Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (13): 2563-2573.doi: 10.3864/j.issn.0578-1752.2023.13.010

• HORTICULTURE • Previous Articles     Next Articles

Response Characteristics of Rhizosphere and Root Endosphere Bacteria and Rhizosphere Enzyme Activities to Soil Compaction Stress in Young Apple Tree

LI JiaQi(), XUN Mi, SHI JunYuan, SONG JianFei, SHI YuJia, ZHANG WeiWei, YANG HongQiang()   

  1. College of Horticulture Science and Engineering, Shandong Agricultural University/State Key Laboratory of Crop Biology, Tai’an 271018, Shandong
  • Received:2022-09-08 Accepted:2023-02-13 Online:2023-07-01 Published:2023-07-06
  • Contact: YANG HongQiang

Abstract:

【Objective】The aim of this study was to identify the main factors causing bacterial abundance changed in the apple roots microenvironment under compaction stress, so as to provide a reference for further revealing the biological characteristics of apple rhizosphere and orchard soil management under soil stress.【Method】The experimental materials were potted young apple (Malus domestica Borkh.cv. Red Fuji) tree with the rootstocks of Malus hupehensis Rehd. and Malus robusta Rehd., respectively. After pressing the potted soil to form compaction stress, the rhizosphere mineral nutrient content, soil enzyme activity and the bacterial abundance of rhizosphere and root endosphere were measured.【Result】In both M. huphensis and M. robusta, the soil compaction stress significantly increased rhizosphere available phosphorus content, available potassium content and catalase activity, however, significantly decreased rhizosphere alkaline-hydrolyzed nitrogen content, sucrase activity, urease activity, acid phosphatase activity and root endosphere bacterial abundance. Furthermore, the soil compaction stress also changed the composition and structure of rhizosphere microorganisms. Under soil compaction stress, the amount and abundance of rhizosphere bacterial and the activity of fluorescein diacetate (FDA) hydrolase changed with different rootstocks; however, which were significantly decreased in Red Fuji/M. hupehensis, with the reduction rates were 46.88%, 50.50% and 29.13%, respectively, and significantly increased in Red Fuji/M. robusta, with the increases were 51.41%, 20.22% and 13.76%, respectively. In compacted soil, rhizosphere alkali- hydrolyzed nitrogen content, hydrolase (sucrase, urease, acid phosphatase) activities and the bacterial abundance of root endosphere in Red Fuji/M. hupehensis decreased more than that in Red Fuji/M. robusta. Compared with Red Fuji/M. hupehensis, Red Fuji/M. robusta had stronger FDA hydrolase activity and recruited more rhizosphere bacteria. Redundancy analysis showed that rhizosphere available potassium, alkali-hydrolyzed nitrogen, and FDA hydrolase activities had the highest explanatory rate for variation of bacterial abundance in rhizosphere and root endosphere of apple under soil compaction stress.【Conclusion】The soil compaction stress significantly affected rhizosphere microbial composition, then changed soil enzyme activity and mineral nutrient content in apple rhizosphere. Rhizosphere bacteria and FDA hydrolase activity were different with rootstock, and highly inhibited by soil compaction stress in Red Fuji/M. hupehensis. Under soil compaction stress, the content of rhizosphere available potassium and alkali-hydrolyzed nitrogen, and the activity of rhizosphere FDA hydrolase were more closely related to the abundance of rhizosphere and root endosphere bacteria.

Key words: soil compaction, apple rootstock, rhizosphere, soil enzymes, root endosphere bacteria

Table 1

Soil physical properties of apple root zone under compaction stress"

土壤物理性状
Soil physical property
红富士/平邑甜茶 Red Fuji/Malus hupehensis 红富士/八棱海棠 Red Fuji/Malus robusta
正常土壤
Normal soil
紧实土壤
Compacted soil
正常土壤
Normal soil
紧实土壤
Compacted soil
土壤容重 Soil bulk density (g∙cm-3) 1.18±0.02b 1.67±0.06a 1.16±0.08b 1.64±0.03a
土壤孔隙度SP Soil porosity (%) 55.18±0.01a 36.75±0.02b 56.06±0.03a 37.98±0.01b
氧气浓度O2 Oxygen concentration (%) 19.50±0.30a 13.86±0.20c 19.28±0.22a 15.16±0.15b

Fig. 1

Rhizosphere mineral nutrient content of apple under soil compaction stress Mh: Red Fuji/Malus hupehensis; Mr: Red Fuji/Malus robusta. Cs: Compacted soil; Ns: Normal soil. Different lowercase letters indicate significant difference (P<0.05). The same as below"

Fig. 2

Enzyme activities of apple rootstock rhizosphere soil under compaction stress"

Table 2

Composition and structure of rhizosphere microbial community in apple under soil compaction stress"

微生物群落组成结构
Microbial community composition structure
红富士/平邑甜茶 Red Fuji/Malus hupehensis 红富士/八棱海棠 Red Fuji/Malus robusta
正常土壤
Normal soil
紧实土壤
Compacted soil
正常土壤
Normal soil
紧实土壤
Compacted soil
细菌数Bacteria amount (×105 CFU/g) 32.00±2.65a 17.00±1.73b 11.67±0.58c 17.67±2.00b
真菌数Fungi amount (×103 CFU/g) 13.33±1.53b 6.33±1.15d 15.33±0.58a 8.33±0.58c
放线菌数Actinomyces amount (×104 CFU/g) 29.00±3.61c 38.00±2.00b 31.67±1.53c 52.00±2.65a
细菌数/真菌数(B/F)Ratio of bacteria to fungi 240.60±8.54b 271.43±14.74a 74.03±5.66d 212.96±14.30c
放线菌数/真菌数(A/F)Ratio of actinomyces to fungi 22.13±5.07b 61.52±12.85a 20.69±1.72b 62.64±6.04a

Fig. 3

The logarithm of 16S rRNA gene copy number of apple rhizosphere bacteria (A) bacteria in the root (B) under soil compaction stress"

Table 3

Correlation coefficients between rhizosphere and endosphere bacterial abundance with soil physicochemical properties and rhizosphere enzyme activities in Red Fuji/M. hupehensis"

细菌丰度
Bacterial
abundance
土壤物理性状
Soil physical property
根际矿质养分含量
Rhizosphere nutrient content
根际酶活性
Rhizosphere enzyme activity
SBD SP O2 TN TP TK AN AP AK CAT SAC URE ACP FDA
根际细菌Rh_16s -0.940** 0.941** 0.936** 0.195 0.206 0.754 0.925** -0.953** -0.880* -0.834* 0.908* 0.953** 0.947** 0.946**
根内细菌En_16s -0.973** 0.978** 0.985** 0.399 0.055 0.886* 0.962** -0.986** -0.953** -0.811 0.972** 0.994** 0.991** 0.976**

Table 4

Correlation coefficients between rhizosphere and endosphere bacterial abundance with soil physicochemical properties and rhizosphere enzyme activities in Red Fuji/M. robusta"

细菌丰度
Bacterial abundance
土壤物理性状
Soil physical properties
根际矿质养分含量
Rhizosphere nutrient content
根际酶活
Rhizosphere enzyme activity
SBD SP O2 TN TP TK AN AP AK CAT SAC URE ACP FDA
根际细菌Rh_16s 0.925** -0.928** -0.947** -0.305 0.006 0.532 -0.884* 0.951** 0.952** 0.896* -0.979** -0.918** -0.878* 0.979**
根内细菌En_16s -0.953** 0.960** 0.983** 0.145 0.158 -0.554 0.933** -0.991** -0.991** -0.950** 0.956** 0.992** 0.973** -0.949**

Fig. 4

Redundancy analysis of total abundance of root endosphere and rhizosphere bacteria in apple, rhizosphere enzyme activities and physicochemical properties under soil compaction stress"

[1]
LIU H W, BRETTELL L E, QIU Z G, SINGH B K. Microbiome- mediated stress resistance in plants. Trends in Plant Science, 2020, 25(8): 733-743.

doi: 10.1016/j.tplants.2020.03.014
[2]
NAWAZ M F, BOURRIÉ G, TROLARD F. Soil compaction impact and modelling. A review. Agronomy for Sustainable Development, 2013, 33(2): 291-309.

doi: 10.1007/s13593-011-0071-8
[3]
HERMANS S M, BUCKLEY H L, CASE B S, CURRAN- COURNANE F, TAYLOR M, LEAR G. Using soil bacterial communities to predict physico-chemical variables and soil quality. Microbiome, 2020, 8(1): 79.

doi: 10.1186/s40168-020-00858-1 pmid: 32487269
[4]
HUANG G Q, KILIC A, KARADY M, ZHANG J, MEHRA P, SONG X Y, STURROCK C J, ZHU W W, QIN H, HARTMAN S, SCHNEIDER H M, BHOSALE R, DODD I C, SHARP R E, HUANG R F, MOONEY S J, LIANG W Q, BENNETT M J, ZHANG D B, PANDEY B K. Ethylene inhibits rice root elongation in compacted soil via ABA- and auxin-mediated mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(30): e2201072119.
[5]
魏彬萌, 李忠徽, 王益权. 渭北旱塬苹果园土壤紧实化现状及成因. 应用生态学报, 2021, 32(3): 976-982.

doi: 10.13287/j.1001-9332.202103.025
WEI B M, LI Z H, WANG Y Q. Status and causes of soil compaction at apple orchards in the Weibei Dry Highland, North west China. Chinese Journal of Applied Ecology, 2021, 32(3): 976-982. (in Chinese)
[6]
田孝志, 徐龙晓, 宋建飞, 荀咪, 张玮玮, 杨洪强. 土壤紧实度对不同砧木苹果幼树根系H2S及硫代谢酶的影响. 植物生理学报, 2020, 56(9): 1845-1853.
TIAN X Z, XU L X, SONG J F, XUN M, ZHANG W W, YANG H Q. Effects of soil compactness on H2S and sulfur metabolizing enzymes in root system of young apple trees with different rootstocks. Plant Physiology Journal, 2020, 56(9): 1845-1853. (in Chinese)
[7]
王群, 李潮海, 李全忠, 薛帅. 紧实胁迫对不同类型土壤玉米根系时空分布及活力的影响. 中国农业科学, 2011, 44(10): 2039-2050.

doi: 10.3864/j.issn.0578-1752.2011.10.009
WANG Q, LI C H, LI Q Z, XUE S. Effect of soil compaction on spatio-temporal distribution and activities in maize under different soil types. Scientia Agricultura Sinica, 2011, 44(10): 2039-2050. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2011.10.009
[8]
张方博, 侯玉雪, 敖园园, 申建波, 金可默. 土壤紧实胁迫下根系-土壤的相互作用. 植物营养与肥料学报, 2021, 27(3): 531-543.
ZHANG F B, HOU Y X, AO Y Y, SHEN J B, JIN K M. Root-soil interaction under soil compaction. Journal of Plant Nutrition and Fertilizers, 2021, 27(3): 531-543. (in Chinese)
[9]
CORREA J, POSTMA J A, WATT M, WOJCIECHOWSKI T. Soil compaction and the architectural plasticity of root systems. Journal of Experimental Botany, 2019, 70(21): 6019-6034.

doi: 10.1093/jxb/erz383 pmid: 31504740
[10]
PANDEY B K, HUANG G Q, BHOSALE R, HARTMAN S, STURROCK C J, JOSE L, MARTIN O C, KARADY M, VOESENEK L A C J, LJUNG K, LYNCH J P, BROWN K M, WHALLEY W R, MOONEY S J, ZHANG D B, BENNETT M J. Plant roots sense soil compaction through restricted ethylene diffusion. Science, 2021, 371(6526): 276-280.

doi: 10.1126/science.abf3013 pmid: 33446554
[11]
QU Q, ZHANG Z Y, PEIJNENBURG W J G M, LIU W Y, LU T, HU B L, CHEN J M, CHEN J, LIN Z F, QIAN H F. Rhizosphere microbiome assembly and its impact on plant growth. Journal of Agricultural and Food Chemistry, 2020, 68(18): 5024-5038.

doi: 10.1021/acs.jafc.0c00073 pmid: 32255613
[12]
朱永官, 彭静静, 韦中, 沈其荣, 张福锁. 土壤微生物组与土壤健康. 中国科学(生命科学), 2021, 51(1): 1-11.
ZHU Y G, PENG J J, WEI Z, SHEN Q R, ZHANG F S. Soil microflora and soil health. Scientia Sinica (Vitae), 2021, 51(1): 1-11. (in Chinese)
[13]
徐龙晓, 荀咪, 宋建飞, 田孝志, 殷方鹏, 黄伟男, 张玮玮, 杨洪强. 土壤质地和砧木对苹果根际微生物功能多样性及其碳源利用的影响. 园艺学报, 2020, 47(8): 1530-1540.

doi: 10.16420/j.issn.0513-353x.2020-0046
XU L X, XUN M, SONG J F, TIAN X Z, YIN F P, HUANG W N, ZHANG W W, YANG H Q. Effect of soil textures and rootstock on rhizosphere microorganism and carbon source utilization of apple roots. Acta Horticulturae Sinica, 2020, 47(8): 1530-1540. (in Chinese)

doi: 10.16420/j.issn.0513-353x.2020-0046
[14]
CAO H, JIA M F, XUN M, WANG X S, CHEN K, YANG H Q. Nitrogen transformation and microbial community structure varied in apple rhizosphere and rhizoplane soils under biochar amendment. Journal of Soils and Sediments, 2021, 21(2): 853-868.

doi: 10.1007/s11368-020-02868-w
[15]
BALDRIAN P, KOLAŘÍK M, STURSOVÁ M, KOPECKÝ J, VALÁŠKOVÁ V, VĚTROVSKÝ T, ZIFČÁKOVÁ L, SNAJDR J, RÍDL J, VLČEK C, VOŘÍŠKOVÁ J. Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. The ISME Journal, 2012, 6(2): 248-258.

doi: 10.1038/ismej.2011.95
[16]
申建波, 白洋, 韦中, 储成才, 袁力行, 张林, 崔振岭, 丛汶峰, 张福锁. 根际生命共同体: 协调资源、环境和粮食安全的学术思路与交叉创新. 土壤学报, 2021, 58(4): 805-813.
SHEN J B, BAI Y, WEI Z, CHU C C, YUAN L X, ZHANG L, CUI Z L, CONG W F, ZHANG F S. Rhizobiont: An interdisciplinary innovation and perspective for harmonizing resources, environment, and food security. Acta Pedologica Sinica, 2021, 58(4): 805-813. (in Chinese)
[17]
CALDWELL B A. Enzyme activities as a component of soil biodiversity: A review. Pedobiologia, 2005, 49(6): 637-644.

doi: 10.1016/j.pedobi.2005.06.003
[18]
林娜, 刘勇, 李国雷, 于海群. 森林土壤酶研究进展. 世界林业研究, 2010, 23(4): 21-25.
LIN N, LIU Y, LI G L, YU H Q. Research progress on forest soil enzyme. World Forestry Research, 2010, 23(4): 21-25. (in Chinese)
[19]
MARASCO R, ROLLI E, FUSI M, MICHOUD G, DAFFONCHIO D. Grapevine rootstocks shape underground bacterial microbiome and networking but not potential functionality. Microbiome, 2018, 6(1): 3.

doi: 10.1186/s40168-017-0391-2 pmid: 29298729
[20]
CHERIF H, MARASCO R, ROLLI E, FERJANI R, FUSI M, SOUSSI A, MAPELLI F, BLILOU I, BORIN S, BOUDABOUS A, CHERIF A, DAFFONCHIO D, OUZARI H. Oasis Desert farming selects environment-specific date palm root endophytic communities and cultivable bacteria that promote resistance to drought. Environmental Microbiology Reports, 2015, 7(4): 668-678.

doi: 10.1111/1758-2229.12304 pmid: 26033617
[21]
关松荫. 土壤酶及其研究法. 北京: 农业出版社, 1986.
GUAN S Y. Soil Enzyme and Its Research Method. Beijing: Agricultural Press, 1986. (in Chinese)
[22]
李振高, 骆永明, 滕应. 土壤与环境微生物研究法. 北京: 科学出版社, 2008.
LI Z G, LUO Y M, TENG Y. Soil and Environmental Microbiology Research Method. Beijing: Science Press, 2008. (in Chinese)
[23]
LU T, KE M J, LAVOIE M, JIN Y J, FAN X J, ZHANG Z Y, FU Z W, SUN L W, GILLINGS M, PEÑUELAS J, QIAN H F, ZHU Y G. Rhizosphere microorganisms can influence the timing of plant flowering. Microbiome, 2018, 6(1): 231.

doi: 10.1186/s40168-018-0615-0 pmid: 30587246
[24]
ZENG Q C, AN S S. Identifying the biogeographic patterns of rare and abundant bacterial communities using different primer sets on the loess plateau. Microorganisms, 2021, 9(1): 139.

doi: 10.3390/microorganisms9010139
[25]
CHEN L Y, ZHANG M T, LIU D, SUN H B, WU J X, HUO Y, CHEN X Y, FANG R X, ZHANG L L. Designing specific bacterial 16S primers to sequence and quantitate plant endo-bacteriome. Science China Life Sciences, 2022, 65(5): 1000-1013.

doi: 10.1007/s11427-021-1953-5
[26]
CHAKRABORTY A, ISLAM E. Temporal dynamics of total and free-living nitrogen-fixing bacterial community abundance and structure in soil with and without history of arsenic contamination during a rice growing season. Environmental Science and Pollution Research, 2018, 25(5): 4951-4962.

doi: 10.1007/s11356-017-0858-5
[27]
SHAH A N, TANVEER M, SHAHZAD B, YANG G Z, FAHAD S, ALI S, BUKHARI M A, TUNG S A, HAFEEZ A, SOULIYANONH B. Soil compaction effects on soil health and cropproductivity: An overview. Environmental Science and Pollution Research, 2017, 24(11): 10056-10067.

doi: 10.1007/s11356-017-8421-y
[28]
VIEIRA S, SIKORSKI J, DIETZ S, HERZ K, SCHRUMPF M, BRUELHEIDE H, SCHEEL D, FRIEDRICH M W, OVERMANN J. Drivers of the composition of active rhizosphere bacterial communities in temperate grasslands. The ISME Journal, 2020, 14(2): 463-475.

doi: 10.1038/s41396-019-0543-4
[29]
YU T B, CHENG L, LIU Q, WANG S S, ZHOU Y, ZHONG H B, TANG M F, NIAN H, LIAN T X. Effects of waterlogging on soybean rhizosphere bacterial community using V4, LoopSeq, and PacBio 16S rRNA sequence. Microbiology Spectrum, 2022, 10(1): e0201121.

doi: 10.1128/spectrum.02011-21
[30]
臧明, 雷宏军, 刘鑫, 潘红卫, 徐建新. 增氧灌溉对氧气扩散速率和冬小麦养分利用的改善研究. 核农学报, 2020, 34(5): 1070-1078.

doi: 10.11869/j.issn.100-8551.2020.05.1070
ZANG M, LEI H J, LIU X, PAN H W, XU J X. Oxygation promotes soil oxygen diffusion rate and nutrient utilization of winter wheat. Journal of Nuclear Agricultural Sciences, 2020, 34(5): 1070-1078. (in Chinese)

doi: 10.11869/j.issn.100-8551.2020.05.1070
[31]
杨晓娟, 李春俭. 机械压实对土壤质量、作物生长、土壤生物及环境的影响. 中国农业科学, 2008, 41(7): 2008-2015.
YANG X J, LI C J. Impacts of mechanical compaction on soil properties, growth of crops, soil-borne organisms and environment. Scientia Agricultura Sinica, 2008, 41(7): 2008-2015. (in Chinese)
[32]
ZHOU W J, QIN X, LYU D G, QIN S J. Effect of glucose on the soil bacterial diversity and function in the rhizosphere of Cerasus sachalinensis. Horticultural Plant Journal, 2021, 7(4): 307-317.

doi: 10.1016/j.hpj.2021.02.002
[33]
郑俊騫, 孙艳, 韩寿坤, 张浩, 王益权. 土壤紧实胁迫对黄瓜抗坏血酸—谷胱甘肽循环的影响. 中国农业科学, 2013, 46(2): 433-440.

doi: 10.3864/j.issn.0578-1752.2013.02.023
ZHENG J Q, SUN Y, HAN S K, ZHANG H, WANG Y Q. Effect of soil compaction stress on ascorbate-gluthione cycle in cucumber plants. Scientia Agricultura Sinica, 2013, 46(2): 433-440. (in Chinese)
[34]
LI C H, MA B L, ZHANG T Q. Soil bulk density effects on soil microbial populations and enzyme activities during the growth of maize (Zea mays L.) planted in large pots under field exposure. Canadian Journal of Soil Science, 2002, 82(2): 147-154.

doi: 10.4141/S01-026
[35]
马星竹. 长期施肥土壤的FDA水解酶活性. 浙江大学学报(农业与生命科学版), 2010, 36(4): 451-455.
MA X Z. Activity of soil fluorescein diacetate (FDA) hydrolase under long-term fertilization. Journal of Zhejiang University (Agriculture & Life Sciences), 2010, 36(4): 451-455. (in Chinese)
[36]
RAVANBAKHSH M, SASIDHARAN R, VOESENEK L A C J, KOWALCHUK G A, JOUSSET A. Microbial modulation of plant ethylene signaling: ecological and evolutionary consequences. Microbiome, 2018, 6(1): 52.

doi: 10.1186/s40168-018-0436-1 pmid: 29562933
[37]
DE CAMPOS S B, YOUN J W, FARINA R, JAENICKE S, JÜNEMANN S, SZCZEPANOWSKI R, BENEDUZI A, VARGAS L K, GOESMANN A, WENDISCH V F, PASSAGLIA L M P. Changes in root bacterial communities associated to two different development stages of canola (Brassica napus L.var oleifera) evaluated through next-generation sequencing technology. Microbial Ecology, 2013, 65(3): 593-601.

doi: 10.1007/s00248-012-0132-9
[38]
EL ZAHAR HAICHAR F, MAROL C, BERGE O, RANGEL- CASTRO J I, PROSSER J I, BALESDENT J, HEULIN T, ACHOUAK W. Plant host habitat and root exudates shape soil bacterial community structure. The ISME Journal, 2008, 2(12): 1221-1230.

doi: 10.1038/ismej.2008.80
[39]
EDWARDS J, JOHNSON C, SANTOS-MEDELLÍN C, LURIE E, PODISHETTY N K, BHATNAGAR S, EISEN J A, SUNDARESAN V. Structure, variation, and assembly of the root-associated microbiomes of rice. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(8): E911-E920.
[1] GUO HanYue, WANG DongSheng, RUAN Yang, QIAO YiZhu, ZHANG YunTao, LI Ling, HUANG QiWei, GUO ShiWei, LING Ning, SHEN QiRong. Characteristics and Succession of Rhizosphere Soil Microbial Communities in Continuous Cropping Watermelon [J]. Scientia Agricultura Sinica, 2023, 56(21): 4245-4258.
[2] XIAO DeShun, XU ChunMei, WANG DanYing, ZHANG XiuFu, CHEN Song, CHU Guang, LIU YuanHui. Effects of Rhizosphere Oxygen Environment on Phosphorus Uptake of Rice Seedlings and Its Physiological Mechanisms in Hydroponic Condition [J]. Scientia Agricultura Sinica, 2023, 56(2): 236-248.
[3] ZHAO WeiSong, GUO QingGang, LI SheZeng, LU XiuYun, GOU JianJun, MA Ping. Effect of Broccoli Residues on Enzyme Activity of Cotton Rhizosphere Soil and Relationships Between Enzyme Activity and Carbon Metabolism Characteristics [J]. Scientia Agricultura Sinica, 2023, 56(11): 2092-2105.
[4] XIE Bin,AN XiuHong,CHEN YanHui,CHENG CunGang,KANG GuoDong,ZHOU JiangTao,ZHAO DeYing,LI Zhuang,ZHANG YanZhen,YANG An. Response and Adaptability Evaluation of Different Apple Rootstocks to Continuous Phosphorus Deficiency [J]. Scientia Agricultura Sinica, 2022, 55(13): 2598-2612.
[5] ZHAO WeiSong,GUO QingGang,SU ZhenHe,WANG PeiPei,DONG LiHong,HU Qing,LU XiuYun,ZHANG XiaoYun,LI SheZeng,MA Ping. Characterization of Fungal Community Structure in the Rhizosphere Soil of Healthy and Diseased-Verticillium Wilt Potato Plants and Carbon Source Utilization [J]. Scientia Agricultura Sinica, 2021, 54(2): 296-309.
[6] WANG JunZheng,ZHANG Qi,GAO ZiXing,MA XueQiang,QU Feng,HU XiaoHui. Effects of Two Microbial Agents on Yield, Quality and Rhizosphere Environment of Autumn Cucumber Cultured in Organic Substrate [J]. Scientia Agricultura Sinica, 2021, 54(14): 3077-3087.
[7] FengJun ZHENG,Xue WANG,Jing LI,BiSheng WANG,XiaoJun SONG,MengNi ZHANG,XuePing WU,Shuang LIU,JiLong XI,JianCheng ZHANG,YongShan LI. Effect of No-Tillage with Manure on Soil Enzyme Activities and Soil Active Organic Carbon [J]. Scientia Agricultura Sinica, 2020, 53(6): 1202-1213.
[8] YAO Yuan,XU YueQiao,WANG Gui,SUN Wei. Salt-Alkalinze Stress Induced Rhizosphere Effects and Photosynthetic Physiological Response of Two Ecotypes of Leymus chinensis in Songnen Meadow Steppe [J]. Scientia Agricultura Sinica, 2020, 53(13): 2584-2594.
[9] LIU YuHuai, WEI XiaoMeng, WEI Liang, ZHU ZhenKe, GE TiDa, ZHANG YanJie, LU ShunBao, WU JinShui. Responses of Extracellular Enzymes to Carbon and Phosphorus Additions in Rice Rhizosphere and Bulk Soil [J]. Scientia Agricultura Sinica, 2018, 51(9): 1653-1663.
[10] GE Bo, WANG BaoBao, GUO Cheng, SUN SuLi, CHEN GuoKang, WANG XiaoMing, ZHU ZhenDong, DUAN CanXing. Composition and quantitative analysis of Fusarium species in maize rhizosphere soil [J]. Scientia Agricultura Sinica, 2018, 51(19): 3683-3693.
[11] DONG Jun, WANG Jing, LIANG Wei, MA BaiQuan, DONG LiJuan, MA FengWang, FU XuanChang, LI CuiYing. QTL Fine Mapping and Candidate Gene Prediction for Growth     Traits in G.41×Malus sieversii [J]. Scientia Agricultura Sinica, 2018, 51(11): 2155-2163.
[12] AN TingTing, HOU XiaoPan, ZHOU YaNan, LIU WeiLing, WANG Qun, LI ChaoHai, ZHANG XueLin. Effects of Nitrogen Fertilizer Rates on Rhizosphere Soil Characteristics and Yield After Anthesis of Wheat [J]. Scientia Agricultura Sinica, 2017, 50(17): 3352-3364.
[13] SHANG Jie, GENG Zeng-chao, WANG Yue-ling, CHEN Xin-xiang, ZHAO Jun. Effect of Biochar Amendment on Soil Microbial Biomass Carbon and Nitrogen and Enzyme Activity in Tier Soils [J]. Scientia Agricultura Sinica, 2016, 49(6): 1142-1151.
[14] LI Wei-tao, LI Zhong-pei, LIU Ming, JIANG Chun-yu, WU Meng, CHEN Xiao-fen. Enzyme Activities and Soil Nutrient Status Associated with Different Aggregate Fractions of Paddy Soils Fertilized with Returning Straw for 24 Years [J]. Scientia Agricultura Sinica, 2016, 49(20): 3886-3895.
[15] ZHANG Xue-lin, XU Jun, AN Ting-ting, HOU Xiao-pan, LI Chao-hai. Relationship Between Rhizosphere Soil Properties and Yield of Maize at Different Nitrogen Levels [J]. Scientia Agricultura Sinica, 2016, 49(14): 2687-2699.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!