Scientia Agricultura Sinica

Previous Articles    

QTL Mapping and Molecular Marker Development of traits related to Grain weight in Wheat

ZHANG ZeYuan1, LI Yue2, ZHAO WenSha1, GU JingJing3, ZHANG AoYan1, ZHANG HaiLong1, SONG PengBo1, WU JianHui1, ZHANG ChuanLiang1, SONG QuanHao4, JIAN JunTao5, SUN DaoJie1*, WANG XingRong2* #br#   

  1. 1College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi; 2Gansu Academy of Agricultural Sciences, Lanzhou 730000, Gansu; 3Luoyang Academy of Agriculture and Forestry Sciences, Luoyang 471023, Henan; 4Zhumadian Academy of Agricultural Sciences, Zhumadian 463000, Henan; 5Nanyang Academy of Agricultural Sciences, Nanyang 473000, Henan
  • Published:2023-05-22

Abstract: 【Objective】The yield of wheat, the second-highest-yielding food product in the world, has a major impact by grain weight. This research used materials from a recombinant inbred line (RIL) population derived from Heshangtou (HST) and Longchun 23 (LC23). Based on 55K SNP genotype data, QTL mapping was performed for traits related to grain weight of wheat, and co-segregation markers of major grain length QTL were developed and verified to provide reference for molecular marker assisted selection breeding.【MethodThe wheat 55K SNP microarray was used to genotype parents and RIL populations, and a high density genetic linkage map was constructed, and its correlation with Chinese spring reference genome IWGSC RefSeq v1.0 was analyzed. QTL mapping of traits related to grain weight in multiple environments based on inclusive composite interval mapping method. The analysis of variance of major effect QTLs were performed to judge the additive interaction effect among different QTLs, and to analyse its effect on traits related to grain weight. At the same time, the corresponding kompetitive allele specific PCR marker was developed according to the closely linked SNP loci of major QTL for grain length, and verified in 242 wheat accessions worldwide.【Result】In this study, a high density genetic map of Heshangtou/Longchun 23 RIL population was constructed, with full length 4543 cM, including 22 linkage groups, covering 21 chromosomes of wheat, and the average genetic distance was 1.7 cM. There was a significant correlation between genetic map and physical map, and the Pearson correlation coefficient were 0.77-0.99 (P<0.001). A total of 51 QTLs related to grain weight were detected, among them, 4 stable major QTLs were found in multi-environments (three or more environments) and distributed on 2D, 5A, 6B and 7D chromosomes. According to the physical interval and functional markers, it is inferred that stable major QTLs Qtkw.nwafu-2D.1 and Qtkw.nwafu-7D are photoperiod gene Ppd-D1 and flowering gene FT-D1, respectively. The analysis of variance shows that there is a significant interaction between them. The favorite alleles polymerization of Qtkw.nwafu-2D.1 and Qtkw.nwafu-7D can significantly increase thousand grain weight and grain width of wheat. In addition, the corresponding KASP molecular detection marker AX-111067709 was developed based on the co-segregated SNP of the major locus Qgl.nwafu-5A for grain length, which was significantly correlated with grain length and grain weight traits in a diversity panel comprising of 242 wheat accessions, and could increase grain length by 3.33% to 4.59% and grain weight 5.70% to 10.35% in different environments (P<0.001).【Conclusion】There are several genetic loci that affect traits linked to grain weight in Heshangtou (HST) and Longchun 23 (LC23), and Qtkw.nwafu-2D.1 and Qtkw.nwafu-7D dramatically increased thousand grain weight and grain width through additive interaction effects. Qgl.nwafu-5A is significantly correlated with grain weight and grain length, and its co-segregated molecular marker AX-11106770 can be used in molecular marker assisted selection breeding.


Key words: wheat, thousand-grain weight, QTL, KASP marker

[1] PENG HaiXia, KA DeYan, ZHANG TianXing, ZHOU MengDie, WU LinNan, XIN ZhuanXia, ZHAO HuiXian, MA Meng. Overexpression of Wheat TaCYP78A5 Increases Flower Organ Size [J]. Scientia Agricultura Sinica, 2023, 56(9): 1633-1645.
[2] WEI YongKang, YANG TianCong, ZANG ShaoLong, HE Li, DUAN JianZhao, XIE YingXin, WANG ChenYang, FENG Wei. Monitoring Wheat Lodging Based on UAV Multi-Spectral Image Feature Fusion [J]. Scientia Agricultura Sinica, 2023, 56(9): 1670-1685.
[3] ZHANG Xu, HAN JinYu, LI ChenChen, ZHANG DanDan, WU QiMeng, LIU ShengJie, JIAO HanXuan, HUANG Shuo, LI ChunLian, WANG ChangFa, ZENG QingDong, KANG ZhenSheng, HAN DeJun, WU JianHui. Identification of Adult Plant Stripe Rust Resistance Candidate Genes of YrZ501-2BL by Gene Association and Transciptome Analysis in Wheat (Triticum aestivum L.) [J]. Scientia Agricultura Sinica, 2023, 56(8): 1429-1443.
[4] HAN ZiXuan, FANG JingJing, WU XuePing, JIANG Yu, SONG XiaoJun, LIU XiaoTong. Synergistic Effects of Organic Carbon and Nitrogen Content in Water-Stable Aggregates as well as Microbial Biomass on Crop Yield Under Long-Term Straw Combined Chemical Fertilizers Application [J]. Scientia Agricultura Sinica, 2023, 56(8): 1503-1514.
[5] MA ShengLan, KUANG FuHong, LIN HongYu, CUI JunFang, TANG JiaLiang, ZHU Bo, PU QuanBo. Effects of Straw Incorporation Quantity on Soil Physical Characteristics of Winter Wheat-Summer Maize Rotation System in the Central Hilly Area of Sichuan Basin [J]. Scientia Agricultura Sinica, 2023, 56(7): 1344-1358.
[6] LI RuXiang, ZHOU Kai, WANG DaChuan, LI QiaoLong, XIANG AoNi, LI Lu, LI MiaoMiao, XIANG SiQian, LING YingHua, HE GuangHua, ZHAO FangMing. Analysis of QTLs and Breeding of Secondary Substitution Lines for Panicle Traits Based on Rice Chromosome Segment Substitution Line CSSL-Z481 [J]. Scientia Agricultura Sinica, 2023, 56(7): 1228-1247.
[7] NAN Rui, YANG YuCun, SHI FangHui, ZHANG LiNing, MI TongXi, ZHANG LiQiang, LI ChunYan, SUN FengLi, XI YaJun, ZHANG Chao. Identification of Excellent Wheat Germplasms and Classification of Source-Sink Types [J]. Scientia Agricultura Sinica, 2023, 56(6): 1019-1034.
[8] CHANG ChunYi, CAO Yuan, GHULAM Mustafa, LIU HongYan, ZHANG Yu, TANG Liang, LIU Bing, ZHU Yan, YAO Xia, CAO WeiXing, LIU LeiLei. Effects of Powdery Mildew on Photosynthetic Characteristics and Quantitative Simulation of Disease Severity in Winter Wheat [J]. Scientia Agricultura Sinica, 2023, 56(6): 1061-1073.
[9] WANG XiaoXuan, ZHANG Min, ZHANG XinYao, WEI Peng, CHAI RuShan, ZHANG ChaoChun, ZHANG LiangLiang, LUO LaiChao, GAO HongJian. Effects of Different Varieties of Phosphate Fertilizer Application on Soil Phosphorus Transformation and Phosphorus Uptake and Utilization of Winter Wheat [J]. Scientia Agricultura Sinica, 2023, 56(6): 1113-1126.
[10] WANG Mai, DONG QingFeng, GAO ShenAo, LIU DeZheng, LU Shan, QIAO PengFang, CHEN Liang, HU YinGang. Genome-Wide Association Studies and Mining for Favorable Loci of Root Traits at Seedling Stage in Wheat [J]. Scientia Agricultura Sinica, 2023, 56(5): 801-820.
[11] FAN ZhiLong, HU FaLong, YIN Wen, FAN Hong, ZHAO Cai, YU AiZhong, CHAI Qiang. Response of Water Use Characteristics of Spring Wheat to Co- Incorporation of Green Manure and Wheat Straw in Arid Irrigation Region [J]. Scientia Agricultura Sinica, 2023, 56(5): 838-849.
[12] GUO Yan, JING YuHang, WANG LaiGang, HUANG JingYi, HE Jia, FENG Wei, ZHENG GuoQing. UAV Multispectral Image-Based Nitrogen Content Prediction and the Transferability Analysis of the Models in Winter Wheat Plant [J]. Scientia Agricultura Sinica, 2023, 56(5): 850-865.
[13] WANG JianFeng, CHENG JiaXin, SHU WeiXue, ZHANG YanRu, WANG XiaoJie, KANG ZhenSheng, TANG ChunLei. Functional Analysis of Effector Hasp83 in the Pathogenicity of Puccinia striiformis f. sp. tritici [J]. Scientia Agricultura Sinica, 2023, 56(5): 866-878.
[14] ZHENG WenYan, CHANG YuanSheng, HE Ping, HE XiaoWen, WANG Sen, GAO WenSheng, LI LinGuang, WANG HaiBo. Development and Validation of KASP Markers Based on a Whole- Genome Resequencing Approach in a Hybrid Population of Luli × Red No. 1 [J]. Scientia Agricultura Sinica, 2023, 56(5): 935-950.
[15] JIA XiaoYun, WANG ShiJie, ZHU JiJie, ZHAO HongXia, LI Miao, WANG GuoYin. Construction of A High-Density Genetic Map and QTL Mapping for Yield Related Traits in Upland Cotton [J]. Scientia Agricultura Sinica, 2023, 56(4): 587-598.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!