Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (24): 4895-4911.doi: 10.3864/j.issn.0578-1752.2022.24.009
• HORTICULTURE • Previous Articles Next Articles
YOU YuWan(),ZHANG Yu,SUN JiaYi,ZHANG Wei(
)
[1] |
ZHOU N N, SIMONNEAU F, THOUROUDE T, OYANT L H, FOUCHER F. Morphological studies of rose prickles provide new insights. Horticulture Research, 2021, 8(1): 221. doi: 10.1038/s41438-021-00689-7.
doi: 10.1038/s41438-021-00689-7 pmid: 34556626 |
[2] |
SINGH K B. Transcriptional regulation in plants: The importance of combinatorial control. Plant Physiology, 1998, 118(4): 1111-1120. doi: 10.1104/pp.118.4.1111.
doi: 10.1104/pp.118.4.1111 pmid: 9847085 |
[3] |
ZHANG Y, ZHAO M J, ZHU W, SHI C M, BAO M Z, ZHANG W. Nonglandular prickle formation is associated with development and secondary metabolism-related genes in Rosa multiflora. Physiologia Plantarum, 2021, 173(3): 1147-1162. doi: 10.1111/ppl.13510.
doi: 10.1111/ppl.13510 |
[4] |
SOUER E, VAN HOUWELINGEN A, KLOOS D, MOL J, KOES R. The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell, 1996, 85(2): 159-170. doi: 10.1016/s0092-8674(00)81093-4.
doi: 10.1016/s0092-8674(00)81093-4 |
[5] |
OLSEN A N, ERNST H A, LEGGIO L L, SKRIVER K. NAC transcription factors: Structurally distinct, functionally diverse. Trends in Plant Science, 2005, 10(2): 79-87. doi: 10.1016/j.tplants.2004.12.010.
doi: 10.1016/j.tplants.2004.12.010 pmid: 15708345 |
[6] |
张慧珍, 白雪芹, 曾幼玲. 植物NAC转录因子的生物学功能. 植物生理学报, 2019, 55(7): 915-924. doi: 10.13592/j.cnki.ppj.2019.0107.
doi: 10.13592/j.cnki.ppj.2019.0107 |
ZHANG H Z, BAI X Q, ZENG Y L. Biological functions of plant NAC transcription factors. Plant Physiology Journal, 2019, 55(7): 915-924. doi: 10.13592/j.cnki.ppj.2019.0107. (in Chinese)
doi: 10.13592/j.cnki.ppj.2019.0107 |
|
[7] |
JENSEN M K, KJAERSGAARD T, NIELSEN M M, GALBERG P, PETERSEN K, O'SHEA C, SKRIVER K. The Arabidopsis thaliana NAC transcription factor family: structure-function relationships and determinants of ANAC019 stress signalling. Biochemical Journal, 2010, 426(2): 183-196. doi: 10.1042/BJ20091234.
doi: 10.1042/BJ20091234 |
[8] |
OOKA H, SATOH K, DOI K, NAGATA T, OTOMO Y, MURAKAMI K, MATSUBARA K, OSATO N, KAWAI J, CARNINCI P, HAYASHIZAKI Y, SUZUKI K, KOJIMA K, TAKAHARA Y, YAMAMOTO K, KIKUCHI S. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Research, 2003, 10(6): 239-247. doi: 10.1093/dnares/10.6.239.
doi: 10.1093/dnares/10.6.239 |
[9] |
SUN H, HU M L, LI J Y, CHEN L, LI M, ZHANG S Q, ZHANG X L, YANG X Y. Comprehensive analysis of NAC transcription factors uncovers their roles during fiber development and stress response in cotton. BMC Plant Biology, 2018, 18(1): 150. doi: 10.1186/s12870-018-1367-5.
doi: 10.1186/s12870-018-1367-5 pmid: 30041622 |
[10] |
SUN L, LIU L P, WANG Y Z, YANG L, WANG M J, LIU J X. NAC103, a NAC family transcription factor, regulates ABA response during seed germination and seedling growth in Arabidopsis. Planta, 2020, 252(6): 95. doi: 10.1007/s00425-020-03502-2.
doi: 10.1007/s00425-020-03502-2 |
[11] |
YANG J H, LEE K H, DU Q, YANG S, YUAN B J, QI L Y, WANG H Z. A membrane-associated NAC domain transcription factor XVP interacts with TDIF co-receptor and regulates vascular meristem activity. New Phytologist, 2020, 226(1): 59-74. doi: 10.1111/nph.16289.
doi: 10.1111/nph.16289 pmid: 31660587 |
[12] |
ZHONG R O, LEE C, HAGHIGHAT M, YE Z H. Xylem vessel- specific SND5 and its homologs regulate secondary wall biosynthesis through activating secondary wall NAC binding elements. New Phytologist, 2021, 231(4): 1496-1509. doi: 10.1111/nph.17425.
doi: 10.1111/nph.17425 |
[13] |
FANG S, SHANG X G, YAO Y, LI W X, GUO W Z. NST- and SND-subgroup NAC proteins coordinately act to regulate secondary cell wall formation in cotton. Plant Science, 2020, 301: 110657. doi: 10.1016/j.plantsci.2020.110657.
doi: 10.1016/j.plantsci.2020.110657 |
[14] | 文静, 王春涛, 杨永平. 植物木质部次生细胞壁加厚调控的研究进展. 西南林业大学学报(自然科学版), 2021, 41(2): 182-188. |
WEN J, WANG C T, YANG Y P. Advances in regulation of xylem secondary cell wall thickening in plants. Journal of Southwest Forestry University (Natural Science Edition), 2021, 41(2): 182-188. (in Chinese) | |
[15] |
CHEN D D, CHAI S C, MCINTYRE C L, XUE G P. Overexpression of a predominantly root-expressed NAC transcription factor in wheat roots enhances root length, biomass and drought tolerance. Plant Cell Reports, 2018, 37(2): 225-237. doi: 10.1007/s00299-017-2224-y.
doi: 10.1007/s00299-017-2224-y pmid: 29079898 |
[16] |
LIU X W, WANG T, BARTHOLOMEW E, BLACK K, DONG M M, ZHANG Y Q, YANG S, CAI Y L, XUE S D, WENG Y Q, REN H Z. Comprehensive analysis of NAC transcription factors and their expression during fruit spine development in cucumber (Cucumis sativus L.). Horticulture Research, 2018, 5: 31. doi: 10.1038/s41438-018-0036-z.
doi: 10.1038/s41438-018-0036-z |
[17] |
MEISRIMLER C N, PELGROM A J E, OUD B, OUT S, VAN DEN ACKERVEKEN G. Multiple downy mildew effectors target the stress-related NAC transcription factor LsNAC069 in lettuce. Plant Journal, 2019, 99(6): 1098-1115. doi: 10.1111/tpj.14383.
doi: 10.1111/tpj.14383 |
[18] |
朱自果, 阴启忠, 张庆田, 韩真, 张倩, 李勃. 欧洲葡萄‘粉红亚都蜜’NAC基因DRL1负向调节植物抗旱性. 园艺学报, 2020, 47(12): 2290-2300. doi: 10.16420/j.issn.0513-353x.2020-0185.
doi: 10.16420/j.issn.0513-353x.2020-0185 |
ZHU Z G, YIN Q Z, ZHANG Q T, HAN Z, ZHANG Q, LI B. DRL1,a NAC gene from Vitis vinifera Yatomo Rose, negatively regulates the drought tolerance. Acta Horticulturae Sinica, 2020, 47(12): 2290-2300. doi: 10.16420/j.issn.0513-353x.2020-0185. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2020-0185 |
|
[19] |
李小兰, 张瑞, 郝兰兰, 王鸿. 桃NAC家族基因生物信息学分析及其响应低温胁迫的表达特征. 浙江农业学报, 2022, 34(4): 766-780.
doi: 10.3969/j.issn.1004-1524.2022.04.13 |
LI X L, ZHANG R, HAO L L, WANG H. Bioinformatics analysis of peach NAC gene family and its expression characteristics in response to low temperature stress. Acta Agriculturae Zhejiangensis, 2022, 34(4): 766-780. (in Chinese)
doi: 10.3969/j.issn.1004-1524.2022.04.13 |
|
[20] |
JIN J F, WANG Z Q, HE Q Y, WANG J Y, LI P F, XU J M, ZHENG S J, FAN W, YANG J L. Genome-wide identification and expression analysis of the NAC transcription factor family in tomato (Solanum lycopersicum) during aluminum stress. BMC Genomics, 2020, 21(1): 288. doi: 10.1186/s12864-020-6689-7.
doi: 10.1186/s12864-020-6689-7 pmid: 32264854 |
[21] |
RAYMOND O, GOUZY J, JUST J, BADOUIN H, VERDENAUD M, LEMAINQUE A, VERGNE P, MOJA S, CHOISNE N, PONT C, CARRERE S, CAISSARD J C, COULOUX A, COTTRET L, AURY J M, SZECSI J, LATRASSE D, MADOUI M A, FRANCOIS L, FU X P, et al. The Rosa genome provides new insights into the domestication of modern roses. Nature Genetics, 2018, 50(6): 772-777. doi: 10.1038/s41588-018-0110-3.
doi: 10.1038/s41588-018-0110-3 pmid: 29713014 |
[22] |
HIBRAND S L, RUTTINK T, HAMAMA L, KIROV I, LAKHWANI D, ZHOU N N, BOURKE P M, DACCORD N, LEUS L, SCHULZ D, VAN DE GEEST H, HESSELINK T, VAN LAERE K, DEBRAY K, BALZERGUE S, THOUROUDE T, CHASTELLIER A, JEAUFFRE J, VOISINE L, GAILLARD S, et al. A high-quality genome sequence of Rosa chinensis to elucidate ornamental traits. Nature Plants, 2018, 4(7): 473-484. doi: 10.1038/s41477-018-0166-1.
doi: 10.1038/s41477-018-0166-1 |
[23] |
TIAN F, YANG D C, MENG Y Q, JIN J P, GAO G. PlantRegMap: charting functional regulatory maps in plants. Nucleic Acids Research, 2020, 48(D1): D1104-D1113. doi: 10.1093/nar/gkz1020.
doi: 10.1093/nar/gkz1020 |
[24] |
CHEN C J, CHEN H, ZHANG Y, THOMAS H R, FRANK M H, HE Y H, XIA R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 2020, 13(8): 1194-1202. doi: 10.1016/j.molp.2020.06.009.
doi: S1674-2052(20)30187-8 pmid: 32585190 |
[25] |
KUMAR S, STECHER G, LI M, KNYAZ C, TAMURA K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 2018, 35(6): 1547-1549. doi: 10.1093/molbev/msy096.
doi: 10.1093/molbev/msy096 pmid: 29722887 |
[26] |
LETUNIC I, BORK P. Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Research, 2021, 49(W1): W293-W296. doi: 10.1093/nar/gkab301.
doi: 10.1093/nar/gkab301 |
[27] |
BAILEY T L, BODEN M, BUSKE F A, FRITH M, GRANT C E, CLEMENTI L, REN J, LI W W, NOBLE W S. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Research, 2009, 37(Web Server issue): W202-W208. doi: 10.1093/nar/gkp335.
doi: 10.1093/nar/gkp335 |
[28] |
DUBOIS A, CARRERE S, RAYMOND O, POUVREAU B, COTTRET L, ROCCIA A, ONESTO J P, SAKR S, ATANASSOVA R, BAUDINO S, FOUCHER F, LE BRIS M, GOUZY J, BENDAHMANE M. Transcriptome database resource and gene expression atlas for the rose. BMC Genomics, 2012, 13: 638. doi: 10.1186/1471-2164-13-638.
doi: 10.1186/1471-2164-13-638 pmid: 23164410 |
[29] |
LOVE M I, HUBER W, ANDERS S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 2014, 15(12): 550. doi: 10.1186/s13059-014-0550-8.
doi: 10.1186/s13059-014-0550-8 |
[30] |
SU H Y, ZHANG S Z, YUAN X W, CHEN C T, WANG X F, HAO Y J. Genome-wide analysis and identification of stress-responsive genes of the NAM-ATAF1,2-CUC2 transcription factor family in apple. Plant Physiology Biochemistry, 2013, 71: 11-21. doi: 10.1016/j.plaphy.2013.06.022.
doi: 10.1016/j.plaphy.2013.06.022 |
[31] |
AHMAD M, YAN X H, LI J Z, YANG Q S, JAMIL W, TENG Y W, BAI S L. Genome wide identification and predicted functional analyses of NAC transcription factors in Asian pears. BMC Plant Biology, 2018, 18(1): 214. doi: 10.1186/s12870-018-1427-x.
doi: 10.1186/s12870-018-1427-x pmid: 30285614 |
[32] |
WANG Z Q, NI L J, LIU D N, FU Z K, HUA J F, LU Z G, LIU L Q, YIN Y L, LI H G, GU C S. Genome-wide identification and characterization of NAC family in Hibiscus hamabo Sieb. et Zucc. under various abiotic stresses. International Journal of Molecular Sciences, 2022, 23(6): 3055. doi: 10.3390/ijms23063055.
doi: 10.3390/ijms23063055 |
[33] |
高文杰, 刘娇, 马祥庆, 帅鹏. 杉木NAC基因家族基因的鉴定及生物信息学分析. 中南林业科技大学学报, 2022, 42(2): 108-118. doi: 10.14067/j.cnki.1673-923x.2022.02.012.
doi: 10.14067/j.cnki.1673-923x.2022.02.012 |
GAO W J, LIU J, MA X Q, SHUAI P. ldentification and bioinformatics analysis of Chinese fir NAC gene family. Journal of Central South University of Forestry & Technology, 2022, 42(2): 108-118. doi: 10.14067/j.cnki.1673-923x.2022.02.012. (in Chinese)
doi: 10.14067/j.cnki.1673-923x.2022.02.012 |
|
[34] |
SHAN X M, YANG K B, XU X R, ZHU C L, GAO Z M. Genome-wide investigation of the NAC gene family and its potential association with the secondary cell wall in Moso Bamboo. Biomolecules, 2019, 9(10): 609. doi: 10.3390/biom9100609.
doi: 10.3390/biom9100609 |
[35] |
WANG Q, GUO C, LI Z Y, SUN J H, DENG Z C, WEN L C, LI X X, GUO Y F. Potato NAC transcription factor StNAC053 enhances salt and drought tolerance in transgenic Arabidopsis. International Journal of Molecular Sciences, 2021, 22(5): 2568. doi: 10.3390/ijms22052568.
doi: 10.3390/ijms22052568 |
[36] |
ZHANG X, LONG Y, CHEN X X, ZHANG B L, XIN Y F, LI L Y, CAO S L, LIU F H, WANG Z G, HUANG H, ZHOU D G, XIA J X. A NAC transcription factor OsNAC3 positively regulates ABA response and salt tolerance in rice. BMC Plant Biology, 2021, 21(1): 546. doi: 10.1186/s12870-021-03333-7.
doi: 10.1186/s12870-021-03333-7 |
[37] |
曹瑞兰, 李知青, 欧阳雯婷, 胡冬南, 周增亮, 苏文娟, 陈霞, 刘娟. 油茶NAC基因鉴定及对干旱胁迫响应分析. 江西农业大学学报, 2021, 43(6): 1357-1370. doi: 10.13836/j.jjau.2021145.
doi: 10.13836/j.jjau.2021145 |
CAO R L, LI Z Q, OUYANG W T, HU D N, ZHOU Z L, SU W J, CHEN X, LIU J. Identification of NAC Gene in Camellia oleifera and Analysis of Its Response to Drought Stress. Acta Agriculturae Universitatis Jiangxiensis, 2021, 43(6): 1357-1370. doi: 10.13836/j.jjau.2021145. (in Chinese)
doi: 10.13836/j.jjau.2021145 |
|
[38] | 王佳丽, 王鹤冰, 杨慧勤, 胡若琳, 魏大勇, 汤青林, 王志敏. NAC转录因子在植物花发育中的作用. 生物工程学报, 2022, 38(8): 2687-2699. |
WANG J L, WANG H B, YANG H Q, HU R L, WEI D Y, TANG Q L, WANG Z M. The role of NAC transcription factors in flower development in plants. Chinese Journal of Biotechnology, 2022, 38(8): 2687-2699. (in Chinese) | |
[39] | 牛早柱, 赵艳卓, 陈展, 宣立锋, 牛帅科, 褚凤杰, 杨丽丽. 葡萄果实成熟相关NAC转录因子的筛选、克隆及表达分析. 果树学报, 2022, 39(7): 1137-1146. |
NIU Z Z, ZHAO Y Z, CHEN Z, XUAN L F, NIU S K, CHU F J, YANG L L. Screening, Cloning and Expression Analysis of NAC TranscriptionFactors Related to Grape Fruit ripening. Journal of Fruit Science, 2022, 39(7): 1137-1146. (in Chinese) | |
[40] |
MARTIN-PIZARRO C, VALLARINO J G, OSORIO S, MECO V, URRUTIA M, PILLET J, CASANAL A, MERCHANTE C, AMAYA I, WILLMITZER L, FERNIE A R, GIOVANNONI J J, BOTELLA M A, VALPUESTA V, POSE D. The NAC transcription factor FaRIF controls fruit ripening in strawberry. Plant Cell, 2021, 33(5): 1574-1593. doi: 10.1093/plcell/koab070.
doi: 10.1093/plcell/koab070 |
[41] |
SWARNKAR M K, KUMAR P, DOGRA V, KUMAR S. Prickle morphogenesis in rose is coupled with secondary metabolite accumulation and governed by canonical MBW transcriptional complex. Plant Direct, 2021, 5(6): e00325. doi: 10.1002/pld3.325.
doi: 10.1002/pld3.325 |
[42] |
ZHAO C S, AVCI U, GRANT E H, HAIGLER C H, BEERS E P. XND1, a member of the NAC domain family in Arabidopsis thaliana, negatively regulates lignocellulose synthesis and programmed cell death in xylem. Plant Journal, 2008, 53(3): 425-436. doi: 10.1111/j.1365-313X.2007.03350.x.
doi: 10.1111/j.1365-313X.2007.03350.x |
[43] | SAKAMOTO S, MITSUDA N. Reconstitution of a secondary cell wall in a secondary cell wall-deficient Arabidopsis mutant. Plant & cell physiology, 2015, 56(2): 299-310. |
[44] | 李媛, 陈金焕, 金曌, 侯景丫, 姜玉松, 邢海涛. 毛果杨NAC128基因在次生壁形成中的功能. 林业科学, 2020, 56(11): 62-72. |
LI Y, CHEN J H, JIN Z, HOU J Y, JIANG Y S, XING H T. Functions of NAC128 Gene from Populus trichocarpa in Secondary Cell Wall Formation. Scientia Silvae Sinicae, 2020, 56(11): 62-72. (in Chinese) | |
[45] |
GUO Y F, GAN S S. AtNAP, a NAC family transcription factor, has an important role in leaf senescence. Plant Journal, 2006, 46(4): 601-612. doi: 10.1111/j.1365-313X.2006.02723.x.
doi: 10.1111/j.1365-313X.2006.02723.x pmid: 16640597 |
[46] |
KOU X H, WATKINS C B, GAN S S. Arabidopsis AtNAP regulates fruit senescence. Journal of Experimental Botany, 2012, 63(17): 6139-6147. doi: 10.1093/jxb/ers266.
doi: 10.1093/jxb/ers266 |
[1] | LIU Xin,ZHANG YaHong,YUAN Miao,DANG ShiZhuo,ZHOU Juan. Transcriptome Analysis During Flower Bud Differentiation of Red Globe Grape [J]. Scientia Agricultura Sinica, 2022, 55(20): 4020-4035. |
[2] | LÜ ShiKai, MA XiaoLong, ZHANG Min, DENG PingChuan, CHEN ChunHuan, ZHANG Hong, LIU XinLun, JI WanQuan. Post-transcriptional Regulation of TaNAC Genes by Alternative Splicing and MicroRNA in Common Wheat (Triticum aestivum L.) [J]. Scientia Agricultura Sinica, 2021, 54(22): 4709-4727. |
[3] | LONG Qin,DU MeiXia,LONG JunHong,HE YongRui,ZOU XiuPing,CHEN ShanChun. Effect of Transcription Factor CsWRKY61 on Citrus Bacterial Canker Resistance [J]. Scientia Agricultura Sinica, 2020, 53(8): 1556-1571. |
[4] | SONG Yang,LIU HongDi,WANG HaiBo,ZHANG HongJun,LIU FengZhi. Molecular Cloning and Functional Characterization of VcNAC072 Reveals Its Involvement in Anthocyanin Accumulation in Blueberry [J]. Scientia Agricultura Sinica, 2019, 52(3): 503-511. |
[5] | DOU YiNing, QIN YuHai, MIN DongHong, ZHANG XiaoHong, WANG ErHui, DIAO XianMin, JIA GuanQing, XU ZhaoShi, LI LianCheng, MA YouZhi, CHEN Ming. Transcription Factor SiNAC18 Positively Regulates Seed Germination Under Drought Stress Through ABA Signaling Pathway in Foxtail Millet (Setaria italic L.) [J]. Scientia Agricultura Sinica, 2017, 50(16): 3071-3081. |
[6] | QI Yuan-cheng,WANG Fei-fei,LIU Wei-qun,GAO Mei-juan. Cloning and Analysis of NAC Transcription Factor in Tobacco(Nicotiana tabacum L.) [J]. Scientia Agricultura Sinica, 2011, 44(11): 2225-2233 . |
|