Scientia Agricultura Sinica

Previous Articles    

Genome-Wide Association Study of Nitrogen Use Efficient Traits in Sweetpotato Seeding Stage and Screening and Validation of Candidate Genes

YU YongChao, FAN WenJing, LIU Ming, ZHANG QiangQiang, ZHAO Peng, JIN Rong, WANG Jing, ZHU XiaoYa, TANG ZhongHou   

  1. Xuzhou Institute of Agricultural Sciences of Xuhuai District of Jiangsu Province /Xuzhou Sweetpotato Research Center of Jiangsu Province/Key Laboratory of Sweetpotato Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Xuzhou 221131, Jiangsu
  • Online:2023-05-29 Published:2023-05-29

Abstract: 【Objective】The objective of this paper was to analyze the genetic mechanisms of nitrogen use efficiency (NUE), and to explore the loci and candidate genes associated nitrogen (N) efficient traits, to provide support for the N-efficient molecular breeding and genetic improvement of sweetpotato.【Method】A total of 129 sweetpotato cultivars from all over the world were treated with N deficiency (0 mmol·L-1) and normal N (14 mmol·L-1). A hydroponic experiment was conducted to facilitate the genome-wide association study (GWAS) of six phenotypic traits (shoot biomass increment, root biomass increment, shoot N accumulation, root N accumulation, shoot N physiological utilization efficiency, and root N physiological utilization efficiency) of sweetpotato at the seedling stage. The N-efficient candidate genes were identified based on the GWAS and subsequently- verified using RT-qPCR.【Result】There were wide variations among the six traits related to NUE in sweetpotato under the normal N and N deficiency treatment conditions. The coefficient of variation (CV) of the shoot biomass increment under the N deficiency treatment condition was the greatest at 69.5%. The CV of the root N physiological utilization efficiency under N deficiency treatment condition was the smallest at 12.1%. All five traits were significantly correlated except for root N physiological utilization efficiency. The MLM model was used to conduct a GWAS of the six phenotypic trait values. A total of 134 QTL and 888 SNP loci were identified as being significantly associated with four out of the six traits, namely, shoot biomass increment, root biomass increment, root N accumulation, and shoot N physiological utilization efficiency. A total of 93 SNP markers across ten regions were significantly associated with shoot N physiological utilization efficiency with a high reliability. Six N efficiency candidate genes were obtained via gene annotation. RT-qPCR verified that the three candidate genes (itf01g08120.t1, itf01g22030.t1 and itf01g221000.t2) encoded glutamate dehydrogenase, NPH3 protein and TIP41-like protein, respectively, which warrants further research.【Conclusion】A total of 888 SNP loci associated with N utilization traits were detected in 129 sweetpotato cultivars. Among these, 93 SNP loci were significantly associated with shoot N physiological utilization efficiency, and six candidate genes were identified. Preliminary verification indicated that the itf01g08120.t1, itf01G2203.t1 and itf01g22100.t2 genes hold promising value for further research.

Key words: sweetpotato, nitrogen use efficiency, nitrogen efficient gene, GWAS, RT-qPCR

[1] TAN LiZhi, ZHAO YiQiang. Principle, Optimization and Application of Mixed Models in Genome- Wide Association Study [J]. Scientia Agricultura Sinica, 2023, 56(9): 1617-1632.
[2] WANG HuiLing, YAN AiLing, WANG XiaoYue, LIU ZhenHua, REN JianCheng, XU HaiYing, SUN Lei. Genome-Wide Association Studies for Grape Berry Weight Related Traits [J]. Scientia Agricultura Sinica, 2023, 56(8): 1561-1573.
[3] WANG Mai, DONG QingFeng, GAO ShenAo, LIU DeZheng, LU Shan, QIAO PengFang, CHEN Liang, HU YinGang. Genome-Wide Association Studies and Mining for Favorable Loci of Root Traits at Seedling Stage in Wheat [J]. Scientia Agricultura Sinica, 2023, 56(5): 801-820.
[4] YANG MingLu, ZHANG HaiLiang, LUO HanPeng, HUANG XiXia, ZHANG HanLin, ZHANG ShiShi, WANG Yan, LIU Lin, GUO Gang, WANG YaChun. Estimation of Genetic Parameters and Genome-Wide Association Study of Heat Indicators in Holstein Cattle Based on Collar-Mounted Device [J]. Scientia Agricultura Sinica, 2023, 56(5): 995-1006.
[5] YANG ShengNan, CHENG Li, TAN YueXia, ZHU YanSong, JIANG Dong. Genome Wide Association Study for Resistance to Citrus Brown Spot Disease [J]. Scientia Agricultura Sinica, 2023, 56(18): 3642-3654.
[6] YU YongChao, FAN WenJing, LIU Ming, ZHANG QiangQiang, ZHAO Peng, JIN Rong, WANG Jing, ZHU XiaoYa, TANG ZhongHou. Genome-Wide Association Study of Nitrogen Use Efficient Traits in Sweetpotato Seeding Stage and Screening and Validation of Candidate Genes [J]. Scientia Agricultura Sinica, 2023, 56(18): 3500-3510.
[7] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[8] SANG ShiFei, CAO MengYu, WANG YaNan, WANG JunYi, SUN XiaoHan, ZHANG WenLing, JI ShengDong. Research Progress of Nitrogen Efficiency Related Genes in Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1479-1491.
[9] ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081.
[10] PANG HongBo, CHENG Lu, YU MingLan, CHEN Qiang, LI YueYing, WU LongKun, WANG Ze, PAN XiaoWu, ZHENG XiaoMing. Genome-Wide Association Study of Cold Tolerance at the Germination Stage of Rice [J]. Scientia Agricultura Sinica, 2022, 55(21): 4091-4103.
[11] XIE XiaoYu, WANG KaiHong, QIN XiaoXiao, WANG CaiXiang, SHI ChunHui, NING XinZhu, YANG YongLin, QIN JiangHong, LI ChaoZhou, MA Qi, SU JunJi. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Candidate Gene Prediction of Boll Opening Rate in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(2): 248-264.
[12] CUI Peng,ZHAO YiRen,YAO ZhiPeng,PANG LinJiang,LU GuoQuan. Starch Physicochemical Properties and Expression Levels of Anabolism Key Genes in Sweetpotato Under Low Temperature [J]. Scientia Agricultura Sinica, 2022, 55(19): 3831-3840.
[13] CHANG LiGuo,HE KunHui,LIU JianChao. Mining of Genetic Locus of Maize Stay-Green Related Traits Under Multi-Environments [J]. Scientia Agricultura Sinica, 2022, 55(16): 3071-3081.
[14] LI Ting,DONG Yuan,ZHANG Jun,FENG ZhiQian,WANG YaPeng,HAO YinChuan,ZHANG XingHua,XUE JiQuan,XU ShuTu. Genome-Wide Association Study of Ear Related Traits in Maize Hybrids [J]. Scientia Agricultura Sinica, 2022, 55(13): 2485-2499.
[15] WANG Juan, MA XiaoMei, ZHOU XiaoFeng, WANG Xin, TIAN Qin, LI ChengQi, DONG ChengGuang. Genome-Wide Association Study of Yield Component Traits in Upland Cotton (Gossypium hirsutum L.) [J]. Scientia Agricultura Sinica, 2022, 55(12): 2265-2277.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!