Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (1): 126-141.doi: 10.3864/j.issn.0578-1752.2024.01.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Soil Application of Passivating Agent and Compound Microbial Fertilizer on Cadmium Accumulation in Winter Wheat

WANG Yu1(), SONG YiFan1, ZHANG Rong1, MU HaiMeng1, SUN LiFang1, FU KaiXia1, WU ZiJun1, HUANG QingQing2, XU YingMing2, LI GeZi1,3, WANG YongHua1,3(), GUO TianCai1,3()   

  1. 1 Agronomy College of Henan Agricultural University/National Engineering Research Centre for Wheat, Zhengzhou 450046
    2 Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Tianjin 300191
    3 Collaborative Innovation Centre of Henan Grain Crops, Zhengzhou 450046
  • Received:2023-01-13 Accepted:2023-04-21 Online:2024-01-01 Published:2024-01-10

Abstract:

【Objective】The passivation effect of passivator and compound microbial fertilizer on cadmium (Cd) activity in slightly Cd-polluted weak alkaline farmland soil in northern Henan Province was studied, and their effects on Cd accumulation and translocation in different organs and yield of winter wheat were investigated too. The purpose of this study was to explore soil remediation materials for efficient remediation of Cd-contaminated soil, to reduce Cd content in winter wheat grains, and to screen wheat varieties with low Cd accumulation, so as to provide the technical support for the safe and efficient production of wheat in lightly polluted weak alkaline farmland in northern Henan Province. 【Method】In two consecutive winter wheat growing seasons of 2020-2022, two-factor split field comparison experiments of four different soil remediation materials (CK, no soil remediation treatment; CMF, single application of compound microbial fertilizer; GP, single application of soil passivator; CMF+GP, combination of compound microbial fertilizer and soil passivator) and six winter wheat varieties (Xinhuamai818, Luomai 163, Zhengmai 9023, Xinmai 296, Zhengmai 136, and Zhengmai 7698) in northern Henan Province were set up and used in the weakly Cd-polluted alkaline farmland. The changes of available Cd in soil, Cd contents in aboveground organs of wheat plants, enrichment coefficient (BCF), transport coefficient (TF), their correlations, and winter wheat yields and its components were analyzed. 【Result】(1) In two winter wheat growing seasons (2020-2021 and 2021-2022), compared with CK, single application and equal combination application of passivation agent and compound microbial fertilizer could remarkably reduce the content of available Cd in soil. CMF+GP treatment had the best effect, which significantly and effectively reduced the available Cd content by 17.6%-22.4% in the surface soil of the roots among the six varieties. The decreased available Cd in soil was related to the changes of Cd content in the aboveground organs of winter wheat plants, and there were also some differences between the same organs of different varieties. (2) Single application of soil passivator and compound microbial fertilizer, as well as equal combined application of soil passivator and compound microbial fertilizer, could make Xinhuamai 818, Luomai 163 and Zhengmai 9023 decrease TFStem sheath-leaf, TFStem sheath-grain, increase TFStem sheath-(Spike shaft+chaff), TFLeaf-(Spike shaft+chaff), reduce BCFStem sheath and BCFLeaf, and make wheat body in order to reduce BCF Grain, the content of Cd in it shifted to panicle axis + glume. In contrast, they did not reduce TFStem sheath-Leaf and BCF Stem sheath of Xinmai 296, whereas increased BCF Stem sheath of Zhengmai 136 and Zhengmai 7698. (3) Application of passivating agents and compound microbial fertilizers in soil could comprehensively regulate the number of ears, grains per ear and 1000-kernel weight of winter wheat plants, and improve the grain yields of winter wheat. However, variance analysis on soil remediation treatment and varieties showed that the increased grain yields in their interactions was mainly due to the increased ear numbers. Under CMF+GP treatment, the grain yield of Zhengmai 136 variety was the highest among all treatments, which was 7 317.17 kg·hm-2 and 10 485.32 kg·hm-2 in two consecutive 2020-2021 and 2021-2022 winter wheat growing seasons, respectively. 【Conclusion】The application of compound microbial fertilizer and soil passivator could effectively reduce the available Cd content in the rhizosphere soil with weak alkaline and mild Cd pollution in northern Henan Province, and regulate the enrichment coefficient and transport coefficient of soil Cd in various organs of winter wheat plants. The combination treatment of compound microbial fertilizer and soil passivator with the same applied amounts was better than single treatment, which could also reduce the Cd content of winter wheat grains to the maximum extent, and significantly improve the yield of winter wheat varieties. In addition, the combination of planting modes combined with the low Cd accumulation and high yield variety Zhengmai 136 screened out, could achieve the high grain yields and safe production of winter wheat in the farmland with weak alkaline Cd pollution in northern Henan Province.

Key words: winter wheat, soil Cd contamination, soil cadmium passivator, compound microbial fertilizer, Cd enrichment coefficient, Cd transport coefficient, calcareous fluvo-aquic soil

Table 1

Soil properties before sowing"

年份
Year
处理
Treatment
pH 有机质
Organic matter
(g·kg-1)
全氮
Total N
(g·kg-1)
碱解氮
Alkaline N
(mg·kg-1)
速效钾
Available K
(mg·kg-1)
速效磷
Available P
(mg·kg-1)
2020—2021 CK 8.31 19.08 1.23 86.86 211.63 9.49
CMF 8.33 18.92 1.19 85.90 208.87 9.37
GP 8.35 18.90 1.22 85.56 211.40 9.28
CMF+GP 8.33 19.06 1.17 88.14 209.15 9.45
2021—2022 CK 8.43 15.00 0.92 74.34 182.28 7.24
CMF 8.40 15.71 0.94 75.17 201.25 7.35
GP 8.26 18.71 1.09 77.70 229.54 8.65
CMF+GP 8.35 19.36 0.97 74.24 233.13 8.64

Fig. 1

Effects of adding soil amendment and compound microbial fertilizer on the available Cd content in soil Different lowercase letters above the same group of square columns indicate significant differences between different treatments under the same variety (P<0.05)"

Table 2

Effects of adding soil amendment and compound microbial fertilizer on Cd content in aboveground vegetative organs of different winter wheat varieties during maturity (mg·kg-1)"

品种
Variety
处理
Treatment
2020—2021 2021—2022
籽粒
Grain
茎鞘
Stem sheath
叶片
Leaf
穗轴+颖壳
Spike shaft+chaff
籽粒
Grain
鑫华麦818
Xinhuamai818
CK 0.087±0.001a 0.150±0.005a 0.737±0.041a 0.135±0.013c 0.083±0.005a
CMF 0.075±0.002b 0.142±0.003b 0.650±0.045b 0.152±0.003b 0.072±0.005b
GP 0.066±0.004c 0.135±0.005b 0.610±0.041bc 0.147±0.006bc 0.062±0.004c
CMF+GP 0.062±0.003c 0.137±0.003b 0.543±0.041c 0.185±0.005a 0.059±0.003c
漯麦163
Luomai163
CK 0.076±0.002a 0.178±0.003a 0.578±0.035a 0.158±0.006c 0.072±0.004a
CMF 0.073±0.002b 0.165±0.000b 0.533±0.035ab 0.173±0.006b 0.064±0.004b
GP 0.067±0.002c 0.163±0.003b 0.477±0.033bc 0.188±0.008a 0.053±0.003c
CMF+GP 0.060±0.002d 0.155±0.005c 0.448±0.031c 0.195±0.005a 0.049±0.003c
郑麦9023
Zhengmai9023
CK 0.065±0.003a 0.185±0.005a 0.563±0.039a 0.152±0.008b 0.061±0.004a
CMF 0.061±0.004ab 0.172±0.008b 0.532±0.042ab 0.163±0.003b 0.056±0.002ab
GP 0.059±0.003b 0.168±0.003b 0.515±0.037ab 0.157±0.003b 0.053±0.003bc
CMF+GP 0.051±0.002c 0.165±0.000b 0.482±0.032b 0.215±0.010a 0.049±0.003c
鑫麦296
Xinmai296
CK 0.051±0.003a 0.163±0.003a 0.500±0.038a 0.123±0.012b 0.045±0.002a
CMF 0.051±0.005a 0.162±0.003a 0.488±0.030a 0.153±0.013a 0.044±0.002ab
GP 0.050±0.002a 0.160±0.005a 0.497±0.032a 0.145±0.009a 0.041±0.002bc
CMF+GP 0.050±0.004a 0.160±0.005a 0.475±0.035a 0.152±0.008a 0.038±0.002c
郑麦136
Zhengmai136
CK 0.054±0.002a 0.138±0.006c 0.512±0.035a 0.137±0.003c 0.048±0.003a
CMF 0.051±0.003ab 0.163±0.003b 0.460±0.028a 0.152±0.010b 0.044±0.004a
GP 0.048±0.004b 0.162±0.003b 0.393±0.021b 0.162±0.006b 0.037±0.003b
CMF+GP 0.035±0.004c 0.190±0.005a 0.347±0.027b 0.178±0.008a 0.033±0.003b
郑麦7698
Zhengmai7698
CK 0.067±0.003a 0.147±0.003c 0.577±0.037a 0.128±0.008b 0.064±0.004a
CMF 0.061±0.004b 0.155±0.005b 0.557±0.039ab 0.135±0.005b 0.059±0.003ab
GP 0.060±0.002b 0.138±0.003d 0.505±0.022bc 0.137±0.008b 0.053±0.003bc
CMF+GP 0.053±0.002c 0.162±0.003a 0.477±0.029c 0.162±0.003a 0.049±0.004c

Table 3

Correlation between Cd availability in soil and Cd content in aboveground organs of winter wheat at maturity"

品种
Variety
2020—2021 2021—2022
籽粒
Grain
茎鞘
Stem sheath
叶片
Leaf
穗轴+颖壳
Spike shaft+chaff
籽粒
Grain
鑫华麦818 Xinhuamai818 0.759** 0.594* 0.858** -0.725** 0.824**
漯麦163 Luomai163 0.750** 0.751** 0.734** -0.878** 0.720**
郑麦9023 Zhengmai9023 0.719** 0.761** 0.713** -0.620* 0.739**
鑫麦296 Xinmai296 0.106 -0.041 0.016 -0.451 0.594*
郑麦136 Zhengmai136 0.810** -0.795** 0.716** -0.822** 0.757**
郑麦7698 Zhengmai7698 0.637* -0.272 0.817** -0.729** 0.710**

Table 4

Effects of adding soil amendment and compound microbial fertilizer on Cd transport coefficients of winter wheat organs in 2021-2022 growth season"

品种
Variety
处理
Treatment
TF茎鞘—叶
TF Stem sheath—Leaf
TF茎鞘—(穗轴+颖壳)
TF Stem sheath—(Spike shaft +chaff)
TF茎鞘—籽粒
TF Stem sheath—Grain
TF叶—(穗轴+颖壳)
TF Leaf—(Spike shaft +chaff)
TF叶—籽粒
TF Leaf—Grain
鑫华麦818
Xinhuamai818
CK 4.92±0.44a 0.90±0.12c 0.55±0.04a 0.18±0.01c 0.11±0.01a
CMF 4.59±0.22ab 1.07±0.04b 0.51±0.03ab 0.23±0.02b 0.11±0.00a
GP 4.53±0.47ab 1.09±0.06b 0.46±0.02bc 0.24±0.02b 0.10±0.01a
CMF+GP 3.97±0.22b 1.35±0.02a 0.43±0.03c 0.34±0.02a 0.11±0.01a
漯麦163
Luomai163
CK 3.24±0.24a 0.89±0.03d 0.40±0.01a 0.27±0.02b 0.12±0.01a
CMF 3.23±0.21a 1.05±0.03c 0.39±0.03a 0.33±0.03b 0.12±0.02a
GP 2.92±0.17a 1.15±0.05b 0.32±0.02b 0.40±0.04a 0.11±0.01a
CMF+GP 2.90±0.27a 1.26±0.06a 0.32±0.01b 0.44±0.04a 0.11±0.01a
郑麦9023
Zhengmai9023
CK 3.04±0.15a 0.82±0.02c 0.33±0.03a 0.27±0.01b 0.11±0.01a
CMF 3.10±0.29a 0.95±0.06b 0.33±0.02a 0.31±0.02b 0.11±0.01a
GP 3.06±0.24a 0.93±0.03b 0.32±0.02a 0.31±0.02b 0.10±0.00a
CMF+GP 2.92±0.19a 1.30±0.06a 0.30±0.02a 0.45±0.05a 0.10±0.00a
鑫麦296
Xinmai296
CK 3.06±0.18a 0.76±0.08b 0.28±0.01a 0.25±0.04b 0.09±0.00a
CMF 3.02±0.19a 0.95±0.08a 0.27±0.02a 0.32±0.05a 0.09±0.01a
GP 3.11±0.21a 0.91±0.08a 0.26±0.02ab 0.29±0.02ab 0.08±0.00a
CMF+GP 2.97±0.19a 0.95±0.05a 0.24±0.02b 0.32±0.01a 0.08±0.01a
郑麦136
Zhengmai136
CK 3.70±0.26a 0.99±0.04a 0.35±0.01a 0.27±0.02d 0.09±0.01a
CMF 2.82±0.20b 0.93±0.05a 0.27±0.03b 0.33±0.04c 0.10±0.01a
GP 2.43±0.09b 1.00±0.05a 0.23±0.02c 0.41±0.04b 0.09±0.01a
CMF+GP 1.83±0.19c 0.94±0.06a 0.17±0.01d 0.51±0.02a 0.10±0.01a
郑麦7698
Zhengmai7698
CK 3.93±0.21a 0.88±0.07b 0.44±0.02a 0.22±0.03c 0.11±0.00a
CMF 3.59±0.25a 0.87±0.06b 0.38±0.03b 0.24±0.02bc 0.11±0.01a
GP 3.65±0.13a 0.99±0.04a 0.38±0.02b 0.27±0.02b 0.10±0.00a
CMF+GP 2.95±0.11b 1.00±0.05a 0.30±0.03c 0.34±0.03a 0.10±0.01a

Table 5

Cd enrichment coefficients of different winter wheat organs treated with adding soil amendment and compound microbial fertilizer"

品种
Variety
处理
Treatment
2020—2021 2021—2022
BCFGrain BCF Stem sheath BCF Leaf BCF Spike shaft+chaff BCF Grain
鑫华麦818
Xinhuamai818
CK 0.20±0.02a 0.35±0.01a 1.73±0.09a 0.32±0.03c 0.19±0.01a
CMF 0.17±0.01b 0.33±0.01ab 1.54±0.13b 0.36±0.01b 0.17±0.01b
GP 0.15±0.01c 0.32±0.01b 1.45±0.10bc 0.35±0.01bc 0.15±0.01c
CMF+GP 0.14±0.00c 0.32±0.00b 1.29±0.08c 0.44±0.01a 0.14±0.01c
漯麦163
Luomai163
CK 0.17±0.01a 0.42±0.01a 1.36±0.09a 0.37±0.02c 0.17±0.01a
CMF 0.15±0.01a 0.39±0.01b 1.26±0.10ab 0.41±0.01b 0.15±0.01b
GP 0.13±0.02b 0.39±0.01b 1.14±0.08bc 0.45±0.02a 0.13±0.01c
CMF+GP 0.12±0.01b 0.37±0.01c 1.06±0.07c 0.46±0.02a 0.12±0.01c
郑麦9023
Zhengmai9023
CK 0.14±0.01a 0.43±0.01a 1.32±0.10a 0.36±0.02c 0.14±0.01a
CMF 0.13±0.00ab 0.41±0.02b 1.26±0.12a 0.39±0.01b 0.13±0.00ab
GP 0.13±0.01bc 0.40±0.01b 1.23±0.09a 0.37±0.01bc 0.13±0.01bc
CMF+GP 0.12±0.01c 0.39±0.00b 1.14±0.07a 0.51±0.02a 0.12±0.01c
鑫麦296
Xinmai296
CK 0.10±0.00a 0.38±0.01a 1.17±0.09a 0.29±0.03b 0.11±0.01a
CMF 0.10±0.00a 0.38±0.01a 1.15±0.06a 0.36±0.03a 0.10±0.01a
GP 0.10±0.00ab 0.38±0.01a 1.18±0.08a 0.35±0.02a 0.10±0.00ab
CMF+GP 0.09±0.01b 0.38±0.01a 1.13±0.08a 0.36±0.02a 0.09±0.00b
郑麦136
Zhengmai136
CK 0.11±0.01a 0.32±0.01c 1.20±0.08a 0.32±0.01c 0.11±0.00a
CMF 0.10±0.00a 0.39±0.01b 1.09±0.07a 0.36±0.03b 0.10±0.01a
GP 0.09±0.01b 0.38±0.01b 0.94±0.05b 0.38±0.01b 0.09±0.01b
CMF+GP 0.08±0.01b 0.45±0.01a 0.82±0.07b 0.42±0.02a 0.08±0.01b
郑麦7698
Zhengmai7698
CK 0.15±0.00a 0.34±0.01b 1.35±0.09a 0.30±0.02b 0.15±0.01a
CMF 0.14±0.00a 0.37±0.02a 1.32±0.10a 0.32±0.01b 0.14±0.01ab
GP 0.13±0.01b 0.33±0.01b 1.20±0.05ab 0.33±0.02b 0.13±0.01bc
CMF+GP 0.12±0.01b 0.38±0.01a 1.13±0.07b 0.38±0.01a 0.12±0.01c

Table 6

Effects of adding soil amendment and compound microbial fertilizer on yield and its components of different winter wheat varieties"

品种
Variety
处理
Treatment
2020—2021 2021—2022
穗数
Panicle number
(×104·hm-²)
每穗粒数
Grain
number per panicle
千粒重
Thousand seed weight
(g)
产量
Production
(kg·hm-²)
穗数
Panicle number
(×104·hm-²)
每穗粒数
Grain
number per panicle
千粒重
Thousand seed weight
(g)
产量
Production
(kg·hm-²)
鑫华麦818
Xinhuamai
818
CK 508.79±21.14bc 36.10±0.72b 53.93±1.12b 5298.94±416.65b 503.03±14.71b 37.07±2.28b 54.95±1.46b 8572.60±113.65b
CMF 537.48±11.69ab 37.30±1.10ab 55.00±1.47ab 6128.37±395.29ab 576.68±9.11a 37.07±1.86b 54.41±0.56b 9163.55±241.74ab
GP 490.99±19.86c 37.77±1.27ab 56.91±1.17a 6107.65±423.72ab 499.32±29.72b 38.00±2.52ab 56.72±0.43a 9064.40±580.94ab
CMF+GP 559.71±10.95a 38.07±0.69a 54.80±0.49ab 6738.40±721.59a 606.78±29.98a 41.83±1.46a 54.38±0.70b 9478.14±347.51a
漯麦163
Luomai163
CK 522.14±18.38b 38.07±0.87b 52.73±3.59a 5602.66±316.37b 551.20±22.46b 36.40±0.87b 52.33±0.37b 8794.56±71.71b
CMF 542.86±21.74ab 39.50±0.80ab 52.31±1.73a 6333.21±491.21ab 563.34±19.05b 36.37±1.07b 54.05±0.85a 8980.99±166.44ab
GP 550.66±13.74ab 38.90±1.48b 54.36±1.13a 6210.24±133.93ab 532.34±6.54b 39.33±1.11a 53.66±0.61a 9072.99±339.61ab
CMF+GP 566.37±8.34a 41.60±1.65a 54.23±2.52a 6492.01±442.85a 605.86±14.84a 38.50±1.82ab 53.37±0.69ab 9207.71±122.17a
郑麦9023
Zhengmai
9023
CK 597.52±7.66a 31.90±1.61c 47.54±1.94a 5950.55±186.73b 597.98±10.74a 33.10±2.20b 46.66±0.81ab 7888.57±216.49c
CMF 529.89±9.14c 33.57±1.34bc 47.13±0.96a 6026.10±269.08b 547.81±8.06b 32.93±2.39b 47.63±0.41a 8022.13±299.07b
GP 556.59±18.37b 36.43±0.58ab 48.16±0.99a 5966.17±132.58b 533.64±5.49b 38.73±1.06a 46.44±0.53ab 8290.62±102.71ab
CMF+GP 600.30±12.83a 38.87±2.95a 47.17±1.30a 6585.64±254.25a 593.98±34.93a 41.10±0.69a 46.32±0.73b 8593.06±69.49a
鑫麦296
Xinmai296
CK 503.97±22.74a 38.10±0.79c 46.45±1.35a 5874.47±222.72b 497.06±24.94b 39.83±2.51b 50.35±0.63b 8561.69±43.85b
CMF 529.14±20.54a 40.30±1.08b 50.25±0.77a 6201.75±163.25ab 549.80±16.50a 41.07±2.08ab 53.18±0.99a 8981.82±396.62ab
GP 509.43±23.68a 42.40±1.25a 47.16±0.55a 6140.01±362.76ab 514.20±24.73ab 43.60±2.03ab 51.86±0.13a 8721.47±270.45ab
CMF+GP 547.50±24.19a 43.13±0.83a 46.46±3.57a 6482.81±175.82a 540.97±13.82a 44.20±1.59a 50.07±1.02b 9098.81±211.36a
郑麦136
Zhengmai
136
CK 551.20±6.29b 38.13±1.72b 50.25±0.19b 5892.27±228.42b 556.43±13.93b 41.47±0.75bc 51.43±1.42b 8519.87±500.45c
CMF 575.25±18.64ab 41.57±1.40a 55.37±1.12a 6302.90±532.89b 614.20±12.42a 40.83±0.50c 53.76±0.30a 9335.06±428.40b
GP 548.42±16.73b 42.10±0.87a 54.64±0.78a 6027.40±383.89b 558.54±22.94b 42.77±1.23ab 52.28±0.75ab 9636.43±178.42b
CMF+GP 594.73±16.55a 43.53±2.40a 53.70±1.63a 7301.17±101.58a 593.41±23.62ab 43.47±0.93a 52.02±0.27b 10485.32±499.39a
郑麦7698
Zhengmai
7698
CK 509.51±30.88a 39.27±0.78b 51.86±0.26a 6230.89±138.96b 492.22±25.07c 42.17±2.84a 53.78±0.41ab 9256.76±176.07b
CMF 513.22±35.24a 40.77±0.15ab 53.39±0.68a 6614.36±262.32ab 571.58±11.28ab 41.47±0.38a 54.87±0.70a 9653.13±298.49ab
GP 506.73±24.22a 41.80±1.91a 51.94±0.27a 6535.67±356.49ab 517.16±39.68bc 42.97±0.51a 52.56±0.69b 9497.88±503.81ab
CMF+GP 522.48±15.87a 42.30±0.46a 52.74±1.67a 6793.83±304.45a 582.14±42.21a 42.80±3.86a 53.69±1.65ab 9920.84±137.63a
品种 Variety ** ** ** * ** ** ** **
土壤修复材料
Soil remediation materials
** ** ** ** ** ** ** **
品种×土壤修复材料
Variety×Soil remediation materials
** NS NS * ** NS NS *
[1]
全国土壤污染状况调查公报. 中国环保产业, 2014(5): 10-11.
Bulletin on the investigation of soil pollution in China. China Environmental Protection Industry, 2014(5): 10-11. (in Chinese)
[2]
王永强, 蔡信德, 肖立中. 多金属污染农田土壤固化/稳定化修复研究进展. 广西农业科学, 2009, 40(7): 881-888.
WANG Y Q, CAI X D, XIAO L Z. Advances in immobilization/ stabilization remediation in situ for heavy metal contaminated farmland soils. Guangxi Agricultural Sciences, 2009, 40(7): 881-888 (in Chinese)
[3]
HAMID Y, TANG L, SOHAIL M I, CAO X R, HUSSAIN B, AZIZ M Z, USMAN M, HE Z L, YANG X E. An explanation of soil amendments to reduce cadmium phytoavailability and transfer to food chain. Science of the Total Environment, 2019, 660: 80-96.

doi: 10.1016/j.scitotenv.2018.12.419
[4]
周亮, 肖峰, 肖欢, 张玉盛, 敖和军. 施用石灰降低污染稻田上双季稻镉积累的效果. 中国农业科学, 2021, 54(4): 780-791. doi: 10.3864/j.issn.0578-1752.2021.04.010.
ZHOU L, XIAO F, XIAO H, ZHANG Y S, AO H J. Effects of lime on cadmium accumulation of double-season rice in paddy fields with different cadmium pollution degrees. Scientia Agricultura Sinica, 2021, 54(4): 780-791. doi: 10.3864/j.issn.0578-1752.2021.04.010. (in Chinese)
[5]
CLEMENTE R, WALKER D J, ROIG A, BERNAL M P. Heavy metal bioavailability in a soil affected by mineral sulphides contamination following the mine spillage at Aznalcóllar (Spain). Biodegradation, 2003, 14(3): 199-205.

pmid: 12889610
[6]
雍莹莹, 徐应明, 黄青青, 梁学峰, 孙约兵, 王林, 秦旭, 赵立杰. 巯基坡缕石-硫酸锰复配对碱性土壤镉污染钝化阻控效应. 农业环境科学学报, 2021, 40(12): 2681-2692
YONG Y Y, XU Y M, HUANG Q Q, LIANG X F, SUN Y B, WANG L, QIN X, ZHAO L J. Immobilization effect of mercaptopalygorskite and manganese sulfate on Cd pollution in alkaline soil. Journal of Agro-Environment Science, 2021, 40(12): 2681-2692. (in Chinese)
[7]
何丽质, 徐应明, 宋常志, 吴义茜, 黄青青, 梁学峰. 巯基化坡缕石对碱性土壤镉污染的快速钝化修复效应. 农业环境科学学报, 2021, 40(2): 319-328.
HE L Z, XU Y M, SONG C Z, WU Y Q, HUANG Q Q, LIANG X F. Using thiolated palygorskite to remediate Cd-contaminated alkaline soil via rapid immobilization. Journal of Agro-Environment Science, 2021, 40(2): 319-328. (in Chinese)
[8]
冯光辉, 谷雨, 何凤鹏, 吴海勇, 刘琼峰, 李明德. 土壤调理剂和复合微生物肥对农田土壤和水稻镉、铅的影响. 湖南农业科学, 2017(3): 27-30, 34.
FENG G H, GU Y, HE F P, WU H Y, LIU Q F, LI M D. Effects of soil conditioners and compound microbial fertilizers on Cd and Pb in farmland soil and rice. Hunan Agricultural Sciences, 2017(3): 27-30, 34. (in Chinese)
[9]
孙雪晴, 张雪洁, 沈一平, 黄甜甜, 郭一飞. 氨基酸、多肽脱除重金属研究进展. 药学研究, 2021, 40(2): 115-118.
SUN X Q, ZHANG X J, SHEN Y P, HUANG T T, GUO Y F. Research progress in removal of heavy metals from amino acid and peptide materials. Journal of Pharmaceutical Research, 2021, 40(2): 115-118. (in Chinese)
[10]
SAKAMOTO S, KAWASE Y. Adsorption capacities of poly-γ- glutamic acid and its sodium salt for cesium removal from radioactive wastewaters. Journal of Environmental Radioactivity, 2016, 165: 151-158.

doi: 10.1016/j.jenvrad.2016.10.004
[11]
YANG Z H, DONG C D, CHEN C W, SHEU Y T, KAO C M. Using poly-glutamic acid as soil-washing agent to remediate heavy metal-contaminated soils. Environmental Science and Pollution Research, 2018, 25(6): 5231-5242.

doi: 10.1007/s11356-017-9235-7
[12]
陈亮妹, 于倩倩, 胡兆云, 王成雨, 李江遐, 叶文玲, 吴林春, 崔俊义, 马友华. 小麦品种与生物有机肥联合修复农田镉污染研究. 麦类作物学报, 2017, 37(12): 1627-1633.
CHEN L M, YU Q Q, HU Z Y, WANG C Y, LI J X, YE W L, WU L C, CUI J Y, MA Y H. Study on wheat varieties and bio-organic fertilizer in remediation of cadmium polluted farmland. Journal of Triticeae Crops, 2017, 37(12): 1627-1633. (in Chinese)
[13]
陈友民, 周卫军, 周雨舟, 罗思颖, 曹胜, 曹宁秋. 复合微生物有机肥在晚稻生产中的降镉效果. 湖南农业科学, 2017(3): 35-37, 41
CHEN Y M, ZHOU W J, ZHOU Y Z, LUO S Y, CAO S, CAO N Q. Effects of decrease cadmium after application compound microbial organic fertilizer in late rice. Hunan Agricultural Sciences, 2017(3): 35-37, 41. (in Chinese)
[14]
季书勤, 郭瑞, 王汉芳, 张德奇, 赵淑章, 许令超. 河南省主要小麦品种重金属污染评价及镉吸收规律研究. 麦类作物学报, 2006, 26(6): 154-157.
JI S Q, GUO R, WANG H F, ZHANG D Q, ZHAO S Z, XU L C. Estimate of pollution by heavy metals on wheat in Henan and the rule of cadmium absorption in wheat. Journal of Triticeae Crops, 2006, 26(6): 154-157. (in Chinese)
[15]
明毅, 张锡洲, 余海英. 小麦籽粒镉积累差异评价. 中国农业科学, 2018, 51(22): 4219-4229. doi: 10.3864/j.issn.0578-1752.2018.22.001.
MING Y, ZHANG X Z, YU H Y. The evaluation of Cd accumulation in grains of different wheat materials. Scientia Agricultura Sinica, 2018, 51(22): 4219-4229. doi: 10.3864/j.issn.0578-1752.2018.22.001. (in Chinese)
[16]
巩龙达, 陈凯, 李丹, 蔡梅, 王京文, 张奇春. 复合钝化剂施用水平对镉污染农田土壤的修复效果. 浙江大学学报(农业与生命科学版), 2022, 48(3): 359-368.
GONG L D, CHEN K, LI D, CAI M, WANG J W, ZHANG Q C. Remediation effects of mixed amendment at different application levels on cadmium-contaminated farmland soil. Journal of Zhejiang University (Agriculture & Life Sciences), 2022, 48(3): 359-368. (in Chinese)
[17]
YONG Y Y, XU Y M, HUANG Q Q, SUN Y B, WANG L, LIANG X F, QIN X, ZHAO L J. Remediation effect of mercapto-palygorskite combined with manganese sulfate on cadmium contaminated alkaline soil and cadmium accumulation in pak choi (Brassica chinensis L.). Science of the Total Environment, 2022, 813: 152636.

doi: 10.1016/j.scitotenv.2021.152636
[18]
WANG Y L, XU Y M, LIANG X F, SUN Y B, HUANG Q Q, PENG Y Y. Leaching behavior and efficiency of cadmium in alkaline soil by adding two novel immobilization materials. The Science of the Total Environment, 2020, 710: 135964.

doi: 10.1016/j.scitotenv.2019.135964
[19]
孙彤, 付宇童, 李可, 徐应明, 孙约兵. 锰基改性生物炭对弱碱性Cd污染土壤团聚体结构以及Cd含量特征的影响. 环境科学, 2020, 41(7): 3426-3433.
SUN T, FU Y T, LI K, XU Y M, SUN Y B. Effect of Mn-modified biochar on the characteristics of aggregate structure and the content of Cd in weakly alkaline Cd-contaminated soil. Environmental Science, 2020, 41(7): 3426-3433. (in Chinese)
[20]
裴楠, 梁学峰, 秦旭, 赵立杰, 黄青青, 徐应明, 孙约兵. 海泡石对镉污染稻田钝化修复效果的稳定性. 农业环境科学学报, 2022, 41(2): 277-284.
PEI N, LIANG X F, QIN X, ZHAO L J, HUANG Q Q, XU Y M, SUN Y B. Remediation and persistent stability effects of sepiolite on cadmium-contaminated paddy soil. Journal of Agricultural Resources and Environment, 2022, 41(2): 277-284. (in Chinese)
[21]
吴义茜, 宋常志, 徐应明, 黄青青, 孙国红, 梁学峰. 巯基化凹凸棒石对水稻土中镉钝化效应的动态变化特征. 环境科学学报, 2021, 41(9): 3792-3802.
WU Y Q, SONG C Z, XU Y M, HUANG Q Q, SUN G H, LIANG X F. Dynamic characteristic of the immobilization effect of thiolated attapulgite on cadmium in paddy soil. Acta Scientiae Circumstantiae, 2021, 41(9): 3792-3802. (in Chinese)
[22]
王金凤, 王壮壮, 谷丰序, 牟海萌, 王宇, 段剑钊, 冯伟, 王永华, 郭天财. 氮密调控对两个冬小麦品种碳氮代谢及产量的影响. 中国农业科学, 2021, 54(19): 4070-4083. doi: 10.3864/j.issn.0578-1752.
2021.19.004.
WANG J F, WANG Z Z, GU F X, MOU H M, WANG Y, DUAN J Z, FENG W, WANG Y H, GUO T C. Effects of nitrogen fertilizer and plant density on carbon metabolism, nitrogen metabolism and grain yield of two winter wheat varieties. Scientia Agricultura Sinica, 2021, 54(19): 4070-4083. doi: 10.3864/j.issn.0578-1752.2021.19.004. (in Chinese)
[23]
李超, 艾绍英, 唐明灯, 李林峰, 王艳红, 李义纯. 矿物调理剂对稻田土壤镉形态和水稻镉吸收的影响. 中国农业科学, 2018, 51(11): 2143-2154. doi: 10.3864/j.issn.0578-1752.2018.11.012.
LI C, AI S Y, TANG M D, LI L F, WANG Y H, LI Y C. Effects of a mineral conditioner on the forms of Cd in paddy soil and Cd uptake by rice. Scientia Agricultura Sinica, 2018, 51(11): 2143-2154. doi: 10.3864/j.issn.0578-1752.2018.11.012. (in Chinese)
[24]
彭鸥, 刘玉玲, 铁柏清, 叶长城, 张淼, 李园星露, 周俊驰, 许蒙, 张燕, 龙涌. 调理剂及农艺措施对污染稻田中水稻吸收镉的影响. 中国农业科学, 2020, 53(3): 574-584. doi: 10.3864/j.issn.0578-1752.2020.03.010.
PENG O, LIU Y L, TIE B Q, YE C C, ZHANG M, LI Y X L, ZHOU J C, XU M, ZHANG Y, LONG Y. Effects of conditioning agents and agronomic measures on cadmium uptake by rice in polluted rice fields. Scientia Agricultura Sinica, 2020, 53(3): 574-584. doi: 10.3864/j.issn.0578-1752.2020.03.010. (in Chinese)
[25]
LI X Z, YU H, SUN X W, YANG J T, WANG D C, SHEN L F, PAN Y S, WU Y C, WANG Q, ZHAO Y. Effects of sulfur application on cadmium bioaccumulation in tobacco and its possible mechanisms of rhizospheric microorganisms. Journal of Hazardous Materials, 2019, 368: 308-315.

doi: S0304-3894(18)31248-2 pmid: 30685719
[26]
段海芹, 秦秦, 吕卫光, 薛永, 孙丽娟, 宋科. 有机肥长期施用对设施土壤全镉和有效态镉含量的影响. 土壤学报, 2021, 58(6): 1486-1495.,
DUAN H Q, QIN Q, W G, XUE Y, SUN L J, SONG K. Effects of long-term application of organic manure on contents of total and available cadmium in greenhouse soil. Acta Pedologica Sinica, 2021, 58(6): 1486-1495. (in Chinese)
[27]
崔红标, 范玉超, 周静, 时玉, 徐磊, 郭学涛, 胡友彪, 高良敏. 改良剂对土壤铜镉有效性和微生物群落结构的影响. 中国环境科学, 2016, 36(1): 197-205.
CUI H B, FAN Y C, ZHOU J, SHI Y, XU L, GUO X T, HU Y B, GAO L M. Availability of soil Cu and Cd and microbial community structureas affected by applications of amendments. China Environmental Science, 2016, 36(1): 197-205. (in Chinese)
[28]
黎大荣, 吴丽香, 宁晓君, 冯增赟, 王英辉, 陈建华. 不同钝化剂对土壤有效态铅和镉含量的影响. 环境保护科学, 2013, 39(3): 46-49.
LI D R, WU L X, NING X J, FENG Z Y, WANG Y H, CHEN J H. Effects of different passivating agents on contents of available lead and cadmium in soil. Environmental Protection Science, 2013, 39(3): 46-49. (in Chinese)
[29]
崔俊义, 马友华, 陈亮妹, 吴林春, 杨梦丽, 岳蛟, 何海兵, 李丁, 周自强. 原位钝化-低积累品种联合修复镉污染农田研究. 环境科学与技术, 2018, 41(7): 77-83.
CUI J Y, MA Y H, CHEN L M, WU L C, YANG M L, YUE J, HE H B, LI D, ZHOU Z Q. Study on phytoremediation of cadmium contaminated farmland by in situ inactivation and plant inhibition. Environmental Science & Technology, 2018, 41(7): 77-83. (in Chinese)
[30]
肖亚涛, 吴海卿, 李中阳, 樊向阳, 赵志娟, 吴大付, 任秀娟. 不同基因型冬小麦镉累积的器官差异及生产适用性研究. 灌溉排水学报, 2016, 35(9): 61-64.
XIAO Y T, WU H Q, LI Z Y, FAN X Y, ZHAO Z J, WU D F, REN X J. Difference of cadmium accumulation in organs and production suitability by different winter wheat genotypes. Journal of Irrigation and Drainage, 2016, 35(9): 61-64. (in Chinese)
[31]
WANG Y L, XU Y M, LIANG X F, SUN Y B, HUANG Q Q, QIN X, ZHAO L J. Effects of mercapto-palygorskite on Cd distribution in soil aggregates and Cd accumulation by wheat in Cd contaminated alkaline soil. Chemosphere, 2021, 271: 129590.

doi: 10.1016/j.chemosphere.2021.129590
[32]
张静静, 朱爽阁, 朱利楠, 柳海涛, 杨金康, 化党领. 不同钝化剂对微碱性土壤镉、镍形态及小麦吸收的影响. 环境科学, 2020, 41(1): 460-468.
ZHANG J J, ZHU S G, ZHU L N, LIU H T, YANG J K, HUA D L. Effects of different amendments on fractions and uptake by winter wheat in slightly alkaline soil contaminated by cadmium and nickel. Environmental Science, 2020, 41(1): 460-468. (in Chinese)
[33]
HUANG Q Q, WANG Y L, QIN X, ZHAO L J, LIANG X F, SUN Y B, XU Y M. Soil application of manganese sulfate effectively reduces Cd bioavailability in Cd-contaminated soil and Cd translocation and accumulation in wheat. Science of the Total Environment, 2022, 814: 152765.

doi: 10.1016/j.scitotenv.2021.152765
[34]
井永苹, 聂岩, 李彦, 康馨, 黄现民, 赵瑞君, 仲子文. 山东偏酸性棕壤区小麦镉低累积品种筛选. 农业环境科学学报, 2023, 42(6): 1238-1246.
JING Y P, NIE Y, LI Y, KANG X, HUANG X M, ZHAO R J, ZHONG Z W. Low-cadmium accumulation wheat varieties preparation in acid brown soil region of Shandong Province. Journal of Agro-Environment Science, 2023, 42(6): 1238-1246. (in Chinese)
[35]
牟力. 不同钝化剂组合对稻田土壤重金属镉有效性的影响[D]. 贵阳: 贵州大学, 2018.
MU L. The effects of different passivants combinations on cadmium bioavailability in paddy soils[D]. Guiyang: Guizhou University, 2018. (in Chinese)
[36]
朱志勇, 李友军, 郝玉芬, 蒋瑞婕, 刘晓红, 刘露露, 张晓雯. 镉对小麦 (Triticum aestivum) 干物质积累、转移及籽粒产量的影响. 农业环境科学学报, 2012, 31(2): 252-258.
ZHU Z Y, LI Y J, HAO Y F, JIANG R J, LIU X H, LIU L L, ZHANG X W. Effects of Cd on accumulations and translocation of biomasses and yield of different wheat (Triticum aestivum) cultivars. Journal of Agro-Environment Science, 2012, 31(2): 252-258. (in Chinese)
[37]
张运红, 和爱玲, 杨占平, 郑春风, 张洁梅, 杜君, 骆晓声, 潘晓莹, 薛毅芳. 土壤改良剂对镉污染土壤小麦抗性、光合特性及产量的影响. 河南农业科学, 2018, 47(12): 57-63.
ZHANG Y H, HE A L, YANG Z P, ZHENG C F, ZHANG J M, DU J, LUO X S, PAN X Y, XUE Y F. Effects of soil amendments on resistance, photosynthetic characteristics and yield of wheat in cadmium-contaminated soils. Journal of Henan Agricultural Sciences, 2018, 47(12): 57-63. (in Chinese)
[38]
LWIN C S, LEE M N, KIM Y N, OWENS G, KIM K R. Evaluation of immobilizing agents as soil quality conditioners in addition to their metal(loid) immobilizing effect. Pedosphere, 2022, 32(2): 307-316.

doi: 10.1016/S1002-0160(21)60075-9
[1] WEI YongKang, YANG TianCong, ZANG ShaoLong, HE Li, DUAN JianZhao, XIE YingXin, WANG ChenYang, FENG Wei. Monitoring Wheat Lodging Based on UAV Multi-Spectral Image Feature Fusion [J]. Scientia Agricultura Sinica, 2023, 56(9): 1670-1685.
[2] MA ShengLan, KUANG FuHong, LIN HongYu, CUI JunFang, TANG JiaLiang, ZHU Bo, PU QuanBo. Effects of Straw Incorporation Quantity on Soil Physical Characteristics of Winter Wheat-Summer Maize Rotation System in the Central Hilly Area of Sichuan Basin [J]. Scientia Agricultura Sinica, 2023, 56(7): 1344-1358.
[3] CHANG ChunYi, CAO Yuan, GHULAM Mustafa, LIU HongYan, ZHANG Yu, TANG Liang, LIU Bing, ZHU Yan, YAO Xia, CAO WeiXing, LIU LeiLei. Effects of Powdery Mildew on Photosynthetic Characteristics and Quantitative Simulation of Disease Severity in Winter Wheat [J]. Scientia Agricultura Sinica, 2023, 56(6): 1061-1073.
[4] WANG XiaoXuan, ZHANG Min, ZHANG XinYao, WEI Peng, CHAI RuShan, ZHANG ChaoChun, ZHANG LiangLiang, LUO LaiChao, GAO HongJian. Effects of Different Varieties of Phosphate Fertilizer Application on Soil Phosphorus Transformation and Phosphorus Uptake and Utilization of Winter Wheat [J]. Scientia Agricultura Sinica, 2023, 56(6): 1113-1126.
[5] GUO Yan, JING YuHang, WANG LaiGang, HUANG JingYi, HE Jia, FENG Wei, ZHENG GuoQing. UAV Multispectral Image-Based Nitrogen Content Prediction and the Transferability Analysis of the Models in Winter Wheat Plant [J]. Scientia Agricultura Sinica, 2023, 56(5): 850-865.
[6] GAO ChenKai, LIU ShuiMiao, LI YuMing, WU PengNian, WANG YanLi, LIU ChangShuo, QIAO YiBo, GUAN XiaoKang, WANG TongChao, WEN PengFei. Prediction of Water Content of Winter Wheat Plant Based on Comprehensive Index Synergetic Optimization [J]. Scientia Agricultura Sinica, 2023, 56(22): 4403-4416.
[7] AI DaiLong, LEI Fang, ZOU QiaoSheng, HE Peng, YANG HongKun, FAN GaoQiong. Effects of Straw Mulching and Nitrogen Application on the Improvement of Wheat Root Architecture and the Absorption and Utilization of H+ and NO3- in Hilly Dry Land [J]. Scientia Agricultura Sinica, 2023, 56(21): 4192-4207.
[8] SHI XinRui, HAN BaiShu, WANG ZiQian, ZHANG YuanLing, LI Ping, ZONG YuZheng, ZHANG DongSheng, GAO ZhiQiang, HAO XingYu. Investigation on the Effects of Climate Change on the Growth and Yield of Different Maturity Winter Wheat Varieties in Northern China Based on the APSIM Model [J]. Scientia Agricultura Sinica, 2023, 56(19): 3772-3787.
[9] LIN JiangYun, YIN BenSu, WANG XingShu, LIU ChenRui, SUN Qing, XIE XingXing, CHENG LingLing, SUN LiWei, SHI Mei, WANG ZhaoHui. The Accumulation of Iron and Manganese in Wheat and Its Relationship with Soil Nutrients Under Long-Term Application of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(17): 3372-3382.
[10] MU HaiMeng, SUN LiFang, WANG ZhuangZhuang, WANG Yu, SONG YiFan, ZHANG Rong, DUAN JianZhao, XIE YingXin, KANG GuoZhang, WANG YongHua, GUO TianCai. Effect of Nitrogen Application Rate and Planting Density on the Lodging Resistance and Grain Yield of Two Winter Wheat Varieties [J]. Scientia Agricultura Sinica, 2023, 56(15): 2863-2879.
[11] DONG YiFan, REN Yi, CHENG YuKun, WANG Rui, ZHANG ZhiHui, SHI XiaoLei, GENG HongWei. Genome-Wide Association Study of Grain Main Quality Related Traits in Winter Wheat [J]. Scientia Agricultura Sinica, 2023, 56(11): 2047-2063.
[12] LÜ LiHua, HAN JiangWei, ZHANG JingTing, DONG ZhiQiang, MENG Jian, JIA XiuLing. Analysis of Common Characteristics of Widely Adaptation Wheat Cultivars [J]. Scientia Agricultura Sinica, 2023, 56(11): 2064-2077.
[13] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
[14] YI YingJie, HAN Kun, ZHAO Bin, LIU GuoLi, LIN DianXu, CHEN GuoQiang, REN Hao, ZHANG JiWang, REN BaiZhao, LIU Peng. The Comparison of Ammonia Volatilization Loss in Winter Wheat- Summer Maize Rotation System with Long-Term Different Fertilization Measures [J]. Scientia Agricultura Sinica, 2022, 55(23): 4600-4613.
[15] LIU Feng,JIANG JiaLi,ZHOU Qin,CAI Jian,WANG Xiao,HUANG Mei,ZHONG YingXin,DAI TingBo,CAO WeiXing,JIANG Dong. Analysis of American Soft Wheat Grain Quality and Its Suitability Evaluation According to Chinese Weak Gluten Wheat Standard [J]. Scientia Agricultura Sinica, 2022, 55(19): 3723-3737.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!