Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (22): 4500-4512.doi: 10.3864/j.issn.0578-1752.2022.22.014
• FOOD SCIENCE AND ENGINEERING • Previous Articles Next Articles
CHEN Yu(),ZHU HaoZhe,CHEN YiChun,LIU Zheng,DING Xi,GUO Yun,DING ShiJie(
),ZHOU GuangHong(
)
[1] | 周光宏, 丁世杰, 徐幸莲. 培养肉的研究进展与挑战. 中国食品学报, 2020, 20(5): 1-11. |
ZHOU G H, DING S J, XU X L. Progress and challenges in cultured meat. Journal of Chinese Institute of Food Science and Technology, 2020, 20(5): 1-11. (in Chinese) | |
[2] |
STOKER M, O'NEILL C, BERRYMAN S, WAXMAN V. Anchorage and growth regulation in normal and virus-transformed cells. International Journal of Cancer, 1968, 3(5): 683-693. doi: 10.1002/ijc.2910030517.
doi: 10.1002/ijc.2910030517. pmid: 5749478 |
[3] | DATAR I, BETTI M. Possibilities for an in vitro meat production system. Innovative Food Science & Emerging Technologies, 2010, 11(1): 13-22. |
[4] |
POWELL C A, SMILEY B L, MILLS J, VANDENBURGH H H. Mechanical stimulation improves tissue-engineered human skeletal muscle. American Journal of Physiology Cell Physiology, 2002, 283(5): C1557-C1565. doi: 10.1152/ajpcell.00595.2001.
doi: 10.1152/ajpcell.00595.2001. |
[5] |
VANDENBURGH H H, KARLISCH P, FARR L. Maintenance of highly contractile tissue-cultured avian skeletal myotubes in collagen gel. In Vitro Cellular & Developmental Biology, 1988, 24(3): 166-174. doi: 10.1007/BF02623542.
doi: 10.1007/BF02623542. |
[6] |
OKANO T, MATSUDA T. Tissue engineered skeletal muscle: Preparation of highly dense, highly oriented hybrid muscular tissues. Cell Transplant, 1998, 7(1): 71-82. doi: 10.1177/096368979800700110.
doi: 10.1177/096368979800700110. pmid: 9489765 |
[7] |
FURUHASHI M, MORIMOTO Y, SHIMA A, NAKAMURA F, ISHIKAWA H, TAKEUCHI S. Formation of contractile 3D bovine muscle tissue for construction of millimetre-thick cultured steak. NPJ Science of Food, 2021, 5(1): 6. doi: 10.1038/s41538-021-00090-7.
doi: 10.1038/s41538-021-00090-7 pmid: 33654079 |
[8] |
MACQUEEN L A, ALVER C G, CHANTRE C O, AHN S, CERA L, GONZALEZ G M, O'CONNOR B B, DRENNAN D J, PETERS M M, MOTTA S E, ZIMMERMAN J F, PARKER K K. Muscle tissue engineering in fibrous gelatin: implications for meat analogs. NPJ Science of Food, 2019, 3: 20. doi: 10.1038/s41538-019-0054-8.
doi: 10.1038/s41538-019-0054-8 pmid: 31646181 |
[9] |
BEN-ARYE T, SHANDALOV Y, BEN-SHAUL S, LANDAU S, ZAGURY Y, IANOCIVI I, LAVON N, LEVENBERG S. Textured soy protein scaffolds enable the generation of three-dimensional bovine skeletal muscle tissue for cell-based meat. Nature Food, 2020, 1(4): 210-220.
doi: 10.1038/s43016-020-0046-5 |
[10] |
GERSHLAK J R, HERNANDEZ S, FONTANA G, PERREAULT L R, HANSEN K J, LARSON S A, BINDER B Y, DOLIVO D M, YANG T, DOMINKO T, ROLLE M W, WEATHERS P J, MEDINA-BOLIVAR F, CRAMER C L, MURPHY W L, GAUDETTE G R. Crossing kingdoms: Using decellularized plants as perfusable tissue engineering scaffolds. Biomaterials, 2017, 125: 13-22. doi: 10.1016/j.biomaterials.2017.02.011.
doi: S0142-9612(17)30085-6 pmid: 28222326 |
[11] | MODULEVSKY D J, LEFEBVRE C, HAASE K, AI-REKABI Z, PELLING A E. Apple derived cellulose scaffolds for 3D mammalian cell culture. PLoS ONE, 2014, 9(5): e97835. |
[12] |
JONES J D, REBELLO A S, GAUDETTE G R. Decellularized spinach: An edible scaffold for laboratory-grown meat. Food Bioscience, 2021, 41: 100986.
doi: 10.1016/j.fbio.2021.100986 |
[13] |
FONG A P, YAO Z, ZHONG J W, JOHNSON N M, FARR G H, MAVES L, TAPSCOTT S J. Conversion of MyoD to a neurogenic factor: Binding site specificity determines lineage. Cell Reports, 2015, 10(12): 1937-1946. doi: 10.1016/j.celrep.2015.02.055.
doi: 10.1016/j.celrep.2015.02.055 pmid: 25801030 |
[14] | 苏艳红, 袁乾坤. Caveolin-3对骨骼肌,心肌伤病的调控机制. 中国学校体育: 高等教育, 2014(8): 6. |
SU Y H, YUAN Q K. Regulation mechanism of Caveolin-3 on skeletal muscle and myocardial Injury. China School Physical Education (Higher Education), 2014(8): 6. (in Chinese) | |
[15] |
MAURO A. Satellite cell of skeletal muscle fibers. The Journal of Biophysical and Biochemical Cytology, 1961, 9: 493-495. doi: 10.1083/jcb.9.2.493.
doi: 10.1083/jcb.9.2.493. pmid: 13768451 |
[16] |
LEPPER C, PARTRIDGE T A, FAN C M. An absolute requirement for Pax7-positive satellite cells in acute injury-induced skeletal muscle regeneration. Development, 2011, 138(17): 3639-3646. doi: 10.1242/ dev.067595.
doi: 10.1242/dev.067595 pmid: 21828092 |
[17] |
SOLEIMANI V D, PUNCH V G, KAWABE Y, JONES A E, PALIDWOR G A, PORTER C J, CROSS J W, CARVAJAL J J, KOCKX C E, VAN IJCKEN W F, PERKINS T J, RIGBY P W, GROSVELD F, RUDNICKI M A. Transcriptional dominance of Pax7 in adult myogenesis is due to high-affinity recognition of homeodomain motifs. Developmental Cell, 2012, 22(6): 1208-1220. doi: 10.1016/j.devcel.2012.03.014.
doi: 10.1016/j.devcel.2012.03.014 pmid: 22609161 |
[18] |
DING S, WANG F, LIU Y, LI S, ZHOU G, HU P. Characterization and isolation of highly purified porcine satellite cells. Cell Death Discovery, 2017, 3: 17003. doi: 10.1038/cddiscovery. 2017.3.
doi: 10.1038/cddiscovery.2017.3 pmid: 28417015 |
[19] |
ZAMMIT P S, GOLDING J P, NAGATA Y, HUDON V, PARTRIDGE T A, BEAUCHAMP J R. Muscle satellite cells adopt divergent fates: A mechanism for self-renewal? The Journal of Cell Biology, 2004, 166(3): 347-357.
doi: 10.1083/jcb.200312007 |
[20] |
ZAMMIT P S. Function of the myogenic regulatory factors Myf5, MyoD, Myogenin and MRF4 in skeletal muscle, satellite cells and regenerative myogenesis. Seminars in Cell & Developmental Biology, 2017, 72: 19-32. doi: 10.1016/j.semcdb.2017.11.011.
doi: 10.1016/j.semcdb.2017.11.011. |
[21] |
LE GRAND F, RUDNICKI M A. Skeletal muscle satellite cells and adult myogenesis. Current Opinion in Cell Biology, 2007, 19(6): 628-633.
doi: 10.1016/j.ceb.2007.09.012 pmid: 17996437 |
[22] |
BENTZINGER C F, WANG Y X, RUDNICKI M A. Building muscle: molecular regulation of myogenesis. Cold Spring Harbor Perspectives in Biology, 2012, 4(2): a008342. doi: 10.1101/cshperspect. a008342.
doi: 10.1101/cshperspect. a008342. |
[23] |
PARTON R G, WAY M, ZORZI N, STANG E. Caveolin-3 associates with developing T-tubules during muscle differentiation. The Journal of Cell Biology, 1997, 136(1): 137-154. doi: 10.1083/jcb. 136.1.137.
doi: 10.1083/jcb. 136.1.137. |
[24] |
SCHMIDT M, SCHÜLER S C, HÜTTNER S S, EYSS B, MALTZAHN J. Adult stem cells at work: regenerating skeletal muscle. Cellular and Molecular Life Sciences, 2019, 76(13): 2559-2570. doi: 10.1007/s00018-019-03093-6.
doi: 10.1007/s00018-019-03093-6 pmid: 30976839 |
[25] |
VERNEREY F J, LALITHA SRIDHAR S, MURALIDHARAN A, BRYANT S J. Mechanics of 3D cell-hydrogel interactions: experiments, models, and mechanisms. Chemical Reviews, 2021, 121(18): 11085-11148. doi: 10.1021/acs.chemrev.1c00046.
doi: 10.1021/acs.chemrev.1c00046 pmid: 34473466 |
[26] |
SCOTT R A, ROBINSON K G, KIICK K L, AKINS R E. Human adventitial fibroblast phenotype depends on the progression of changes in substrate stiffness. Advanced Healthcare Materials, 2020, 9(8): e1901593. doi: 10.1002/adhm.201901593.
doi: 10.1002/adhm.201901593. |
[27] | TAN J L, TIEN J, PIRONE D M, GRAY D S, BHADRIRAJU K, CHEN C S. Cells lying on a bed of microneedles: An approach to isolate mechanical force. Proceedings of the National Academy of Sciences 2003, 100(4): 1484-1489. |
[28] |
KOBAYASHI T, KIM H, LIU X, SUGIURA H, KOHYAMA T, FANG Q, WEN F Q, ABE S, WANG X, ATKINSON J J, SHIPLEY J M, SENIOR R M, RENNARD S I. Matrix metalloproteinase-9 activates TGF-β and stimulates fibroblast contraction of collagen gels. American Journal of Physiology Lung Cellular and Molecular Physiology, 2014, 306(11): L1006-L1015. doi: 10.1152/ajplung.00015. 2014.
doi: 10.1152/ajplung.00015. 2014. |
[29] |
HOGREBE N J, GOOCH K J. Direct influence of culture dimensionality on human mesenchymal stem cell differentiation at various matrix stiffnesses using a fibrous self-assembling peptide hydrogel. Journal of Biomedical Materials Research Part A, 2016, 104(9): 2356-2368. doi: 10.1002/jbm.a.35755.
doi: 10.1002/jbm.a.35755 pmid: 27163888 |
[30] |
MAHADIK B P, BHARADWAJ N A, EWOLDT R H, HARLEY B A. Regulating dynamic signaling between hematopoietic stem cells and niche cells via a hydrogel matrix. Biomaterials, 2017, 125: 54-64. doi: 10.1016/j.biomaterials.2017.02.013.
doi: S0142-9612(17)30087-X pmid: 28231508 |
[31] |
KOLESKY D B, HOMAN K A, SKYLAR-SCOTT M A, LEWIS J A. Three-dimensional bioprinting of thick vascularized tissues. Proceedings of the National Academy of Sciences, 2016, 113(12): 3179-3184. doi: 10.1073/pnas.1521342113.
doi: 10.1073/pnas.1521342113. |
[32] |
SCHIAFFINO S, REGGIANI C. Fiber types in mammalian skeletal muscles. Physiological Reviews, 2011, 91(4): 1447-1531. doi: 10.1152/ physrev.00031.2010.
doi: 10.1152/physrev.00031.2010 pmid: 22013216 |
[33] | EGGERT J M, DEPREUX F F, SCHINCKEL A P, GRANT A L, GERRARD D E. Myosin heavy chain isoforms account for variation in pork quality. Meat Science, 2002, 61(2): 117-126. doi: 10.1016/ s0309- 1740(01)00154-1. |
[34] |
FUJIE T, SHI X, OSTROVIDOV S, LIANG X B, NAKAJIMA K, CHEN Y, WU H K, KHADEMHOSSEINI A. Spatial coordination of cell orientation directed by nanoribbon sheets. Biomaterials, 2015, 53: 86-94. doi: 10.1016/j.biomaterials.2015.02.028.
doi: 10.1016/j.biomaterials.2015.02.028 pmid: 25890709 |
[35] |
LIU G Y, AGARWAL R, KO K R, RUTHVEN M, SARHAN H T, FRAMPTON J P. Templated assembly of collagen fibers directs cell growth in 2D and 3D. Scientific Reports, 2017, 7(1): 9628. doi: 10.1038/s41598-017-10182-8.
doi: 10.1038/s41598-017-10182-8 pmid: 28852121 |
[36] |
GROSSI A, YADAV K, LAWSON M A. Mechanical stimulation increases proliferation, differentiation and protein expression in culture: stimulation effects are substrate dependent. Journal of Biomechanics, 2007, 40(15): 3354-3362. doi: 10.1016/j.jbiomech. 2007.05.007.
doi: 10.1016/j.jbiomech. 2007.05.007. pmid: 17582421 |
[37] | 任海涛, 钟志勇, 郑佳琳, 饶子亮, 邝少松, 王刚, 唐小江. 鼠尾胶原蛋白提取、分离、纯化方法的建立及鉴定. 中国比较医学杂志, 2012, 22(11): 50-53. |
REN H T, ZHONG Z Y, ZHENG J L, RAO Z L, KUANG S S, WANG G, TANG X J. The establishment and appraisal of the methods for the extraction, separation and purification of rat tail collagen. Chinese Journal of Comparative Medicine, 2012, 22(11): 50-53. (in Chinese) |
[1] | YANG XinRan,MA XinHao,DU JiaWei,ZAN LinSen. Expression Pattern of m6A Methylase-Related Genes in Bovine Skeletal Muscle Myogenesis [J]. Scientia Agricultura Sinica, 2023, 56(1): 165-178. |
[2] | SHU JingTing,SHAN YanJu,JI GaiGe,ZHANG Ming,TU YunJie,LIU YiFan,JU XiaoJun,SHENG ZhongWei,TANG YanFei,LI Hua,ZOU JianMin. Relationship Between Expression Levels of Guangxi Partridge Chicken m6A Methyltransferase Genes, Myofiber Types and Myogenic Differentiation [J]. Scientia Agricultura Sinica, 2022, 55(3): 589-601. |
[3] | LIU Xin,ZHANG YaHong,YUAN Miao,DANG ShiZhuo,ZHOU Juan. Transcriptome Analysis During Flower Bud Differentiation of Red Globe Grape [J]. Scientia Agricultura Sinica, 2022, 55(20): 4020-4035. |
[4] | NIE XingHua, ZHENG RuiJie, ZHAO YongLian, CAO QingQin, QIN Ling, XING Yu. Genetic Diversity Evaluation of Castanea in China Based on Fluorescently Labeled SSR [J]. Scientia Agricultura Sinica, 2021, 54(8): 1739-1750. |
[5] | HU RongRong,DING ShiJie,GUO Yun,ZHU HaoZhe,CHEN YiChun,LIU Zheng,DING Xi,TANG ChangBo,ZHOU GuangHong. Effects of Trolox on Proliferation and Differentiation of Pig Muscle Stem Cells [J]. Scientia Agricultura Sinica, 2021, 54(24): 5290-5301. |
[6] | DU JiaWei,DU XinZe,YANG XinRan,SONG GuiBing,ZHAO Hui,ZAN LinSen,WANG HongBao. Interference in TP53INP2 Gene Inhibits the Differentiation of Bovine Myoblasts [J]. Scientia Agricultura Sinica, 2021, 54(21): 4685-4693. |
[7] | CHEN Yuan,CAI He,LI Li,WANG LinJie,ZHONG Tao,ZHANG HongPing. Alternative Splicing of TNNT3 and Its Effect on the Differentiation of MuSCs in Goat [J]. Scientia Agricultura Sinica, 2021, 54(20): 4466-4477. |
[8] | DU Qing,CHEN Ping,LIU ShanShan,LUO Kai,ZHENG BenChuan,YANG Huan,HE Shun,YANG WenYu,YONG TaiWen. Effect of Field Microclimate on the Difference of Soybean Flower Morphology Under Maize-Soybean Relay Strip Intercropping System [J]. Scientia Agricultura Sinica, 2021, 54(13): 2746-2758. |
[9] | SHI GuoLiang,WU Qiang,YANG NianWan,HUANG Cong,LIU WanXue,QIAN WanQiang,WAN FangHao. Gene Cloning, Expression Pattern and Molecular Characterization of Chitin Deacetylase 2 in Cydia pomonella [J]. Scientia Agricultura Sinica, 2021, 54(10): 2105-2117. |
[10] | ZHAO JiYu,REN BaiZhao,ZHAO Bin,LIU Peng,ZHANG JiWang. Relationship Between Growth and Development Characteristics and Yield Formation of Summer Maize Varieties Differing in Maturities [J]. Scientia Agricultura Sinica, 2021, 54(1): 46-57. |
[11] | QIN BenYuan,YANG Yang,ZHANG YanWei,LIU Min,ZHANG WanFeng,WANG HaiZhen,WU YiQi,ZHANG XueLian,CAI ChunBo,GAO PengFei,GUO XiaoHong,LI BuGao,CAO GuoQing. Isolation, Culture, Identification and Biological Characteristics of Pig Skeletal Muscle Satellite Cells [J]. Scientia Agricultura Sinica, 2020, 53(8): 1664-1676. |
[12] | LAI YuTing,ZHU FeiFei,WANG YiMin,GUO Hong,ZHANG LinLin,LI Xin,GUO YiWen,DING XiangBin. Effects of PSMB5 on the Proliferation and Myogenic Differentiation of Skeletal Muscle Satellite Cells [J]. Scientia Agricultura Sinica, 2020, 53(20): 4287-4296. |
[13] | YANG YunFei,XIN XiaoPing,LI JianDong. A Discussion on the Diffusion Pathway of Leymus Chinensis in the Natural Grassland of China Based on Differentiation in the Phenotypes and Genotypes [J]. Scientia Agricultura Sinica, 2020, 53(13): 2541-2549. |
[14] | ZHU JiangJiang,LIN YaQiu,WANG Yong,LIN Sen. Expression Profile and Correlations of Kruppel Like Factors During Caprine (Capra Hircus) Preadipocyte Differentiation [J]. Scientia Agricultura Sinica, 2019, 52(13): 2341-2351. |
[15] | LI Yan,CHEN MingMing,ZHANG JunXing,ZHANG LinLin,LI Xin,GUO Hong,DING XiangBin,LIU XinFeng. Effects of Bovine LncRNA-133a on the Proliferation and Differentiation of Skeletal Muscle Satellite Cells [J]. Scientia Agricultura Sinica, 2019, 52(1): 143-153. |
|