Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (18): 3998-4007.doi: 10.3864/j.issn.0578-1752.2021.18.017
• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles Next Articles
MA MengNan(),WANG HuiMing,WANG MiaoMiao,YAO Wang,ZHANG JinBi,PAN ZengXiang(
)
[1] |
ZHOU J W, PENG X W, MEI S Q. Autophagy in ovarian follicular development and atresia. International Journal of Biological Sciences, 2019, 15(4): 726-737.
doi: 10.7150/ijbs.30369 |
[2] |
MATSUDA F, INOUE N, MANABE N, OHKURA S. Follicular growth and atresia in mammalian ovaries: regulation by survival and death of granulosa cells. The Journal of Reproduction and Development, 2012, 58(1): 44-50.
doi: 10.1262/jrd.2011-012 |
[3] |
MAALOUF S W, LIU W S, PATE J L. MicroRNA in ovarian function. Cell and Tissue Research, 2016, 363(1): 7-18.
doi: 10.1007/s00441-015-2307-4 |
[4] |
FU X, HE Y, WANG X, PENG D, CHEN X, LI X, WAN Q. MicroRNA-16 Promotes Ovarian Granulosa Cell Proliferation and Suppresses Apoptosis Through Targeting PDCD4 in Polycystic Ovarian Syndrome. Cellular physiology and biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology, 2018, 48(2): 670-682.
doi: 10.1159/000491894 |
[5] |
WORKU T, REHMAN ZU, TALPUR HS, BHATTARAI D, ULLAH F, MALOBI N, KEBEDE T, YANG L. MicroRNAs: New Insight in Modulating Follicular Atresia: A Review. International Journal of Molecular Sciences, 2017, 18(2): 333.
doi: 10.3390/ijms18020333 |
[6] |
MEMCZAK S, JENS M, ELEFSINIOTI A, TORTI F, KRUEGER J, RYBAK A, MAIER L, MACKOWIAK S D, GREGERSEN L H, MUNSCHAUER M, LOEWER A, ZIEBOLD U, LANDTHALER M, KOCKS C, LE NOBLE F, RAJEWSKY N. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 2013, 495(7441): 333-338.
doi: 10.1038/nature11928 |
[7] |
LI X A, YANG L, CHEN L L. The biogenesis, functions, and challenges of circular RNAs. Molecular Cell, 2018, 71(3): 428-442.
doi: 10.1016/j.molcel.2018.06.034 |
[8] |
LIN F, LI R, PAN Z X, ZHOU B, YU D B, WANG X G, MA X S, HAN J, SHEN M, LIU H L. miR-26b promotes granulosa cell apoptosis by targeting ATM during follicular atresia in porcine ovary. PLoS One, 2012, 7(6): e38640.
doi: 10.1371/journal.pone.0038640 |
[9] |
SONTAKKE S D, MOHAMMED B T, MCNEILLY A S, DONADEU F X. Characterization of microRNAs differentially expressed during bovine follicle development. Reproduction (Cambridge, England), 2014, 148(3): 271-283.
doi: 10.1530/REP-14-0140 |
[10] |
CHENG J, HUANG J, YUAN S Z, ZHOU S, YAN W, SHEN W, CHEN Y, XIA X, LUO A Y, ZHU D, WANG S X. Circular RNA expression profiling of human granulosa cells during maternal aging reveals novel transcripts associated with assisted reproductive technology outcomes. PLoS ONE, 2017, 12(6): e0177888.
doi: 10.1371/journal.pone.0177888 |
[11] |
JIA W, XU B, WU J. Circular RNA expression profiles of mouse ovaries during postnatal development and the function of circular RNA epidermal growth factor receptor in granulosa cells. Metabolism, 2018, 85:192-204.
doi: 10.1016/j.metabol.2018.04.002 |
[12] | TAO H, XIONG Q, ZHANG F, ZHANG N, LIU Y, SUO X, LI X, YANG Q, CHEN M. Circular RNA profiling reveals chi_circ_0008219 function as microRNA sponges in pre-ovulatory ovarian follicles of goats (Capra hircus). Genomics, 2017, S0888-7543(17)30129. |
[13] |
TANGUY C, JULIA S, SILVIA B, ANNA M, LUCA P, RAFFAELLA R, FRANCESCA T, IRENE G, PETER V, DANIELA T. A large-scale association study to assess the impact of known variants of the human INHA gene on premature ovarian failure. Human Reproduction, 2009, 24(8): 2023-2028.
doi: 10.1093/humrep/dep090 |
[14] |
ZHANG J B, LIU Y, YAO W, LI Q F, LIU H L, PAN Z X. Initiation of follicular atresia: gene networks during early atresia in pig ovaries. Reproduction (Cambridge, England), 2018, 156(1): 23-33.
doi: 10.1530/REP-18-0058 |
[15] |
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001, 25(4): 402-408.
doi: 10.1006/meth.2001.1262 |
[16] | ZHANG Y, LIANG W, ZHANG P, CHEN J Y, QIAN H, ZHANG X, XU W R. Circular RNAs: emerging cancer biomarkers and targets. Journal of Experimental & Clinical Cancer Research, 2017, 36(1): 152. |
[17] |
ZHANG J B, XU Y X, LIU H L, PAN Z X. MicroRNAs in ovarian follicular atresia and granulosa cell apoptosis. Reproductive Biology and Endocrinology, 2019, 17(1): 9.
doi: 10.1186/s12958-018-0450-y |
[18] |
ZHANG C R, LIU J Q, LAI M H, LI J A, ZHAN J H, WEN Q D, MA H X. Circular RNA expression profiling of granulosa cells in women of reproductive age with polycystic ovary syndrome. Archives of Gynecology and Obstetrics, 2019, 300(2): 431-440.
doi: 10.1007/s00404-019-05129-5 |
[19] |
QIAN Y T, LU Y Q, RUI C, QIAN Y J, CAI M H, JIA R Z. Potential significance of circular RNA in human placental tissue for patients with preeclampsia. Cellular Physiology and Biochemistry, 2016, 39(4): 1380-1390.
doi: 10.1159/000447842 |
[20] |
DONG W, LI H, QING X, HUANG D, LI H. Identification and characterization of human testis derived circular RNAs and their existence in seminal plasma. Scientific Reports, 2016, 6(1): 39080-39080.
doi: 10.1038/srep39080 |
[21] |
GUO T Y, HUANG L, YAO W, DU X, LI Q Q, MA M L, LI Q F, LIU H L, ZHANG J B, PAN Z X. The potential biological functions of circular RNAs during the initiation of atresia in pig follicles. Domestic Animal Endocrinology, 2020, 72:106401.
doi: 10.1016/j.domaniend.2019.106401 |
[22] |
WANG K, LONG B, LIU F, WANG J X, LIU C Y, ZHAO B, ZHOU L Y, SUN T, WANG M, YU T, GONG Y, LIU J, DONG Y H, LI N, LI P F. A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223. European Heart Journal, 2016, 37(33): 2602-2611.
doi: 10.1093/eurheartj/ehv713 |
[23] |
HANSEN T B, JENSEN T I, CLAUSEN B H, BRAMSEN J B, FINSEN B, DAMGAARD C K, KJEMS J. Natural RNA circles function as efficient microRNA sponges. Nature, 2013, 495(7441): 384-388.
doi: 10.1038/nature11993 |
[24] | YAN X C, CAO J, LIANG L, WANG L, GAO F, YANG Z Y, DUAN J L, CHANG T F, DENG S M, LIU Y, DOU G R, ZHANG J, ZHENG Q J, ZHANG P, HAN H. miR-342-5p Is a Notch Downstream Molecule and Regulates Multiple Angiogenic Pathways Including Notch, Vascular Endothelial Growth Factor and Transforming Growth Factor β Signaling. Journal of the American Heart Association, 2016, 5(2), e003042. |
[25] | BI S S, PENG Q L, LIU W X, ZHANG C L, LIU Z Y. MicroRNA- 342-5p activates the Akt signaling pathway by downregulating PIK3R1 to modify the proliferation and differentiation of vascular smooth muscle cells. Experimental and Therapeutic Medicine, 2020, 20(6): 239. |
[26] |
WANG X G, CAO X K, DONG D, SHEN X M, CHENG J E, JIANG R, YANG Z X, PENG S J, HUANG Y Z, LAN X Y, ELNOUR I E, LEI C Z, CHEN H. Circular RNA TTN Acts as a miR-432 sponge to facilitate proliferation and differentiation of myoblasts via the IGF2/PI3K/AKT signaling pathway. Molecular Therapy Nucleic Acids, 2019, 18:966-980.
doi: 10.1016/j.omtn.2019.10.019 |
[27] |
DING Z, LIN J, SUN Y, CONG S, LIU S, ZHANG Y, CHEN Q, CHEN J. miR-122-5p negatively regulates the transforming growth factor-β/Smad signaling pathway in skeletal muscle myogenesis. Cell Biochemistry and Function, 2020, 38(2): 231-238.
doi: 10.1002/cbf.v38.2 |
[28] |
LI X, DU X, YAO W, PAN Z, LI Q. TGF-β/SMAD4 signaling pathway activates the HAS2-HA system to regulate granulosa cell state. Journal of Cellular Physiology, 2020, 235(3): 2260-2272.
doi: 10.1002/jcp.v235.3 |
[29] |
YANG L, DU X, LIU L, CAO Q, PAN Z, LI Q. miR-1306 Mediates the Feedback Regulation of the TGF-β/SMAD Signaling Pathway in Granulosa Cells. Cells, 2019, 8(4): 298.
doi: 10.3390/cells8040298 |
[30] |
YAO W, PAN Z X, DU X, ZHANG J B, LI Q F. miR-181b-induced SMAD7 downregulation controls granulosa cell apoptosis through TGF-β signaling by interacting with the TGFBR1 promoter. Journal of Cellular Physiology, 2018, 233(9): 6807-6821.
doi: 10.1002/jcp.v233.9 |
[31] |
VANORNY D A, MAYO K E. The role of Notch signaling in the mammalian ovary. Reproduction (Cambridge, England), 2017, 153(6): R187-R204.
doi: 10.1530/REP-16-0689 |
[32] |
GUO R, CHEN F, SHI Z. Suppression of Notch Signaling Stimulates Progesterone Synthesis by Enhancing the Expression of NR5A2 and NR2F2 in Porcine Granulosa Cells. Genes (Basel), 2020, 11(2), 120.
doi: 10.3390/genes11020120 |
[33] |
WESTFALL S D, HENDRY I R, OBHOLZ K L, RUEDA B R, DAVIS J S. Putative role of the phosphatidylinositol 3-kinase—Akt signaling pathway in the survival of granulosa cells. Endocrine, 2000, 12(3): 315-321.
doi: 10.1385/ENDO:12:3 |
[34] |
YANG L, QIZHUANG L V, LIU J, SHIKAI Q I, DENGGUANG F U. miR-431 regulates granulosa cell function through the IRS2/PI3K/ AKT signaling pathway. Journal of Reproduction and Development, 2020, 66(3): 231-239.
doi: 10.1262/jrd.2019-155 |
[1] | PAN YangYang, WANG JingLei, WANG Meng, WANG LiBin, ZHANG Qian, CHEN Rui, ZHANG TianTian, CUI Yan, XU GengQuan, FAN JiangFeng, YU SiJiu. Formation and Function of Paraspeckle During Pre-implantation Embryos Development in Yak [J]. Scientia Agricultura Sinica, 2023, 56(6): 1189-1203. |
[2] | TAO WenJing, ZHANG ZiTing, LIU Yuan, SONG Dan, LI XiangChen. Inhibitory Effect of N-acetylcysteine on Bisphenol A-Induced Apoptosis and Inflammatory Response in Porcine Kidney Cells [J]. Scientia Agricultura Sinica, 2023, 56(3): 549-558. |
[3] | LIU YuFang,CHEN YuLin,ZHOU ZuYang,CHU MingXing. miR-221-3p Regulates Ovarian Granulosa Cells Apoptosis by Targeting BCL2L11 in Small-Tail Han Sheep [J]. Scientia Agricultura Sinica, 2022, 55(9): 1868-1876. |
[4] | WANG JiaMin,SHI JiaChen,MA FangFang,CAI Yong,QIAO ZiLin. Effects of Soy Isoflavones on the Proliferation and Apoptosis of Yak Ovarian Granulosa Cells [J]. Scientia Agricultura Sinica, 2022, 55(8): 1667-1675. |
[5] | WU Yan,ZHANG Hao,LIANG ZhenHua,PAN AiLuan,SHEN Jie,PU YueJin,HUANG Tao,PI JinSong,DU JinPing. circ-13267 Regulates Egg Duck Granulosa Cells Apoptosis Through Let-7-19/ERBB4 Pathway [J]. Scientia Agricultura Sinica, 2022, 55(8): 1657-1666. |
[6] | LI WenHui,HE YiJing,JIANG Yao,ZHAO HongYu,PENG Lei,LI Jia,RUI Rong,JU ShiQiang. Effects of FB1 on Apoptosis and Autophagy of Porcine Oocytes in vitro Maturation [J]. Scientia Agricultura Sinica, 2022, 55(6): 1241-1252. |
[7] | MingJie XING,XianHong GU,XiaoHong WANG,Yue HAO. Effects of IL-15 Overexpression on Myoblast Differentiation of Porcine Skeletal Muscle Cells [J]. Scientia Agricultura Sinica, 2022, 55(18): 3652-3663. |
[8] | YANG ChangPei,WANG NaiXiu,WANG Kai,HUANG ZiQing,LIN HaiLan,ZHANG Li,ZHANG Chen,FENG LuQiu,GAN Ling. Effects and Mechanisms of Exogenous GABA Against Oxidative Stress in Piglets [J]. Scientia Agricultura Sinica, 2022, 55(17): 3437-3449. |
[9] | FENG YunKui,WANG Jian,MA JinLiang,ZHANG LiuMing,LI YongJun. Effects of miR-31-5p on the Proliferation and Apoptosis of Hair Follicle Stem Cells in Goat [J]. Scientia Agricultura Sinica, 2021, 54(23): 5132-5143. |
[10] | LI RunTing,CHEN LongXin,ZHANG LiMeng,HE HaiYing,WANG Yong,YANG RuoChen,DUAN ChunHui,LIU YueQin,WANG YuQin,ZHANG YingJie. Transient Expression and the Effect on Proliferation and Apoptosis of Granule Cell Stimulating Factor in Ovarian Fibroblasts [J]. Scientia Agricultura Sinica, 2021, 54(11): 2434-2444. |
[11] | HUANG Feng,WEI QiChao,LI Xia,LIU ChunMei,ZHANG ChunHui. Research Progress on Mechanisms of Apoptosis to Postmortem Tenderization in Muscle [J]. Scientia Agricultura Sinica, 2021, 54(10): 2192-2202. |
[12] | Xin ZHANG,KongLin HUO,XingXing SONG,DuoNi ZHANG,Wen HU,ChuanHuo HU,Xun LI. Effects of GnIH on Autophagy and Apoptosis of Porcine Ovarian Granulosa Cells via p38MAPK Signaling Pathway [J]. Scientia Agricultura Sinica, 2020, 53(9): 1904-1912. |
[13] | SHI TianPei,WANG XinYue,HOU HaoBin,ZHAO ZhiDa,SHANG MingYu,ZHANG Li. Analysis and Identification of circRNAs of Skeletal Muscle at Different Stages of Sheep Embryos Based on Whole Transcriptome Sequencing [J]. Scientia Agricultura Sinica, 2020, 53(3): 642-657. |
[14] | DU Yu,FAN XiaoXue,JIANG HaiBin,WANG Jie,FAN YuanChan,ZHU ZhiWei,ZHOU DingDing,WAN JieQi,LU JiaXuan,XIONG CuiLing,ZHENG YanZhen,CHEN DaFu,GUO Rui. The Potential Role of MicroRNAs and MicroRNA-Mediated Competing Endogenous Networks During the Developmental Process of Apis mellifera ligustica Worker’s Midgut [J]. Scientia Agricultura Sinica, 2020, 53(12): 2512-2526. |
[15] | PAN YangYang,WANG Meng,RUI Xian,WANG LiBin,HE HongHong,WANG JingLei,MA Rui,XU GengQuan,CUI Yan,FAN JiangFeng,YU SiJiu. RNA-Binding Motif Protein 3(RBM3) Expression is Regulated by Insulin-Like Growth Factor (IGF-1) for Protecting Yak (Bos grunniens) Cumulus Cells from Apoptosis During Hypothermia Stress [J]. Scientia Agricultura Sinica, 2020, 53(11): 2285-2296. |
|