Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (13): 2584-2594.doi: 10.3864/j.issn.0578-1752.2020.13.007

• PROCESS AND MECHANISM OF TEMPERATE MEADOW STEPPE DEGRADATION • Previous Articles     Next Articles

Salt-Alkalinze Stress Induced Rhizosphere Effects and Photosynthetic Physiological Response of Two Ecotypes of Leymus chinensis in Songnen Meadow Steppe

YAO Yuan1,XU YueQiao1,WANG Gui1,2,SUN Wei1()   

  1. 1 Institute of Grassland Science, Northeast Normal University/Key Laboratory for Vegetation Ecology, Ministry of Education, Changchun 130024
    2College of Life Sciences, Changchun Normal University, Changchun 130032
  • Received:2019-09-06 Accepted:2019-12-26 Online:2020-07-01 Published:2020-07-16
  • Contact: Wei SUN E-mail:sunwei@nenu.edu.cn

Abstract:

【Objective】 This study was designed to explore differences in rhizosphere effects and photosynthetic physiological activities between the grey green (GG) and yellow green (YG) ecotypes of Leymus chinensis (L. chinensis) in Songnen plains in response to saline-alkali stress, and to provide a theoretical basis for selecting the ecotype of L. chinensis suitable for the restoration of degraded saline-alkali grasslands. 【Method】 Using a pot experiment, the changes of soil and plant under the control, moderate salt-alkaline stress and severe salt-alkaline stress treatments for 30 days were studied, including pH, electrical conductivity, total organic carbon content, total nitrogen content, NH4 +-N content, NO3--N content, microbial biomass carbon content and microbial biomass nitrogen content of rhizosphere soil and bulk soil, as well as leaf net photosynthetic rate, leaf proline content, leaf soluble sugar content and plant height, aboveground biomass and belowground biomass of the two ecotypes of L. chinensis. The moderate saline-alkali stress was achieved by mixing 40 mmol·L -1 NaCl solution, 40 mmol·L-1 Na2CO3 solution, 360 mmol·L-1 Na2SO4 solution and 360 mmol·L-1 NaHCO3 solution at 1﹕1﹕1﹕1. The severe saline-alkali stress treatment was reached by mixing 200 mmol·L-1 NaCl solution, Na2SO4 solution, NaHCO3 solution and Na2CO3 solution at 1﹕1﹕1﹕1. 【Result】 The NH4+-N content, NO3--N content, available nitrogen content, microbial biomass carbon content and microbial biomass nitrogen content of rhizosphere and bulk soil under the moderate salt-alkaline stress treatment were significantly higher than those under the severe salt-alkaline stress treatment. For both ecotypes, the rhizosphere soil had a significantly lower pH value than that of the bulk soil. Moreover, the rhizosphere soil had greater available nitrogen content, microbial biomass carbon content and microbial biomass nitrogen content relative to the bulk soil. The rhizosphere effects of pH in the GG ecotype of L. chinensis were significantly higher than that of the YG ecotype under the control and moderate salt-alkaline stress treatment. The rhizosphere effects of available nitrogen content and microbial biomass carbon content in the GG ecotype of L. chinensis were significantly higher than those of the YG ecotype. For both ecotypes, the net photosynthetic rate, leaf soluble sugar content and leaf proline content under the moderate salt-alkaline stress treatment were significantly higher than those under the severe salt-alkaline stress treatment. The aboveground biomass, belowground biomass and total biomass under the salt-alkaline stress treatments were significantly lower than those under the control treatment. The loss rate of plant height and belowground biomass, and harm percentage of net photosynthetic rate in the YG ecotype of L. chinensis were significantly higher than them in the GG ecotype. Compared to the YG ecotype, the GG ecotype had significantly higher sensitive indexes of leaf proline content, leaf soluble sugar content and osmotic pressure. 【Conclusion】 The GG ecotype of L. chinensis could more effectively alleviate the adverse effects of saline-alkali stress on soil physical and chemical properties and showed stronger saline-alkali resistance than the YG ecotype.

Key words: salt-alkaline stress, grey green ecotype of L. chinensis, yellow green ecotype of L. chinensis, rhizosphere effect, photosynthetic physiology

Table 1

The response of soil physicochemical properties of bulk soil and rhizosphere soil of grey green (GG) and yellow green (YG) ecotypes of L. chinensis to the salt-alkaline stress"

土壤理化性质
Soil physicochemical property
处理
Treatment
灰绿型羊草 (GG) 黄绿型羊草 (YG)
非根际土
Bulk soil
根际土
Rhizosphere soil
非根际土
Bulk soil
根际土
Rhizosphere soil
pH 对照组CK 8.46±0.01Ca 8.27±0.02Cb 8.53±0.03Ca 8.44±0.02Cb
中度盐碱MS 9.22±0.05Ba 8.98±0.05Bb 9.20±0.04Ba 8.99±0.04Bb
重度盐碱SS 9.87±0.04Aa 9.66±0.02Ab 9.77±0.04Aa 9.62±0.04Ab
电导率
Electrical conductivity
(μs·cm-1)
对照组CK 174.25±27.92Ca 135.5±9.37Ba 133.25±9.11Cb 213.50±12.14Ba
中度盐碱MS 1191.25±11.27Bb 1248.0±16.7Aa 1229.75±7.55Ba 1259.50±25.65Aa
重度盐碱SS 1270.25±10.96Aa 1181.5±64.85Aa 1318.50±14.75Aa 1198.25±68.38Aa
总有机碳含量
Total organic carbon content (g·kg-1)
对照组CK 6.08±0.07Aa 6.19±0.07Aa 6.15±0.05Aa 6.30±0.05Aa
中度盐碱MS 6.06±0.05Aa 6.15±0.08Aa 5.82±0.23Ba 6.03±0.05Aa
重度盐碱SS 6.06±0.03Aa 6.1±0.06Aa 5.71±0.16Ba 5.88±0.06Aa
总氮含量
Total nitrogen content
(g·kg-1)
对照组CK 1.40±0.1Aa 1.53±0.13Aa 1.08±0.1Aa 1.17±0.06Aa
中度盐碱MS 1.16±0.07ABb 1.4±0.03Aa 0.84±0.05Aa 0.92±0.02Ba
重度盐碱SS 0.85±0.16Bb 1.28±0.02Aa 0.83±0.09Aa 0.87±0.03Ba
铵态氮含量
NH4+-N content
(mg·kg-1)
对照组CK 0.96±0.04Ab 3.33±0.24Aa 1.86±0.12Ab 6.51±0.42Aa
中度盐碱MS 0.79±0.05Bb 3.06±0.4Aa 1.37±0.06Bb 6.02±0.35Aa
重度盐碱SS 0.44±0.03Cb 1.37±0.19Ba 0.89±0.04Cb 3.31±0.22Ba
硝态氮含量
NO3--N content
(mg·kg-1)
对照组CK 3.76±0.32Aa 4.03±0.12Aa 4.02±0.09Aa 4.43±0.26Aa
中度盐碱MS 2.46±0.33Ba 3.17±0.1Ba 2.78±0.3Ba 2.84±0.31Ba
重度盐碱SS 0.59±0.02Cb 0.82±0.02Ca 0.35±0.02Ca 0.44±0.05Ca
有效氮含量
Available nitrogen content (mg·kg-1)
对照组CK 4.37±0.19Ab 7.28±0.5Aa 6.1±0.28Ab 10.70±0.21Aa
中度盐碱MS 3.36±0.16Bb 6.02±0.22Ba 3.56±0.2Bb 8.32±0.42Ba
重度盐碱SS 1.09±0.04Cb 1.97±0.14Ca 1.23±0.08Cb 3.39±0.14Ca

Fig. 1

Response of microbial biomass carbon and microbial biomass nitrogen content of bulk soil and rhizosphere soil of the grey green (GG) and yellow green (YG) ecotypes of L. chinensis to the salt-alkaline stress The microbial biomass carbon content (MBC) in grey green ecotype of L. chinensis (A); The microbial biomass carbon content (MBC) in yellow green ecotype of L. chinensis (B); The microbial biomass nitrogen content (MBN) in grey green ecotype of L. chinensis (C); The microbial biomass nitrogen content (MBC) in yellow green ecotype of L. chinensis (D); Different uppercase letters indicate significant differences between the salt-alkaline treatments for either bulk soil or rhizosphere soil; Different lowercase letters indicate significant differences between the bulk soil and rhizosphere soil"

Fig. 3

Harm percentage of net photosynthetic rate, sensitive index of leaf proline content and leaf soluble sugar content of the grey green (GG) and yellow green (YG) ecotypes of L. chinensis under different salt- alkaline stresses"

Table 2

The response of physiology and growth indicators of grey green (GG) and yellow green (YG) ecotypes of L. chinensis to the salt-alkaline stress"

生长及生理指标
Physiology and growth indicator
羊草类型
L. chinensis ecotypy
处理Treatment
对照组CK 中度盐碱MS 重度盐碱SS
株高Plant height (cm/plant) 灰绿型 (GG) 44.9±0.91a 40.65±0.82b 36.19±0.81c
黄绿型 (YG) 46.44±0.78a 38.17±0.54b 34.74±0.34c
地上生物量
Aboveground biomass (g/pot)
灰绿型 (GG) 9.89±0.22a 7.32±0.31b 7.02±0.23b
黄绿型 (YG) 10.02±0.25a 8.22±0.35b 7.6±0.51b
地下生物量
Belowground biomass (g/pot)
灰绿型 (GG) 6.05±0.29a 4.43±0.14b 4.12±0.25b
黄绿型 (YG) 5.5±0.2a 4.05±0.2b 3.66±0.3b
总生物量
Total biomass (g/pot)
灰绿型 (GG) 15.94±0.37a 11.75±0.4b 11.14±0.42b
黄绿型 (YG) 15.52±0.36a 12.27±0.5b 11.26±0.79b
根冠比
Root/shoot ratio
灰绿型 (GG) 0.61±0.03a 0.61±0.02a 0.59±0.03a
黄绿型 (YG) 0.55±0.02a 0.49±0.02ab 0.48±0.02b
净光合速率
Net photosynthetic rate (μmol CO2·m-2·s-1)
灰绿型 (GG) 21.13±0.4a 16.62±0.19b 12.2±0.56c
黄绿型 (YG) 21.85±0.36a 14.93±0.5b 11.1±0.23c
叶片可溶性糖含量
Leaf soluble sugar content (mg·g-1 DW)
灰绿型 (GG) 81.09±4.6b 97.15±4.22ab 109.21±6.8a
黄绿型 (YG) 73.96±1.49c 83.17±1.1b 89.8±1.32a
叶片脯氨酸含量
Leaf proline content (μmol·g-1 DW)
灰绿型 (GG) 0.57±0.07c 1.41±0.14b 1.89±0.2a
黄绿型 (YG) 0.61±0.10c 1.33±0.12b 1.59±0.15a

Fig. 4

Changes of osmotic pressure of the grey green (GG) and yellow green (YG) ecotypes of L. chinensis under different salt-alkaline stresses"

Fig. 2

Rhizosphere effect of pH, available nitrogen, microbial biomass carbon and microbial biomass nitrogen in the grey green (GG) and yellow green (YG) ecotypes of L. chinensis under different salt-alkaline stresses The rhizosphere effects of pH (A), available nitrogen content (B), microbial biomass carbon content (C), microbial biomass nitrogen content (D). Different lowercase letters indicate significant differences between the salt-alkaline treatments for either grey green (GG) or yellow green (YG) ecotypes of L. chinensis. The same as below"

[1] 李秀军, 李取生, 王志春, 刘兴土. 松嫩平原西部盐碱地特点及合理利用研究. 农业现代化研究, 2002,23(5):361-364.
LI X J, LI Q S, WANG Z C, LIU X T. A research on characteristics and rational exploitation of soda saline land in the western Songnen plain. Research of Agricultural Modernization, 2002,23(5):361-364. (in Chinese)
[2] SHI D C, SHENG Y M. Effect of various salt-alkaline mixed stress conditions on sunflower seedlings and analysis of their stress factors. Environmental & Experimental Botany, 2005,54(1):8-21.
[3] SHAO H B, CHU L Y, LU H Y, QI W C, CHEN X, LIU J, KUANG S P, TANG B P, WONG V. Towards sustainable agriculture for the salt-affected soil. Land Degradation & Development, 2019,30(5):574-579.
[4] 王德利, 杨利民. 草地生态与管理利用. 北京: 化学工业出版社, 2004.
WANG D L, YANG L M. Grassland Ecology and Management Utilization, Beijing: Chemical Industry Press, 2004. (in Chinese)
[5] SHI D L, WANG D L. Effects of various salt-alkaline mixed stresses on Aneurolepidium chinense (Trin.) Kitag.. Plant & Soil, 2005,271(1/2):15-26.
[6] 李建东, 郑慧莹. 松嫩平原盐碱化草地治理及其生物生态机理. 北京: 科学出版社, 1997: 1-5.
LI J D, ZHENG H Y. Biological-Ecological Mechanism and Its Control of Saline-alkali Grass Land in the Songnen Plain of China. Beijing: Science Press, 1997:1-5. (in Chinese)
[7] 周婵, 杨允菲. 松嫩平原两个生态型羊草实验种群对盐碱胁迫的生理响应. 应用生态学报, 2003,14(11):1842-1846.
ZHOU C, YANG Y F. Physiological response to salt-alkali stress in experimental populations in two ecotypes of Leymus chinensis in the Songnen plains of China. Chinese Journal of Applied Ecology, 2003,14(11):1842-1846. (in Chinese)
[8] CHENG T L, CHEN J H, ZHANG J B, SHI S Q, ZHOU Y W, LU L, WANG P K, JIANG Z P, YANG J C, ZHANG S G, SHI J S. Physiological and proteomic analyses of leaves from the halophyte Tangut Nitraria reveals diverse response pathways critical for high salinity tolerance. Frontiers in Plant Science, 2015,6(30):1-13.
[9] GRIEVE C M, LESCH S M, MASS E V, FRANCOIS L E. Leaf and spikelet primordia initiation in salt-stressed wheat. Crop Science, 1993,33(6):1286-1294.
[10] ACOSTA-MOTOS J R, HERNÁNDEZ J A, ÁLVAREZ S, BARBA- ESPÍN G, SÁNCHEZ-BLANCO M J. The long-term resistance mechanisms, critical irrigation threshold and relief capacity shown by Eugenia myrtifolia plants in response to saline reclaimed water. Plant Physiology & Biochemistry, 2016,111:244-256.
[11] FLOWERS T J, COLMER T D. Salinity tolerance in halophytes. New Phytologist, 2008,179(4):945-963.
[12] LI J K, CUI G W, HU G F, WANG M J, ZHANG P, QIN L G, SHANG C, ZHANG H L, ZHU X C, QU M N. Proteome dynamics and physiological responses to short-term salt stress in Leymus chinensis leaves. PLoS ONE, 2017,12(8):e0183615.
[13] PARIHAR P, SINGH S, SINGH R, SINGH V P, PRASAD S M. Effect of salinity stress on plants and its tolerance strategies: A review. Environmental Science Pollution Research, 2015,22(6):4056-4075.
[14] 马红媛, 梁正伟, 孔祥军, 闫超, 黄立华. 苏打盐碱胁迫下羊草的生长特性与适应机制. 土壤学报, 2008,45(6):1203-1207.
MA H Y, LIANG Z W, KONG X J, YAN C, HUANG L H. Growth characteristics and adaptive mechanisms of Leymus chinensis inresponse to sodic saline stress varying in degree. Acta Pedologica Sinica, 2008,45(6):1203-1207. (in Chinese)
[15] KORANDA M, SCHNECKER J, KAISER C, FUCHSLUEGER L, KITZLER B, STANGE C F, SESSITSCH A, ZECHMEISTER- BOLTENSTERN S, RICHTER A. Microbial processes and community composition in the rhizosphere of European beech-The influence of plant C exudates. Soil Biology and Biochemistry, 2011,43(3):551-558.
[16] COLLIGNON C, CALVARUSO C, TURPAULT M P. Temporal dynamics of exchangeable K, Ca and Mg in acidic bulk soil and rhizosphere under Norway spruce (Picea abies Karst.) and beech (Fagus sylvatica L.) stands.. Plant and Soil, 2011,349(1/2):355-366.
[17] COSTA R, GOTZ M, MROTZEK N, LOTTMANN J, BERG G, SMALLA1 K. Effects of site and plant species on rhizosphere community structure as revealed by molecular analysis of microbial guilds. FEMS Microbiology Ecology, 2006,56(2):236-249.
[18] CHAUDHARY D R, GAUTAM R K, YOUSUF B, MISHRA A, JHA B. Nutrients, microbial community structure and functional gene abundance of rhizosphere and bulk soils of halophytes. Applied Soil Ecology, 2015,91:16-26.
[19] YANG C W, SHI D C, WANG D L. Comparative effects of salt and alkali stresses on growth, osmotic adjustment and ionic balance of an alkali- resistant halophyte Suaeda glauca (Bge.). Plant Growth Regulation, 2008,56(2):179-190.
[20] QADIR M, NOBLE A D, OSTER J D, SCHUBERT S, GHAFOOR A. Driving forces for sodium removal during phytoremediation of calcareous sodic and saline-sodic soils: A review. Soil Use and Management, 2005,21(2):173-180.
[21] 王善仙, 刘宛, 李培军, 吴海燕. 盐碱土植物改良研究进展. 中国农学通报, 2011,27(24):1-7.
WANG S X, LIU W, LI P J, WU H Y. Advances of researches in plant-improvement of saline-alkaline soil. Chinese Agricultural Science Bulletin, 2011,27(24):1-7. (in Chinese)
[22] 张宝田, 王德利. 移栽羊草改良松嫩平原碱斑的方法研究. 东北师大学报(自然科学版), 2009,41(3):97-100.
ZHANG B T, WANG D L. A technique of rapidly restoring alkali-steppe with directly cultivating Leymus chinensis on the Songnen plains. Journal of Northeast Normal University (Natural Science Edition), 2009,41(3):97-100. (in Chinese)
[23] 祝廷成. 羊草生物生态学. 长春: 吉林科学技术出版社, 2004.
ZHU T C. Yang-cao Biological Ecology. Changchun: Jilin Science and Technology Press, 2004. (in Chinese)
[24] 周婵. 东北草原两个生态型羊草趋异适应特性及其进化机理的研究[D]. 长春: 东北师范大学, 2004.
ZHOU C. Study on divergent adaptative characteristics and evolutional mechanism of two ecotypes of Leymus chinensis in northeastern plain in China[D]. Changchun: Northeast Normal University, 2004. (in Chinese)
[25] 周婵, 杨允菲. 松嫩平原两种趋异类型羊草实验种群对盐碱胁迫的水分响应. 草业学报, 2003,12(1):65-68.
ZHOU C, YANG Y F. Water characteristics on salt-alkali resistance of two divergent types in experimental Leymus chinensis populations in the Songnen plain of China, Acta Prataculturae Sinica, , 2003,12(1):65-68. (in Chinese)
[26] AUBREY D P, TESKEY R O. Stored root carbohydrates can maintain root respiration for extended periods. New Phytologist, 2018,218:142-152.
[27] 林启美, 吴玉光, 刘焕龙. 熏蒸法测定土壤微生物量碳的改进. 生态学杂志, 1999,18(2):63-66.
LIN Q M, WU Y G, LIU H L. Modification of fumigation extraction method for measuring soil microbial biomass carbon. Chinese Journal of Ecology, 1999,18(2):63-66. (in Chinese)
[28] 侯建华, 云锦凤, 张东晖. 羊草与灰色赖草及其杂交种的耐盐生理特性比较. 草业学报, 2005,14(1):73-77.
HOU J H, YUN J F, ZHANG D H. Studies on physiological indices of salt resistance among Leymus chinensis and Leymus cinereus with their hybrid. Acta Prataculturae Sinica, 2005,14(1):73-77. (in Chinese)
[29] LOIK M E, NOBEL P S. Water relations and mucopolysaccharide increases for a winter hardy cactus during acclimation to subzero temperatures. Oecologia, 1991,88(3):340-346.
[30] 胡静, 侯向阳, 王珍, 丁勇, 李西良, 李平, 纪磊. 割草和放牧对大针茅根际与非根际土壤养分和微生物数量的影响. 应用生态学报, 2015,26(11):3482-3488.
HU J, HOU X Y, WANG Z, DING Y, LI X L, LI P, JI L. Effects of mowing and grazing on soil nutrients and soil microbes in rhizosphere and bulk soil of Stipa grandis in a typical steppe. Chinese Journal of Applied Ecology, 2015,26(11):3482-3488. (in Chinese)
[31] MUNNS R. Comparative physiology of salt and water stress. Plant Cell and Environment, 2002,25(2):239-250.
[32] BAUDOIN E, BENIZRI E, GUCKERT A. Impact of artificial root exudates on the bacterial community structure in bulk soil and maize rhizosphere. Soil Biology & Biochemistry, 2003,35(9):1183-1192.
[33] 张锡洲, 李廷轩, 王永东. 植物生长环境与根系分泌物的关系. 土壤通报, 2007,38(4):785-789.
ZHANG X Z, LI T X, WANG Y D. Relationship between growth environment and root exudates of plants: A review. Chinese Journal of Soil Science, 2007,38(4):785-789. (in Chinese)
[34] MOMMER L, KIRKEGAARD J, RUIJVEN J V. Root-root interactions: towards a rhizosphere framework. Trends in Plant Science, 2016,21(3):209-217.
[35] 徐万里, 刘骅, 张云舒. 新疆盐渍化土壤氮素矿化和硝化作用特征. 西北农林科技大学学报(自然科学版), 2007,35(11):141-145.
XU W L, LIU H, ZHANG Y S. Characteristics of nitrogen mineralization and nitrificationin salinized soils of Xinjiang. Journal of Northwest A & F University(Natural Science Edition), 2007,35(11):141-145. (in Chinese)
[36] 徐月乔. 盐碱胁迫下灰绿型与黄绿型羊草根际效应和光合生理响应[D]. 长春: 东北师范大学, 2019.
XU Y Q. The response of rhizosphere effect and photosynthetic physiology of gray green and yellow green ecotypes of Leymus chinensis to salt-alkaline stress[D]. Changchun: Northeast Normal University, 2019. (in Chinese)
[37] ZHU J W, ZHAO Y, LI X L, CHEN W H. Effects of chlorimuron- ethyl on soil microorganisms and enzyme activities under moderate salt stress. Fresenius Environmental Bulletin, 2018,27(4):2358-2365.
[38] LIN J X, WANG Y N, SUN S N, MU C S, YAN X F. Effects of arbuscular mycorrhizal fungi on the growth, photosynthesis and photosynthetic pigments of Leymus chinensis seedlings under salt-alkali stress and nitrogen deposition. Science of the Total Environment, 2017,576:234-241.
[39] 黄立华, 梁正伟, 马红媛. 苏打盐碱胁迫对羊草光合、蒸腾速率及水分利用效率的影响. 草业学报, 2009,18(5):25-30.
HUANG L H, LIANG Z W, MA H Y. Effects of saline-sodic stress on the photosynthesis rate, transpiration rate and water use efficiency of Leymus chinensis. Acta Prataculturae Sinica, 2009,18(5):25-30. (in Chinese)
[40] ANJUM S A, NIU J H, WANG R, LI J H, LIU M R, SONG J X, LV J, ZOHAIB A, WANG S G, ZONG X F. Regulation mechanism of exogenous 5-aminolevulinic acid on growth and physiological characters of Leymus chinensis (Trin.) under high temperature stress. Philippine Agricultural Scientist, 2016,99(3):253-259.
[41] YANG C W, CHONG J N, LI C Y, KIM C M, SHI D C, WANG D L. Osmotic adjustment and ion balance traits of an alkali resistant halophyte Kochia sieversiana during adaptation to salt and alkali conditions. Plant and Soil, 2007,294(1/2):263-276.
[42] MUNNS R, GILLIHAM M. Salinity tolerance of crops - What is the cost? New Phytologist, 2015,208(3):668-673.
[43] QURESHI M I, ABDIN M Z, AHMAD J, IQBAL M. Effect of long-term salinity on cellular antioxidants, compatible solute and fatty acid profile of Sweet Annie (Artemisia annua L.). Phytochemistry, 2013,95(6):215-223.
[1] YIN Wen,CHAI Qiang,YU AiZhong,ZHAO Cai,FAN ZhiLong,HU FaLong,FAN Hong,GUO Yao. Effects of Intercropped Wheat Straw Retention on Canopy Temperature and Photosynthetic Physiological Characteristics of Intercropped Maize Mulched with Plastic During Grain Filling Stage [J]. Scientia Agricultura Sinica, 2020, 53(23): 4764-4776.
[2] YANG JianJun, ZHANG GuoBin, YU JiHua, HU LinLi, LUO ShiLei, NIU Tong, ZHANG Jing . Effects of Endogenous NO on Reactive Oxygen Metabolism and Photosynthetic Characteristics of Cucumber Seedlings Under Salt Stress [J]. Scientia Agricultura Sinica, 2017, 50(19): 3778-3788.
[3] KOU Jiang-Tao, SHI Shang-Li, HU Gui-Xin, ZHOU Wan-Hai, YAO Tuo. Photosynthetic Physiology of Odontothrips Damaged Medicago sativa [J]. Scientia Agricultura Sinica, 2013, 46(12): 2459-2470.
[4] YANG Mei-Sen, WANG Ya-Fang, GAN Xiu-Xia, LUO Hong-Hai, ZHANG Ya-Li, ZHANG Wang-Feng. Effects of Exogenous Nitric Oxide on Growth, Antioxidant System and Photosynthetic Characteristics in Seedling of Cotton Cultivar Under Chilling Injury Stress [J]. Scientia Agricultura Sinica, 2012, 45(15): 3058-3067.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!