
[2] LI ShengYou, WANG ChangLing, YAN ChunJuan, ZHANG LiJun, SUN XuGang, CAO YongQiang, WANG WenBin, SONG ShuHong. Evaluation of Drought Resistance in Soybean Germplasm and Identification of Candidate Drought-Resistant Genes [J]. Scientia Agricultura Sinica, 2024, 57(10): 1857-1869.
[3] GAO XiaoXiao, TU LiQin, YANG Liu, LIU YaNan, GAO DanNa, SUN Feng, LI Shuo, ZHANG SongBai, JI YingHua. Construction of an Infectious Clone of Tobacco Mild Green Mosaic Virus Isolate Infecting Pepper from Jiangsu Based on Genomic Clone [J]. Scientia Agricultura Sinica, 2023, 56(8): 1494-1502.
[4] FAN JunQiang, WU JunYan, LIU LiJun, MA Li, YANG Gang, PU YuanYuan, LI XueCai, SUN WanCang. Correlation Between Stomatal Characteristics and Cold Resistance of Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(4): 599-618.
[5] LI li, SUN ling, ZHANG JinHua, ZOU XiaoWei, SUN Hui, REN JinPing, JIANG ZhaoYuan, LIU XiaoMei. Evaluation of Resistance and Analysis of Utilization Value of the Major Japonica Rice Varieties in Jilin Province Based on the Physiological Race Variation of Magnaporthe oryzae [J]. Scientia Agricultura Sinica, 2023, 56(22): 4441-4452.
[6] ZHANG YaLing, GAO Qing, ZHAO Yuhan, LIU Rui, FU Zhongju, LI Xue, SUN Yujia, JIN XueHui. Evaluation of Rice Blast Resistance and Genetic Structure Analysis of Rice Germplasm in Heilongjiang Province [J]. Scientia Agricultura Sinica, 2022, 55(4): 625-640.
[7] LI ZhengGang,TANG YaFei,SHE XiaoMan,YU Lin,LAN GuoBing,HE ZiFu. Molecular Characteristics and Pathogenicity Analysis of Youcai Mosaic Virus Guangdong Isolate Infecting Radish [J]. Scientia Agricultura Sinica, 2022, 55(14): 2752-2761.
[8] DU Yu,WANG Yong,MENG QingYong,ZHU JiangJiang,LIN YaQiu. Knockdown Goat KLF12 to Promote Subcutaneous Adipocytes Differentiation [J]. Scientia Agricultura Sinica, 2022, 55(1): 184-196.
[9] XIAO Fang,LI Jun,WANG HaoQian,ZHAI ShanShan,CHEN ZiYan,GAO HongFei,LI YunJing,WU Gang,ZHANG XiuJie,WU YuHua. Establishment and Application of A Duplex ddPCR Method to Quantify the NK603/zSSIIb Copy Number Ratio in Transgenic Maize NK603 [J]. Scientia Agricultura Sinica, 2021, 54(22): 4728-4739.
[10] MENG XiangKun,WU ZhaoLu,YANG XueMei,GUAN DaoJie,WANG JianJun. Cloning and Analysis of P-glycoprotein Gene and Its Transcriptional Response to Insecticide in Chilo suppressalis [J]. Scientia Agricultura Sinica, 2021, 54(19): 4121-4131.
[11] ZHANG Li,TANG YaFei,LI ZhengGang,YU Lin,LAN GuoBing,SHE XiaoMan,HE ZiFu. Molecular Characteristic of Squash Leaf Curl China Virus (SLCCNV) Infecting Cucurbitaceae Crops in Guangdong Province [J]. Scientia Agricultura Sinica, 2021, 54(19): 4097-4109.
[12] LI ZhengGang,NONG Yuan,TANG YaFei,SHE XiaoMan,YU Lin,LAN GuoBing,DENG MingGuang,HE ZiFu. Molecular Characteristic and Pathogenicity Analyses of Cucumber green mottle mosaic virus (CGMMV) Infecting Bottle Gourd in Lianzhou, Guangdong [J]. Scientia Agricultura Sinica, 2020, 53(5): 955-964.
[13] GUAN FangNian,LONG Li,YAO FangJie,WANG YuQi,JIANG QianTao,KANG HouYang,JIANG YunFeng,LI Wei,DENG Mei,LI Hao,CHEN GuoYue. Evaluation of Resistance to Stripe Rust and Molecular Detection of Important Known Yr Gene(s) of 152 Chinese Wheat Landraces from the Huang-huai-hai [J]. Scientia Agricultura Sinica, 2020, 53(18): 3629-3637.
[14] QU Qing,LI LiNa,LIU Jun,WANG ShaoXin,CAO ZhiYan,DONG JinGao. Resistance Evaluation of Some Commonly Used Maize Germplasm Resources to Fusarium Diseases in China [J]. Scientia Agricultura Sinica, 2019, 52(17): 2962-2971.
[15] HUANG Liang, LIU TaiGuo, XIAO XingZhi, QU ChunYan, LIU Bo, GAO Li, LUO PeiGao, CHEN WanQuan. Evaluation of Stripe Rust Resistance and Molecular Detection of Yr Genes of 79 Wheat Varieties (Lines) in China [J]. Scientia Agricultura Sinica, 2017, 50(16): 3122-3134.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!