Scientia Agricultura Sinica

Previous Articles    

Prediction of Water Content of Winter Wheat Plant Based on Comprehensive Index Synergetic Optimization

GAO ChenKai1, LIU ShuiMiao1, LI YuMing1, WU PengNian2, WANG YanLi2, LIU ChangShuo1, QIAO YiBo1, GUAN XiaoKang1, WANG TongChao1*, WEN PengFei1* #br#   

  1. 1Agronomy College of Henan Agriculture University, Zhengzhou 450046; 2Resources and Environment College of Henan Agriculture University, Zhengzhou 450046
  • Published:2023-06-13

Abstract: 【ObjectiveThe objective of this study is to establishment of inversion models for winter wheat plant water content at different growth stages based on three comprehensive indicators of winter wheat canopy temperature, morphology, and physiology, explore more comprehensive and accurate water deficit monitoring methods to provide theoretical basis for drought resistance work in winter wheat.【Method】The winter wheat was used as the research object, and three water treatments were set up, two wheat varieties: Luomai 22 and Zhoumai 27. Canopy temperature parameters (canopy temperature standard deviation (CTSD) and crop water stress index (CWSI)), morphological indicators (plant height, stem diameter, aboveground biomass, and LAI) and physiological indicators (stomatal conductance, transpiration rate, and photosynthetic rate) of winter wheat were obtained at jointing, booting, and filling stages, respectively. comprehensive temperature parameter indicators (CTPI), comprehensive growth indicators (CGI) and comprehensive physiological indicators (CPI) based on the average weight principle were constructed. the correlation between plant water content (PWC) and comprehensive indicators was analyzed, and multiple linear regression (MLR), partial least squares recurrence (PLSR) and support vector machine (SVM) methods were used to construct the PWC inversion model based on comprehensive indicators according to the growth period.【ResultThe canopy temperature parameters, morphology and physiological indexes of winter wheat in different growth stages showed significant differences between water deficit treatment (W1, W2) and control treatment (W3) (P<0.05). Comprehensive indicators (CTPI, CGI and CPI) at booting and filling stages have a good correlation with PWC, with correlation coefficients (r) of -0.70 (-0.78), 0.84 (0.80) and 0.83 (0.76), respectively. Using MLR, PLSR and SVM methods, the PWC inversion prediction model based on comprehensive indicators (CTPI, CGI and CPI) has high prediction accuracy, among which the PWC model built by SVM is the best, R2cal (R2val), RMSEcal (RMSEval), and nRMSEcal (nRMSEval) were 0.878 (0.815), 0.021 (0.024), and 3.10% (3.33%), respectively.【Conclusion】The SVM-PWC model based on the comprehensive indicators CTPI, CGI and CPI can well predict the water deficit of winter wheat at different growth stages, and provide theoretical basis for drought prevention and drought resistance of winter wheat in the Huang-Huai-Hai region.


Key words: winter wheat, water deficit, comprehensive index, plant water content, support vector machine

[1] WEI YongKang, YANG TianCong, ZANG ShaoLong, HE Li, DUAN JianZhao, XIE YingXin, WANG ChenYang, FENG Wei. Monitoring Wheat Lodging Based on UAV Multi-Spectral Image Feature Fusion [J]. Scientia Agricultura Sinica, 2023, 56(9): 1670-1685.
[2] MA ShengLan, KUANG FuHong, LIN HongYu, CUI JunFang, TANG JiaLiang, ZHU Bo, PU QuanBo. Effects of Straw Incorporation Quantity on Soil Physical Characteristics of Winter Wheat-Summer Maize Rotation System in the Central Hilly Area of Sichuan Basin [J]. Scientia Agricultura Sinica, 2023, 56(7): 1344-1358.
[3] CHANG ChunYi, CAO Yuan, GHULAM Mustafa, LIU HongYan, ZHANG Yu, TANG Liang, LIU Bing, ZHU Yan, YAO Xia, CAO WeiXing, LIU LeiLei. Effects of Powdery Mildew on Photosynthetic Characteristics and Quantitative Simulation of Disease Severity in Winter Wheat [J]. Scientia Agricultura Sinica, 2023, 56(6): 1061-1073.
[4] WANG XiaoXuan, ZHANG Min, ZHANG XinYao, WEI Peng, CHAI RuShan, ZHANG ChaoChun, ZHANG LiangLiang, LUO LaiChao, GAO HongJian. Effects of Different Varieties of Phosphate Fertilizer Application on Soil Phosphorus Transformation and Phosphorus Uptake and Utilization of Winter Wheat [J]. Scientia Agricultura Sinica, 2023, 56(6): 1113-1126.
[5] GUO Yan, JING YuHang, WANG LaiGang, HUANG JingYi, HE Jia, FENG Wei, ZHENG GuoQing. UAV Multispectral Image-Based Nitrogen Content Prediction and the Transferability Analysis of the Models in Winter Wheat Plant [J]. Scientia Agricultura Sinica, 2023, 56(5): 850-865.
[6] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[7] LIN JiangYun, YIN BenSu, WANG XingShu, LIU ChenRui, SUN Qing, XIE XingXing, CHENG LingLing, SUN LiWei, SHI Mei, WANG ZhaoHui. The Accumulation of Iron and Manganese in Wheat and Its Relationship with Soil Nutrients Under Long-Term Application of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(17): 3372-3382.
[8] MU HaiMeng, SUN LiFang, WANG ZhuangZhuang, WANG Yu, SONG YiFan, ZHANG Rong, DUAN JianZhao, XIE YingXin, KANG GuoZhang, WANG YongHua, GUO TianCai. Effect of Nitrogen Application Rate and Planting Density on the Lodging Resistance and Grain Yield of Two Winter Wheat Varieties [J]. Scientia Agricultura Sinica, 2023, 56(15): 2863-2879.
[9] DONG YiFan, REN Yi, CHENG YuKun, WANG Rui, ZHANG ZhiHui, SHI XiaoLei, GENG HongWei. Genome-Wide Association Study of Grain Main Quality Related Traits in Winter Wheat [J]. Scientia Agricultura Sinica, 2023, 56(11): 2047-2063.
[10] LÜ LiHua, HAN JiangWei, ZHANG JingTing, DONG ZhiQiang, MENG Jian, JIA XiuLing. Analysis of Common Characteristics of Widely Adaptation Wheat Cultivars [J]. Scientia Agricultura Sinica, 2023, 56(11): 2064-2077.
[11] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
[12] YI YingJie, HAN Kun, ZHAO Bin, LIU GuoLi, LIN DianXu, CHEN GuoQiang, REN Hao, ZHANG JiWang, REN BaiZhao, LIU Peng. The Comparison of Ammonia Volatilization Loss in Winter Wheat- Summer Maize Rotation System with Long-Term Different Fertilization Measures [J]. Scientia Agricultura Sinica, 2022, 55(23): 4600-4613.
[13] LIU Feng,JIANG JiaLi,ZHOU Qin,CAI Jian,WANG Xiao,HUANG Mei,ZHONG YingXin,DAI TingBo,CAO WeiXing,JIANG Dong. Analysis of American Soft Wheat Grain Quality and Its Suitability Evaluation According to Chinese Weak Gluten Wheat Standard [J]. Scientia Agricultura Sinica, 2022, 55(19): 3723-3737.
[14] HAN ShouWei,SI JiSheng,YU WeiBao,KONG LingAn,ZHANG Bin,WANG FaHong,ZHANG HaiLin,ZHAO Xin,LI HuaWei,MENG Yu. Mechanisms Analysis on Yield Gap and Nitrogen Use Efficiency Gap of Winter Wheat in Shandong Province [J]. Scientia Agricultura Sinica, 2022, 55(16): 3110-3122.
[15] MENG Yu,WEN PengFei,DING ZhiQiang,TIAN WenZhong,ZHANG XuePin,HE Li,DUAN JianZhao,LIU WanDai,FENG Wei. Identification and Evaluation of Drought Resistance of Wheat Varieties Based on Thermal Infrared Image [J]. Scientia Agricultura Sinica, 2022, 55(13): 2538-2551.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!