Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (15): 3023-3034.doi: 10.3864/j.issn.0578-1752.2024.15.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Different Rice Varieties and Zinc Application Methods on Rice Yield and Grain Zinc Availability

SU SuMiao1(), KANG TianKai1, ZOU JiaLong2, WANG BenFu3, ZHANG YangYang1, LIAO ShiPeng1, LI XiaoKun1,4()   

  1. 1 College of Resources and Environment, Huazhong Agricultural University/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs/Microelement Research Center, Huazhong Agricultural University, Wuhan 430070
    2 Agricultural Technology Service Center of Jingzhou District, Jingzhou City, Hubei Province, Jingzhou 434020, Hubei
    3 Food Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064
    4 Shuangshui and Shuanglü Research Institute, Huazhong Agricultural University, Wuhan 430070
  • Received:2023-09-07 Accepted:2024-05-05 Online:2024-08-05 Published:2024-08-05
  • Contact: LI XiaoKun

Abstract:

Objective】The aim of this study was to clarify the response of different rice varieties to zinc fertilizer and the differences in the effects of different zinc fertilizer application methods on rice yield and grain zinc bioavailability.【Method】The field experiments were conducted in 2019 and 2020. The first field experiment (Experiment 1) in 2019 aimed to explore the response of different rice varieties to zinc fertilizer application. Four rice varieties were selected, including Xiadao No.1, Xiadao No.2, Runxiangyu, and Longliangyou3463, with two treatments of no zinc application (CK) and zinc application (+Zn), and the differences in the response of different rice varieties to zinc fertilizer application were investigated. The second field experiment (Experiment 2) in 2020 aimed to explore the effects of different zinc fertilizer application methods on rice yield and grain zinc bioavailability. Based on the experiment in 2019, two high-yielding rice varieties, including Xiadao No.1 and Longliangyou3463, were selected to continue the study. Six treatments were set: no zinc application to soil (S0F0), soil application of 15 kg·hm-2 zinc (S1F0), soil application of 30 kg·hm-2 zinc (S2F0), foliar spray of 0.5% ZnSO4 at flowering stage (S0F1), soil application of 15 kg·hm-2 zinc + foliar spray of 0.5% ZnSO4 at flowering stage (S1F1), and soil application of 30 kg·hm-2 zinc + foliar spray of 0.5% ZnSO4 at flowering stage (S2F1), and the differences in the effects of different zinc application methods on yield and grain zinc bioavailability of two rice varieties were investigated.【Result】In experiment 1, there were significant differences in the response of different rice varieties to zinc fertilizer. After zinc application, the yields of Xiadao No.1, Xiadao No.2, Runxiangyu, and Longliangyou3463 increased by 4.4%, 11.6%, 7.9%, and 4.8%, respectively. The increase in yield was mainly attributed to the increase in effective panicle number and grain-setting rate. Compared with CK, the average effective panicle number of the four rice varieties with zinc application increased by 19.8%, 3.9%, 9.9%, and 24.0%, respectively, and the average grain-setting rate increased by 5.4%, 9.7%, 6.7%, and 4.0%, respectively. In addition, the molar ratio of phytic acid to zinc in brown rice and polished rice of the four rice varieties with zinc application decreased by averages of 24.3%, 30.9%, 21.3%, and 37.2%, and 29.5%, 32.4%, 33.9%, and 35.3%, respectively. In experiment 2, there were significant differences in the effects of different zinc application methods on the yield and grain zinc availability of Xiadao No.1 and Longliangyou3463. Soil zinc application significantly outperformed foliar zinc spray in increasing yield, and foliar zinc spray further increased rice yield when it combined with soil zinc application. Compared with S0F0, the yields of Xiadao No.1 under S0F1, S1F0, S1F1, S2F0, and S2F1 increased by 12.1%, 14.1%, 17.2%, 22.2%, and 29.3%, respectively, and the yields of Longliangyou3463 under S0F1, S1F0, S1F1, S2F0, and S2F1 increased by 2.0%, 10.1%, 15.2%, 28.3%, and 31.3%, respectively. The effects of different zinc application methods on grain zinc availability varied, and there were significant differences in grain zinc availability between the two rice varieties. Foliar spray had a significantly greater zinc enhancement effect on grain compared with soil application, and the bioavailable zinc content in grains of Longliangyou3463 was higher than that in Xiadao No.1.【Conclusion】Selecting high-yielding and zinc-enriched rice varieties (Longliangyou3463) and adopting appropriate zinc fertilizer application methods(30 kg·hm-2 soil application + foliar spray of 0.5% ZnSO4 at flowering stage) could achieve the goals of increasing rice yield and enhancing rice zinc nutrition, thereby helping to increase income and improve rice quality.

Key words: rice varieties, zinc fertilizer, application methods, yield, grain zinc availability, zinc nutrition fortification

Table 1

Effects of zinc application on yield and yield components of different rice varieties (2019)"

品种
Variety
处理
Treatment
产量
Yield
(t·hm-2)
有效穗数
No. of effective panicles
(×104·hm-2)
每穗粒数
No. of grains
per panicle
结实率
Seed-setting rate
(%)
千粒重
1000-grain weight
(g)
XD-1 CK 9.1±0.1a 352.8±29.8b 138.0±13.1a 79.2±1.8a 24.7±0.4b
+Zn 9.5±0.4a 422.8±26.1a 112.3±10.0a 83.5±3.2a 25.6±0.3a
XD-2 CK 6.9±0.4b 318.8±30.5a 136.0±15.7a 73.0±3.0b 24.0±0.6a
+Zn 7.7±0.3a 331.2±12.7a 144.0±7.0a 80.1±3.1a 23.4±0.3a
RXY CK 7.6±0.2b 382.2±26.2a 128.3±13.1a 66.1±0.6b 23.8±0.1a
+Zn 8.2±0.4a 420.0±41.0a 140.7±17.8a 70.5±2.0a 23.4±0.2a
LLY3463 CK 10.5±0.4a 291.2±16.2b 164.3±12.3a 77.7±3.4a 25.8±0.3b
+Zn 11.0±0.6a 361.2±39.8a 147.7±14.2a 80.8±5.0a 27.0±0.6a
方差分析AVONA 品种Variety, V *** *** ** *** ***
处理 Treatment, T *** ** ns *** ns
V×T ns ns ns ns ***

Table 2

Effects of different application methods of zinc fertilizer on yield and yield components of Xiadao No.1 (2020)"

品种
Variety
处理
Treatment
产量
Yield
(t·hm-2)
有效穗数
No. of effective panicles (×104·hm-2)
每穗粒数
No. of grains
per panicle
结实率
Seed-setting rate
(%)
千粒重
1000-grain weight
(g)
XD-1 S0F0 9.9±0.5c 331.7±11.0c 148.6±5.9a 88.3±2.2a 23.4±0.7a
S0F1 11.1±0.7b 344.3±34.3bc 155.4±9.2a 88.7±2.5a 23.7±0.3a
S1F0 11.3±0.2b 359.7±15.0bc 149.2±9.2a 88.9±1.4a 23.9±0.6a
S1F1 11.6±0.7b 390.7±31.7ab 145.3±10.9a 88.7±1.7a 23.4±0.5a
S2F0 12.1±0.3ab 438.0±36.0a 138.7±8.8a 88.3±1.1a 23.5±1.5a
S2F1 12.8±0.8a 441.0±38.0a 139.6±9.1a 89.1±2.2a 23.4±1.3a
方差分析
AVONA
土施锌肥
Zinc fertilizer to soil, S
*** *** ns ns ns
叶面喷施锌肥
Foliar spray of zinc fertilizer, F
** ns ns ns ns
S×F ns ns ns ns ns

Table 3

Effects of different application methods of zinc fertilizer on yield and yield components of Longliangyou 3463 (2020)"

品种
Variety
处理
Treatment
产量
Yield
(t·hm-2)
有效穗数
No. of effective panicles (×104·hm-2)
每穗粒数
No. of grains
per panicle
结实率
Seed-setting rate
(%)
千粒重
1000-grain weight
(g)
LLY3463 S0F0 9.9±0.1d 259.0±14.5d 172.0±7.7a 90.0±2.4a 24.8±0.5a
S0F1 10.1±0.5cd 284.0±21.6cd 169.9±2.3a 89.1±2.7a 24.8±0.5a
S1F0 10.9±0.9cd 313.7±32.0bc 155.5±9.1a 89.2±2.1a 25.1±0.3a
S1F1 11.4±1.0bc 382.3±34.3a 163.5±1.0a 89.4±3.3a 24.6±0.5a
S2F0 12.7±1.0ab 341.7±17.2ab 168.6±9.3a 88.9±1.8a 24.9±0.3a
S2F1 13.0±0.7a 383.7±28.1a 170.1±17.7a 89.2±2.0a 24.8±1.1a
方差分析AVONA 土施锌肥
Zinc fertilizer to soil, S
*** *** ns ns ns
叶面喷施锌肥
Foliar spray of zinc fertilizer, F
ns ** ns ns ns
S×F ns ns ns ns ns

Table 4

Effect of zinc application on zinc content in different parts of different varieties of rice (2019)"

品种
Variety
处理
Treatment
秸秆锌含量
Zn concentration in straw (mg·kg-1)
稻壳锌含量
Zn concentration in
rice husk (mg·kg-1)
糙米锌含量
Zn concentration in
brown rice (mg·kg-1)
精米锌含量
Zn concentration in
polished rice (mg·kg-1)
XD-1 CK 57.9±5.9b 31.1±4.4a 19.8±1.8a 14.5±1.7a
+Zn 75.2±3.7a 35.9±4.3a 23.5±2.2a 14.9±1.1a
XD-2 CK 53.2±4.1b 31.8±3.9a 21.0±2.3b 15.7±2.0a
+Zn 65.9±4.7a 36.0±4.3a 28.4±2.1a 16.6±1.4a
RXY CK 54.9±6.6b 31.8±3.9a 20.1±0.7b 13.5±0.6b
+Zn 71.9±7.5a 32.6±4.6a 23.8±1.4a 15.4±0.8a
LLY3463 CK 51.3±7.0a 38.9±3.2a 24.9±3.0b 13.9±0.4b
+Zn 61.1±2.4a 40.4±5.3a 38.9±2.5a 17.6±1.1a
方差分析AVONA 品种Variety, V * * *** ns
处理 Treatment, T *** ns *** **
V×T ns ns ** ns

Fig. 1

Effects of different application methods of zinc fertilizer on zinc concentration in different parts of different rice varieties (2020) A, B, C and D is straw, rice husk, brown rice and polished rice, respectively. Different lowercase letters indicate significant differences among treatments (P<0.05)"

Fig. 2

Effect of zinc application on phytic acid (PA) concentration and molar ratio of phytic acid to zinc (PA/Zn) in brown and polished rice of different varieties of rice (2019)"

Fig. 3

Effects of different application methods of zinc fertilizer on phytic acid (PA) concentration and molar ratio of phytic acid to zinc (PA/Zn) in brown and polished rice of different varieties of rice (2020)"

[1]
STANTON C, SANDERS D, KRÄMER U, PODAR D. Zinc in plants: Integrating homeostasis and biofortification. Molecular Plant, 2022, 15(1): 65-85.
[2]
朱盼盼, 马彦平, 周忠雄, 石磊. 微量元素锌与植物营养和人体健康. 肥料与健康, 2021, 48(5): 16-18, 23.
ZHU P P, MA Y P, ZHOU Z X, SHI L. Trace element zinc, plant nutrition and human health. Fertilizer & Health, 2021, 48(5): 16-18, 23. (in Chinese)
[3]
刘琦, 王张民, 潘斐, 袁林喜, 尹雪斌. 大田条件下水稻锌营养强化方法探究及效果评估. 土壤, 2019, 51(1): 32-38.
LIU Q, WANG Z M, PAN F, YUAN L X, YIN X B. Effect evaluation on method of zinc biofortification for rice in paddy field. Soils, 2019, 51(1): 32-38. (in Chinese)
[4]
KONG D Y, ALI KHAN S, WU H L, LIU Y, LING H Q. Biofortification of iron and zinc in rice and wheat. Journal of Integrative Plant Biology, 2022, 64(6): 1157-1167.

doi: 10.1111/jipb.13262
[5]
XIA H Y, XUE Y F, KONG W L, TANG Y Y, LI J, LI D. Effects of source/sink manipulation on grain zinc accumulation by winter wheat genotypes. Chilean Journal of Agricultural Research, 2018, 78(1): 117-125.
[6]
XIA H Y, XUE Y F, LIU D Y, KONG W L, XUE Y H, TANG Y Y, LI J, LI D, MEI P P. Rational application of fertilizer nitrogen to soil in combination with foliar Zn spraying improved Zn nutritional quality of wheat grains. Frontiers in Plant Science, 2018, 9: 677.

doi: 10.3389/fpls.2018.00677 pmid: 29881394
[7]
王澜, 夏海勇, 孔玮琳, 贤伟华, 马国兴, 王子浩, 张荣亭, 李豪圣, 龚魁杰, 刘开昌. 土壤和叶面施锌对小麦农艺性状、籽粒产量和对锌、铁及硒微量元素浓度的影响. 农学学报, 2021, 11(7): 23-27.

doi: 10.11923/j.issn.2095-4050.casb2020-0206
WANG L, XIA H Y, KONG W L, XIAN W H, MA G X, WANG Z H, ZHANG R T, LI H S, GONG K J, LIU K C. Effects of soil and foliar zinc application on agronomic traits, grain yield and grain zinc, iron and selenium concentration of wheat. Journal of Agriculture, 2021, 11(7): 23-27. (in Chinese)

doi: 10.11923/j.issn.2095-4050.casb2020-0206
[8]
PERSSON D P, DE BANG T C, PEDAS P R, KUTMAN U B, CAKMAK I, ANDERSEN B, FINNIE C, SCHJOERRING J K, HUSTED S. Molecular speciation and tissue compartmentation of zinc in durum wheat grains with contrasting nutritional status. The New Phytologist, 2016, 211(4): 1255-1265.
[9]
梅忠, 王治学, 梅沙, 蒋宙蕾, 梅淑芳, 舒小丽, 吴殿星. 高锌水稻研究进展. 核农学报, 2016, 30(8): 1515-1523.

doi: 10.11869/j.issn.100-8551.2016.08.1515
MEI Z, WANG Z X, MEI S, JIANG Z L, MEI S F, SHU X L, WU D X. Study on rice high in zinc content. Journal of Nuclear Agricultural Sciences, 2016, 30(8): 1515-1523. (in Chinese)

doi: 10.11869/j.issn.100-8551.2016.08.1515
[10]
CAKMAK I. Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant and Soil, 2008, 302(1): 1-17.
[11]
康天恺. 不同锌肥及施用方法对水稻籽粒产量和锌有效性的影响[D]. 武汉: 华中农业大学, 2022.
KANG T K. Effects of different zinc fertilizer and application methods on grain yield and zinc bioavailability of rice[D]. Wuhan: Huazhong Agricultural University, 2022. (in Chinese)
[12]
王孝忠, 田娣, 邹春琴. 锌肥不同施用方式及施用量对我国主要粮食作物增产效果的影响. 植物营养与肥料学报, 2014, 20(4): 998-1004.
WANG X Z, TIAN D, ZOU C Q. Yield responses of the main cereal crops to the application approaches and rates of zinc fertilizer in China. Journal of Plant Nutrition and Fertilizers, 2014, 20(4): 998-1004. (in Chinese)
[13]
范小琴, 董思奇, 邵宇辉, 焉莉, 冯国忠, 王寅, 高强. 不同品种粳稻的锌强化方法研究. 中国土壤与肥料, 2020(2): 173-178.
FAN X Q, DONG S Q, SHAO Y H, YAN L, FENG G Z, WANG Y, GAO Q. Study on the method of zinc augmentation in different cultivars of japonica rice. Soil and Fertilizer Sciences in China, 2020(2): 173-178. (in Chinese)
[14]
POONIYA V, SHIVAY Y S. Enrichment of basmati rice grain and straw with zinc and nitrogen through ferti-fortification and summer green manuring under indo-gangetic Plains of India. Journal of Plant Nutrition, 2013, 36(1): 91-117.
[15]
梅清清, 田仓, 周青云, 武美燕, 张文英, 田小海. 喷施螯合态锌肥对水稻产量、锌含量和稻米品质的影响. 湖北农业科学, 2022, 61(5): 27-31.
MEI Q Q, TIAN C, ZHOU Q Y, WU M Y, ZHANG W Y, TIAN X H. Effects of spraying zinc chelate fertilizer on the grain yield, zinc content and quality of rice. Hubei Agricultural Sciences, 2022, 61(5): 27-31. (in Chinese)
[16]
VAINTRAUB I A, LAPTEVA N A. Colorimetric determination of phytate in unpurified extracts of seeds and the products of their processing. Analytical Biochemistry, 1988, 175(1): 227-230.

pmid: 3245569
[17]
刘智蕾, 苏锦铠, 孟静柔, 李鹏飞, 宋佳媚, 张昊楠, 陈志豪, 于彩莲, 袁英才, 彭显龙. 低温胁迫下增施锌肥对水稻氮代谢与干物质积累的影响. 植物营养与肥料学报, 2022, 28(1): 15-22.
LIU Z L, SU J K, MENG J R, LI P F, SONG J M, ZHANG H N, CHEN Z H, YU C L, YUAN Y C, PENG X L. Effect of increasing zinc application on rice nitrogen metabolism and dry matter accumulation under low temperature stress. Journal of Plant Nutrition and Fertilizers, 2022, 28(1): 15-22. (in Chinese)
[18]
王晨, 刘朝, 马婧, 杨系玲, 范文艳, 韩文革, 姜述君. 叶面喷施氨基酸锌复合物对水稻产量性状和锌吸收的影响. 中国土壤与肥料, 2017(4): 118-123.
WANG C, LIU Z, MA J, YANG X L, FAN W Y, HAN W G, JIANG S J. Effects of foliar applications of zinc-amino acid complexes on yield characters and zinc uptake of rice. Soil and Fertilizer Sciences in China, 2017(4): 118-123. (in Chinese)
[19]
DU W, YANG J Y, PENG Q Q, LIANG X P, MAO H. Comparison study of zinc nanoparticles and zinc sulphate on wheat growth: From toxicity and zinc biofortification. Chemosphere, 2019, 227: 109-116.

doi: S0045-6535(19)30614-9 pmid: 30986592
[20]
KACHINSKI W D, ÁVILA F W, DOS REIS A R, MULLER M M L, MENDES M C, PETRANSKI P H. Agronomic biofortification increases concentrations of zinc and storage proteins in common bean (Phaseolus vulgaris L.) grains. Food Research International, 2022, 155: 111105.
[21]
郭九信, 隋标, 商庆银, 胡香玉, 廖文强, 郭世伟. 氮锌互作对水稻产量及籽粒氮、锌含量的影响. 植物营养与肥料学报, 2012, 18(6): 1336-1342.
GUO J X, SUI B, SHANG Q Y, HU X Y, LIAO W Q, GUO S W. Effects of N and Zn interaction on yield and contents of N and Zn in grains of rice. Plant Nutrition and Fertilizer Science, 2012, 18(6): 1336-1342. (in Chinese)
[22]
郭九信, 廖文强, 孙玉明, 郭俊杰, 孔亚丽, 石佑华, 徐爱群, 张居翠, 郭世伟. 锌肥施用方法对水稻产量及籽粒氮锌含量的影响. 中国水稻科学, 2014, 28(2): 185-192.
GUO J X, LIAO W Q, SUN Y M, GUO J J, KONG Y L, SHI Y H, XU A Q, ZHANG J C, GUO S W. Effects of Zn fertilizer application methods on yield and contents of N and Zn in grains of rice. Chinese Journal of Rice Science, 2014, 28(2): 185-192. (in Chinese)

doi: 10.3969/j.issn.1001-7216.2014.02.010
[23]
SAHA S, CHAKRABORTY M, PADHAN D, SAHA B, MURMU S, BATABYAL K, SETH A, HAZRA G C, MANDAL B, BELL R W. Agronomic biofortification of zinc in rice: Influence of cultivars and zinc application methods on grain yield and zinc bioavailability. Field Crops Research, 2017, 210: 52-60.
[24]
张盼盼, 邵运辉, 刘京宝, 乔江方, 李川, 张美微, 黄璐. 氮锌配施对不同玉米品种灌浆期生理特性和籽粒氮锌含量的影响. 核农学报, 2022, 36(5): 1042-1051.

doi: 10.11869/j.issn.100-8551.2022.05.1042
ZHANG P P, SHAO Y H, LIU J B, QIAO J F, LI C, ZHANG M W, HUANG L. Effect of nitrogen and zinc application on the photosynthetic characteristics in the grain filling stage and grain nitrogen and zinc content of different maize varieties. Journal of Nuclear Agricultural Sciences, 2022, 36(5): 1042-1051. (in Chinese)

doi: 10.11869/j.issn.100-8551.2022.05.1042
[25]
郭九信, 廖文强, 凌宁, 胡香玉, 隋标, 商庆银, 郭世伟. 氮锌配施对小麦产量及氮锌含量的影响. 南京农业大学学报, 2013, 36(2): 77-82.
GUO J X, LIAO W Q, LING N, HU X Y, SUI B, SHANG Q Y, GUO S W. Effects of combination use of N and Zn fertilizers on the yield and N, Zn concentrations in wheat. Journal of Nanjing Agricultural University, 2013, 36(2): 77-82. (in Chinese)
[26]
郭九信. 养分优化管理提高水稻产量及其生理生态机制的研究[D]. 南京: 南京农业大学, 2015.
GUO J X. Studies on optimized nutrient management for rice yield and its physiological and ecological mechanisms[D]. Nanjing: Nanjing Agricultural University, 2015. (in Chinese)
[27]
冯绪猛, 郭九信, 王玉雯, 宋立新, 刘振刚, 陈月坤, 张居翠, 石佑华, 郭世伟. 锌肥品种与施用方法对水稻产量和锌含量的影响. 植物营养与肥料学报, 2016, 22(5): 1329-1338.
FENG X M, GUO J X, WANG Y W, SONG L X, LIU Z G, CHEN Y K, ZHANG J C, SHI Y H, GUO S W. Effects of Zn fertilizer types and application methods on grain yield and Zn concentration of rice. Journal of Plant Nutrition and Fertilizers, 2016, 22(5): 1329-1338. (in Chinese)
[28]
PALMGREN M G, CLEMENS S, WILLIAMS L E, KRÄMER U, BORG S, SCHJØRRING J K, SANDERS D. Zinc biofortification of cereals: Problems and solutions. Trends in Plant Science, 2008, 13(9): 464-473.

doi: 10.1016/j.tplants.2008.06.005 pmid: 18701340
[29]
高春霞, 王凤忠, 袁莉. 发芽过程中大豆活性物质、抗营养因子及抗氧化活性变化的综述. 核农学报, 2019, 33(5): 962-968.

doi: 10.11869/j.issn.100-8551.2019.05.0962
GAO C X, WANG F Z, YUAN L. Summary of changes of bioactive substances, anti-nutritional factors and antioxidant activity of soybean during germination. Journal of Nuclear Agricultural Sciences, 2019, 33(5): 962-968. (in Chinese)

doi: 10.11869/j.issn.100-8551.2019.05.0962
[30]
靳晓琳, 王新坤, 杨润强, 仲磊, 顾振新. 高等植物体中植酸合成、代谢及其生理作用. 植物生理学报, 2014, 50(6): 711-716.
JIN X L, WANG X K, YANG R Q, ZHONG L, GU Z X. Biosynthesis, metabolism and physiological roles of phytic acid in higher plants. Plant Physiology Journal, 2014, 50(6): 711-716. (in Chinese)
[31]
ZHANG Y Q, SUN Y X, YE Y, KARIM M R, XUE Y F, YAN P, MENG Q F, CUI Z, CAKMAK I, ZHANG F S, ZOU C. Zinc biofortification of wheat through fertilizer applications in different locations of China. Field Crops Research, 2012, 125: 1-7.
[32]
陈晨, 张欣, 户少武, 顾珈名, 童楷程, 陈旺, 景立权, 王云霞, 杨连新. 水稻花后叶面锌和尿素配施对稻米锌营养的影响. 农业环境科学学报, 2022, 41(8): 1636-1646.
CHEN C, ZHANG X, HU S W, GU J M, TONG K C, CHEN W, JING L Q, WANG Y X, YANG L X. Effects of the post-anthesis foliar application of zinc and urea on zinc nutrition of rice grains. Journal of Agro-Environment Science, 2022, 41(8): 1636-1646. (in Chinese)
[33]
张庆, 贾一磊, 杨连新, 王余龙, 王云霞. 臭氧浓度升高和叶面施锌对小麦籽粒产量、锌浓度及有效性的影响. 农业环境科学学报, 2019, 38(4): 728-736.
ZHANG Q, JIA Y L, YANG L X, WANG Y L, WANG Y X. Impacts of elevated ozone concentration and foliar zinc application on yield, grain zinc content and bioavailability of wheat. Journal of Agro- Environment Science, 2019, 38(4): 728-736. (in Chinese)
[34]
蒋鹏, 李家庆, 郭竞选, 赵政, 袁力行. 低植酸作物遗传改良途径与磷资源高效利用. 植物营养与肥料学报, 2021, 27(9): 1636-1647.
JIANG P, LI J Q, GUO J X, ZHAO Z, YUAN L X. Genetic approaches to lower grain phytic acid for high phosphorus use efficiency in crops. Journal of Plant Nutrition and Fertilizers, 2021, 27(9): 1636-1647. (in Chinese)
[35]
张欣, 户少武, 章燕柳, 牛玺朝, 邵在胜, 杨阳, 童楷程, 王云霞, 杨连新. 叶面施锌对不同水稻品种稻米锌营养的影响及其机理. 农业环境科学学报, 2019, 38(7): 1450-1458.
ZHANG X, HU S W, ZHANG Y L, NIU X C, SHAO Z S, YANG Y, TONG K C, WANG Y X, YANG L X. Effect of foliar zinc application on zinc nutrient levels of different rice cultivars. Journal of Agro- Environment Science, 2019, 38(7): 1450-1458. (in Chinese)
[36]
KHAMPUANG K, LORDKAEW S, DELL B, PROM-U-THAI C. Foliar zinc application improved grain zinc accumulation and bioavailable zinc in unpolished and polished rice. Plant Production Science, 2021, 24(1): 94-102.
[37]
张庆, 王娟, 景立权, 杨连新, 王云霞. 叶面施用不同形态锌化合物对稻米锌浓度及有效性的影响. 中国水稻科学, 2015, 29(6): 610-618.

doi: 10.3969/j.issn.1001G7216.2015.06.007
ZHANG Q, WANG J, JING L Q, YANG L X, WANG Y X. Effect of foliar application of different Zn compounds on Zn concentration and bioavailability in brown rice. Chinese Journal of Rice Science, 2015, 29(6): 610-618. (in Chinese)

doi: 10.3969/j.issn.1001G7216.2015.06.007
[38]
REHMAN A, FAROOQ M, OZTURK L, ASIF M, SIDDIQUE K H M. Zinc nutrition in wheat-based cropping systems. Plant and Soil, 2018, 422(1): 283-315.
[39]
张庆. 不同条件下叶面施锌对水稻和小麦籽粒锌营养的影响[D]. 扬州: 扬州大学, 2016.
ZHANG Q. The effects of foliar Zn application on grain Zn bioavailability under different growth conditions[D]. Yangzhou: Yangzhou University, 2016. (in Chinese)
[1] FAN Hong, YIN Wen, HU FaLong, FAN ZhiLong, ZHAO Cai, YU AiZhong, HE Wei, SUN YaLi, WANG Feng, CHAI Qiang. Compensation Potential of Dense Planting on Nitrogen Reduction in Maize Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2024, 57(9): 1709-1721.
[2] HAN XiaoJie, REN ZhiJie, LI ShuangJing, TIAN PeiPei, LU SuHao, MA Geng, WANG LiFang, MA DongYun, ZHAO YaNan, WANG ChenYang. Effects of Different Nitrogen Application Rates on Carbon and Nitrogen Content of Soil Aggregates and Wheat Yield [J]. Scientia Agricultura Sinica, 2024, 57(9): 1766-1778.
[3] HE YongQiang, ZHANG JinKui, XU JinSong, DING XiaoYu, CHENG Yong, XU BenBo, ZHANG XueKun. Effect of 14-Hydroxylated Brassinosteroids Growth Regulator on Growth and Yield of Rapeseed [J]. Scientia Agricultura Sinica, 2024, 57(8): 1444-1454.
[4] LI YongFei, LI ZhanKui, ZHANG ZhanSheng, CHEN YongWei, KANG JianHong, WU HongLiang. Effects of Postponing Nitrogen Fertilizer Application on Flag Leaf Physiological Characteristics and Yield of Spring Wheat Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2024, 57(8): 1455-1468.
[5] LIU ZeHou, WANG Qin, YE MeiJin, WAN HongShen, YANG Ning, YANG ManYu, YANG WuYun, LI Jun. Utilization Efficiency of Improving the Resistance for Pre-Harvest Sprouting by Synthetic Hexaploid Wheat and Chinese Wheat Landrace [J]. Scientia Agricultura Sinica, 2024, 57(7): 1255-1266.
[6] REN Qiang, XU Ke, FAN ZhiLong, YIN Wen, FAN Hong, HE Wei, HU FaLong, CHAI Qiang. Nitrogen Fertilizer Postponing Application Benefits Wheat-Maize Intercropping by Reducing Soil Evaporation and Improving Water Use Efficiency [J]. Scientia Agricultura Sinica, 2024, 57(7): 1295-1307.
[7] YANG QiRui, LI LanTao, ZHANG Xiao, ZHANG Qian, ZHANG YinJie, ZHANG Duo, WANG YiLun. Effects of Potassium Application Dosage on Yield, Quality and Light Temperature Physiological Characteristics of Summer Peanut [J]. Scientia Agricultura Sinica, 2024, 57(7): 1335-1349.
[8] DANG JianYou, JIANG WenChao, SUN Rui, SHANG BaoHua, PEI XueXia. Response of Wheat Grain Yield and Water Use Efficiency to Ploughing Time and Precipitation and Its Distribution in Dryland [J]. Scientia Agricultura Sinica, 2024, 57(6): 1049-1065.
[9] ZHAO KaiNan, DING Hao, LIU AKang, JIANG ZongHao, CHEN GuangZhou, FENG Bo, WANG ZongShuai, LI HuaWei, SI JiSheng, ZHANG Bin, BI XiangJun, LI Yong, LI ShengDong, WANG FaHong. Nitrogen Fertilizer Reduction and Postponing for Improving Plant Photosynthetic Physiological Characteristics to Increase Wheat- Maize and Annual Yield and Economic Return [J]. Scientia Agricultura Sinica, 2024, 57(5): 868-884.
[10] ZHOU HaoLu, SHEN ZhaoYang, LUO XinYu, HUANG YingHui, WANG KeXin, WANG YunHao, GAO XiaoLi. The Effect of Nitrogen Fertilizer on Nitrogen Use Efficiency and Yield of Foxtail Millet in Ridge-Furrow Rainwater Harvesting Planting Model [J]. Scientia Agricultura Sinica, 2024, 57(5): 885-899.
[11] LI QianChuan, XU ShiWei, ZHANG YongEn, ZHUANG JiaYu, LI DengHua, LIU BaoHua, ZHU ZhiXun, LIU Hao. Stacking Ensemble Learning Modeling and Forecasting of Maize Yield Based on Meteorological Factors [J]. Scientia Agricultura Sinica, 2024, 57(4): 679-697.
[12] MA BiJiao, CHEN GuiPing, GOU ZhiWen, YIN Wen, FAN ZhiLong, HU FaLong, FAN Hong, HE Wei. Water Utilization and Economic Benefit of Wheat Multiple Cropping with Green Manure Under Nitrogen Reduction in Hexi Irrigation Area of Northwest China [J]. Scientia Agricultura Sinica, 2024, 57(4): 740-754.
[13] ZHU TianCi, MA TianFeng, KE Jian, ZHU TieZhong, HE HaiBing, YOU CuiCui, WU ChenYang, WANG GuanJun, WU LiQuan. Characteristics of Good Taste and High Yield Type Japonica Rice in the Lower Reaches of the Yangtze River [J]. Scientia Agricultura Sinica, 2024, 57(4): 820-830.
[14] LI FaJi, CHENG DunGong, YU XiaoCong, WEN WeiE, LIU JinDong, ZHAI ShengNan, LIU AiFeng, GUO Jun, CAO XinYou, LIU Cheng, SONG JianMin, LIU JianJun, LI HaoSheng. Genome-Wide Association Studies for Canopy Activity Related Traits and Its Genetic Effects on Yield-Related Traits [J]. Scientia Agricultura Sinica, 2024, 57(4): 627-637.
[15] WANG YueMei, TIAN HaiMei, WANG XiNa, HAO WenYue, LÜ ZheMing, YU JinMing, TAN JunLi, WANG ZhaoHui. Effect of Continuous Reduction of Fertilizer Application on Yield Stability of Spring Wheat in Yellow River Irrigation Area of Ningxia [J]. Scientia Agricultura Sinica, 2024, 57(3): 539-554.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!