Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (18): 3693-3706.doi: 10.3864/j.issn.0578-1752.2020.18.006

• PLANT PROTECTION • Previous Articles     Next Articles

Surveillance and Genetic Diversity Analysis of Puccinia striiformis f. sp. tritici in Gansu and Qinghai Provinces

HUANG MiaoMiao1,2,3(),CHEN WanQuan1,2,4(),CAO ShiQin4,5,SUN ZhenYu4,5,JIA QiuZhen4,5,GAO Li2,4,LIU Bo2,4,LIU TaiGuo2,3,4()   

  1. 1College of Plant Protection, Gansu Agricultural University, Lanzhou 730070
    2State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193
    3Key Laboratory of Biological Hazard Factors (Plant Source) Control of Agricultural Products Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100193
    4National Agricultural Experimental Station for Plant Protection at Gangu, Ministry of Agriculture and Rural Affairs, Gangu 741200, Gansu
    5Institute of Plant Protection, Gansu Academy of Agricultural Sciences, Lanzhou 730070
  • Received:2020-01-20 Accepted:2020-03-20 Online:2020-09-16 Published:2020-09-25
  • Contact: WanQuan CHEN,TaiGuo LIU E-mail:hmm0325@126.com;wqchen@ippcaas.cn;tgliu@ippcaas.cn

Abstract:

【Objective】In order to clarify the relationship about migration and inoculum source exchange of Puccinia striiformis f. sp. tritici (Pst) in spring epidemic time in Gansu and Qinghai provinces, and provide a theoretical basis for the epidemic prediction of wheat stripe rust and tracing the initial over-summering inoculum source and benefiting the effective disease management, the population genetic diversities and the potential spring epidemic migration of Pst were investigated. 【Method】The regions where stripe rust occurred frequently in the past years were selected as the investigation and studying regions. Four test sites were included in Gansu Province: Wenxian in Longnan City; Kongtong District in Pingliang City, Longdong; Linxia County, and Lintao County in Dingxi City, Longzhong; Two test sites were included in Qinghai Province: Chengbei District, Xining City; Huzhu County, Haidong City. In autumn of 2017, 82 wheat materials for trap nurseries were seeded sequentially in six regions according to the local wheat planting date in Gansu and Qinghai provinces. Field investigation was performed and molecular genotyping for 551 Pst samples collected from 82 materials with known resistant genes in six test sites of Gansu and Qinghai provinces from April to August 2018 was carried out by using 15 pairs of primers simple sequence repeat (SSR) markers. The GenAlEx and POPPR v2.5.0 software were used to analyze the data and the non-significant rbarD value might indicate linkage equilibrium was used to infer whether sexual recombination does occur or not. 【Result】The severity of the 82 wheat materials for trap nurseries of Pst in Gansu was more severe than that in Qinghai Province. The 15 SSR markers produced a total of 81 polymorphic alleles, ranging from 2 to 12 for each of the locus. A total of 505 unique multi locus genotypes (MLGs) were identified after clone correction cross the 551 Pst individuals, 32 MLGs were cloned and resampled between 2 and 6 times at six test sites. The entire genetic diversity (G) was 0.917 in six test sites from two provinces, the G value of Pingliang population (0.974) from Gansu was the highest, then it was Huzhu from Qinghai (0.957), and the Lintao population from Gansu was the lowest (0.841). The genetic variations of Pst mainly existed within the population. In spring epidemic, the migration occurred frequently among the populations. The gene flow was higher between Qinghai and Pingliang/Linxia than that was between Qinghai and Wenxian. The minimum spanning networks (MSN) and non-parametric discriminant analyses of principal components (DAPC) showed that the Huzhu and Xining populations from Qinghai had the closest relationship for the source of inoculum with the Pingliang and Linxia populations from Gansu, and the differences were the smallest. The genetic distance from the Lintao population was relatively far and the Lintao population was relatively independent. The Wenxian population was a completely independent population, with the largest difference from the other five populations. The analysis of linkage disequilibrium showed the presence of insignificant rbarD values in the Wenxian and Linxia populations from Gansu, and Xining population from Qinghai. The Wenxian population (rbarD=0.0139, P=0.186) showed obvious sexual recombination characteristics with a significant rbarD value. 【Conclusion】In spring epidemic season, the Pst source in Qinghai might originate from both Pingliang/Linxia and Wenxian, but it was mainly from Pingliang/Linxia. Signs for sexual reproduction were found in populations from Linxia and Wenxian of Gansu and Xining of Qinghai. The sexual reproduction might contribute to the richness of genetic diversity of Pst in Gansu and Qinghai.

Key words: Puccinia striiformis f. sp. tritici (Pst), wheat stripe rust, population genetic diversity, gene flow, sexual reproduction

Table 1

The collection information of the 551 Pst samples from six regions in Gansu and Qinghai provinces and the incidence results under the natural infection by Pst"

试验点
Test site
文县
Wenxian
平凉(崆峒区)
Pingliang (Kongtong)
临夏
Linxia
临洮
Lintao
互助
Huzhu
西宁(城北区)
Xining (Chengbei)
播种时间(年-月-日)
Day of seeding time (Year-month-day)
2017-10-08 2017-09-25 2017-09-28 2017-10-08 2018-04-04 2018-04-25
采集时间(年-月-日)
Day of collection (Year-month-day)
2018-04-14 2018-05-24 2018-06-16 2018-06-18 2018-08-08 2018-08-09
经度 Longitude 104°53′17″ 106°40′11″ 103°11′13″ 103°31′18″ 101°53′24″ 101°44′56″
纬度 Latitude 32°50′43″ 35°33′06″ 35°36′49″ 35°13′24″ 36°42′41″ 36°43′15″
海拔 Elevation (m) 786 1190 2010 1893 2360 2350
样本数量 Number of samples 27 132 156 178 47 11
编号 Code 品种名称 Cultivar IT/S/I (N)
1 水源11 Suwon 11 3/5/T (1) 3/5/T (7) 4/60/80 (5) 4/10/10 (3) 0 0
2 洛夫林10 Lovrin 10 3/5/T (1) 3/5/10 (8) 4/40/60 (6) 4/10/T (4) 0 0
3 洛夫林13 Lovrin 13 0 3/20/40 (4) 4/20/60 (6) 4/20/T (4) 0 0
4 抗引655 Kangyin 655 0 3/10/20 (5) 4/20/40 (5) 0 0 0
5 中四(无芒)Zhong 4 (un-awn) 0 0 4/40/60 (5) 0 0 0
6 贵农22 Guinong 22 0 4/10/10 (2) 0 4/T/T (2) 0 0
7 Triticum spelta album 0 0 0 0 0 0
8 Hybrid 46 0 0 0 4/10/10 (3) 0 0
9 Reichersberg 42 0 0 4/10/10 (3) 4/10/T (3) 0 0
10 Heines Peko 0 3/5/10 (6) 4/60/80 (5) 4/10/20 (4) 0 0
11 Nord Desprez 0 0 4/80/80 (6) 4/10/T (3) 4/10/T (2) 0
12 Compair 0 3/5/10 (2) 4/40/40 (5) 4/10/10 (3) 2/T/T (1) 3/T/T (1)
13 Carsten V 0 3/5/T (3) 4/20/20 (6) 0 3/T/T (2) 0
14 Spaldings Prolific 0 3/10/T (4) 4/10/20 (4) 4/10/T (2) 0 0
15 Heines Ⅶ 0 0 4/10/20 (4) 0 0 0
16 Joss Cambier 0 0 0 0 0 0
17 Mega 0 0 0 3/5/T (2) 0 0
18 Hobbit 0 3/T/T (4) 4/20/40 (5) 3/10/T (4) 3/40/20 (4) 0
19 铭贤169 Mingxian 169 4/60/40 (1) 4/40/20 (7) 4/60/60 (4) 4/20/10 (3) 4/40/20 (2) 4/40/40 (3)
20 铭贤169*6/Yr5 Mingxian 169*6/Yr5 0 3/10/T (2) 4/60/60 (6) 0 0 0
21 铭贤169*6/Yr10 Mingxian 169*6/Yr10 0 4/10/10 (5) 4/80/80 (4) 4/10/10 (6) 4/60/60 (7) 0
22 周麦22 Zhoumai 22 0 0 0 0 4/10/10 (4) 0
23 烟农15 Yannong 15 0 3/5/T (5) 4/80/80 (2) 4/20/20 (4) 0 0
24 鲁麦23 Lumai 23 3/10/10 (4) 4/20/10 (2) 4/80/80 (4) 4/60/40 (6) 0 0
25 冀麦38 Jimai 38 0 4/10/20 (6) 4/20/80 (6) 4/20/10 (6) 0 0
26 石4185 Shi 4185 0 3/10/10 (3) 4/20/20 (5) 4/60/30 (3) 4/T/T (3) 0
27 晋太170 Jintai 170 0 4/20/20 (1) 4/60/40 (3) 4/20/40 (4) 4/10/20 (3) 0
28 杨麦158 Yangmai 158 0 3/5/T (2) 4/20/20 (5) 0 0 0
29 兰天19 Lantain 19 3/5/T (4) 0 0 0 0 0
30 兰天31 Lantian 31 3/5/T (1) 0 4/T/T (2) 0 0 0
31 兰天26 Lantian 26 3/10/T (4) 0 0 0 0 0
32 天选50 Tianxuan 50 3/5/T (1) 0 0 0 0 0
33 陇鉴386 Longjian 386 0 0 4/T/T (2) 0 4/40/60 (7) 0
34 Chancellor 0 4/20/20 (1) 0 4/20/20 (4) 4/30/40 (7) 0
35 Ulka/8cc 0 4/20/30 (5) 0 3/5/T (1) 0
36 Maris Huntsman 0 4/10/10 (2) 0 0
37 小白冬麦 Xiaobaidongmai 0 3/10/T (1) 0 4/40/10 (2) 0 0
38 Khaplic/8cc 0 3/10/10 (1) 0 4/10/10 (5) 0 0
39 Armada 0 0 0 0 0 0
40 81-7241 0 3/20/20 (4) 4/10/T (4) 4/80/40 (3) 0
41 Aquila 0 4/5/10 (2) 4/20/20 (3)
42 赤牙糙 Chiyacao 0 4/10/30 (4) 4/10/10 (2) 4/80/60 (4) 0 0
43 蚂蚱麦 Mazhamai 0 3/10/T (3) 4/10/T (3) 4/5/10 (3) 0
44 92R137 0 0 4/10/10 (5) 4/T/T (2) 0 0
45 保丰104 Baofen 104 0 3/10/T (3) 4/10/T (1) 4/40/40 (5) 0 4/40/20 (5)
46 高加索 Gaojiasuo 0 0 4/20/10 (4) 0 0 0
47 京双16 Jingshuang 16 0 3/20/10 (1) 4/10/10 (1) 0 0 0
48 白兔3号 Baitu No. 3 0 3/10/20 (5) 4/10/10 (3) 4/10/10 (2) 0
49 绵麦37 Mianmai 37 0 0 4/10/10 (3) 0 0 0
50 繁6 Fan 6 0 4/5/T (3) 4/T/T (3) 4/10/T (3) 0 0
51 绵阳11 Mianyang 11 0 3/40/40 (5) 4/T/T (3) 4/10/T (3) 0 0
52 川麦107 Chuanmai 107 3/10/T(2) 2/5/T (2) 4/10/T (1) 4/T/T (1) 0 0
53 川农19 Chuannong 19 3/5/T(4) 0 4/20/T (1) 0 0 0
54 川农27 Chuannong 27 3/5/T(2) 0 4/20/10 (4) 0 0 0
55 川麦58 Chuanmai 58 3/5/T(1) 0 0 4/T/T (2) 0 0
56 川育23 Chuanyu 23 0 0 0 0 0 0
57 Avocet S*6/Yr9 0 0 4/5/10 (2) 0 0 0
58 Avocet S*6/Yr15 0 0 4/10/10 (2) 0 0
59 Avocet S*6/Yr24 0 0 0 0 0 0
60 Avocet S*6/Yr26 0 0 0 0 0 0
61 Jupateco R Yr18 0 0 0 0 0 0
62 C591 0 0 4/10/10 (3) 0 0 0
63 TcLr9 0 0 0 4/10/T (4) 0 0
64 TcLr16 0 0 4/T/T (2) 4/40/10 (3) 0 0
65 TcLr19 0 4/40/10 (1) 4/10/10 (3) 0 0 0
66 TcLr24 0 3/10/10 (4) 4/10/10 (2) 0 0 0
67 TcLr26 0 3/5/T (4) 4/10/T (2) 0 0 0
68 TcLr38 0 0 0 0 0 0
69 TcLr46 0 0 4/60/40 (3) 0 0 0
70 ISr5 Ra 0 0 4/60/80 (4) 0 0 0
71 ISr6 Ra 0 0 0 0 0 0
72 Verstein Sr9e 0 3/40/20 (6) 0 0 0
73 W2691Sr10 0 4/10/10 (6) 4/10/20 (2) 4/20/40 (5) 0 0
74 ISr11 Ra 0 0 0 0 0 0
75 CnS-T-mono-deri=Sr21 0 3/T/T (3) 0 0 0 0
76 LcSr24Ag 0 3/20/T (5) 4/10/T (1) 4/10/10 (3) 0 0
77 Ealge Sr26 0 2/5/T (1) 4/10/10 (1) 4/5/T (1) 0 0
78 BtSr30 Wst 0 3/10/T (2) 0 0 0 0
79 Sr31/6*LMPG 3/5/T (1) 2/T/T (2) 4/5/T (1) 4/5/T (3) 0 0
80 W2691 SrTt-1=Sr36 0 3/10/T (5) 4/5/T (1) 4/5/T (2) 0 0
81 Trident Sr38 0 0 0 0 0 0
82 Little Club 0 4/20/30 (1) 0 0 0 4/T/T (2)

Table 2

Information of the 15 SSR primers for Pst used in this study"

引物名称
Primer name
重复单元
Repeat motif
引物序列
Sequence (5′-3′)
染料
Dye
退火温度
Tm (℃)
参考文献
Reference
RJ03 (TGG)8 F: GCAGCACTGGCAGGTGG FAM 61 文献[15]
Reference [15]
R: GATGAATCAGGATGGCTCC
RJ04 (TGG)8 F: GTGGGTTGGGCTGGAGTC HEX 58 文献[15]
Reference [15]
R: GCTAATCCATTCCACGCACC
RJ12 (AC)7 F: ATC ATT CCG ATT TCT TTC TCA CC FAM 56
文献[15]
Reference [15]
R: TCA CAC TGA TCC CAA TAG ATC AG
RJ15 (TG)7 F: ATC GAG CAC GTC CAA ATC G HEX 56
文献[15]
Reference [15]
R: CAC TGG ACA GAC GAC GGT TG
RJ18 (TGT)5 F: CTG CCC ATG CTC TTC GTC ROX 59
文献[15]
Reference [15]
R: GAT GAA GTG GGT GCT GCT G
RJ20 (CAG)4 F: AGA AGA TCG ACG CAC CCG ROX 56
文献[15]
Reference [15]
R: CCT CCG ATT GGC TTA GGC
RJ21 (GTT)6 F: TTC CTG GAT TGA ATT CGT CG FAM 55
文献[15]
Reference [15]
R: CAG TTC TCA CTC GGA CCC AG
RJ24 (GTT)5+9 F: TTG CTG AGT AGT TTG CGG TGA G HEX 58 文献[15]
Reference [15]
R: CTC AAG CCC ATC CTC CAA CC
RJ27 (TC)10 F: CGTCCCGACTAATCTGGTCC ROX 52 文献[15]
Reference [15]
R: ATGAGTTAGTTTAGATCAGGTCGAC
CPS08 (CAG)14 F: GAT AAG AAA CAA GGG ACA GC FAX 56 文献[2]
Reference [2]
R: CAG TGA ACC CAA TTA CTC AG
CPS09 (GTT)9 F: CGG GAG AAG ACC TGA GC ROX 55 文献[2]
Reference [2]
R: AGA AAA CGG AAT GTA ATG TG
CPS10 (TAG)8 F: TCT ACT GGG CAG ACT GGT C HEX 56 文献[2]
Reference [2]
R: CGG TTT GTT TTG TCG TTT C
CPS15 (ATG)5 F: GAT GGG GAA AAG TAA GAA GT FAM 56 文献[2]
R: GGT GGG GGA TGT AAG TAT GTA Reference [2]
CPS34 (TTTGG)4 F: GTT GGC TAC GAG TGG TCA TC HEX 56 文献[2]
R: TAA CAC TAC ACA AAA GGG GTC Reference [2]
CPS36 (CTCTAG)3 F: TCC AGG CAG TAA ATC AGA CGC ROX 58 文献[2]
R: ATC AGC AGG TGT AGC CCC ATC Reference [2]

Table 3

Information of genetic diversity about 15 SSR primers"

引物
Primer name
等位基因
Allele
均匀度
Evenness
缺失比率
Missing ratio (%)
RJ12 6 0.3695 2.72
RJ15 6 0.3383 5.63
RJ18 12 0.7109 8.89
RJ27 4 0.2719 4.72
RJ20 5 0.8056 8.71
RJ21 6 0.5285 2.36
RJ24 7 0.8571 3.63
CPS08 6 0.7591 0.36
CPS09 4 0.8648 9.62
CPS10 2 0.2997 0
CPS15 7 0.8171 1.09
CPS34 2 0.5949 0
CPS36 3 0.6670 0.36
RJ03 7 0.8327 5.63
RJ04 4 0.2982 6.17
平均Mean 5.4 0.6010 3.99

Table 4

Resampled MLGs and genotypic diversity statistics of the clone-corrected data within all populations examined in this study"

群体
Population
样本数
N
多基因座基因型
MLG
重采基因型编号及数量
Resampled MLG codes and numbers
基因型多样性
G
标准化关联指数rbarD P
P value
文县 Wenxian 27 23 61 (2), 427 (3), 429 (2) 0.852 0.0139 0.186
临洮 Lintao 132 111 29 (3), 74 (2), 169 (2), 184 (6), 185 (4), 187 (2), 192 (2), 193 (2), 194 (3), 197 (3), 210 (2), 228 (2) 0.841 0.1163 0.001
平凉 Pingliang 156 152 94 (2), 251 (2), 260 (2), 433 (2) 0.974 0.0286 0.001
临夏 Linxia 178 164 141 (5), 143 (2), 146 (2), 254 (2), 289 (2), 308 (2), 314 (2), 320 (2), 394 (2), 489 (2) 0.921 0.0110 0.010
互助 Huzhu 47 45 358 (2), 358 (2) 0.957 0.0416 0.002
西宁 Xining 11 10 272 (2) 0.909 0.0718 0.025
总数 Total 551 505 32 0.917 0.0260 0.001

Table 5

Pairwise population FST values (lower diagonal) and Nm (upper diagonal) among six populations of Pst collected from Gansu and Qinghai provinces"

文县Wenxian 临洮Lintao 平凉Pingliang 临夏Linxia 互助Huzhu 西宁Xining
文县 Wenxian 2.408 2.337 3.408 2.916 1.074
临洮 Lintao 0.143*** 3.567 3.541 4.426 1.036
平凉 Pingliang 0.156*** 0.098*** 6.238 5.217 2.601
临夏 Linxia 0.114*** 0.103*** 0.056*** 8.055 2.072
互助 Huzhu 0.112*** 0.084*** 0.069*** 0.043*** 1.373
西宁 Xining 0.234*** 0.246*** 0.124*** 0.138*** 0.178***

Fig. 1

Minimum spanning network (MSN) of all isolates of Pst based on Bruvo’s distance"

Fig. 2

The discriminant analysis of principal components (DAPC) of different Pst populations Different colors represent individuals within the corresponding Pst population"

Table 6

Analysis of molecular variance (AMOVA) for six populations of Pst sampled from Gansu and Qinghai provinces"

变异来源
Source of variance
自由度
Degree of freedom
变异组分
Variance component
变异百分数
Percentage of variation (%)
遗传分化系数
FST
P
P value (rand≥data)
群体间Among populations 5 0.393 13 0.131 0.001
样本间Among individual 545 0.620 21
样本内Within individual 551 1.983 66
总数Total 1101 2.996 100

Fig. 3

Linkage disequilibrium analysis of three Pst populations from Gansu and Qinghai"

[1] 李振岐, 曾士迈. 中国小麦锈病, 北京: 中国农业出版社, 2002.
LI Z Q, ZENG S M. Wheat Rust in China. Beijing: China Agriculture Press, 2002. (in Chinese)
[2] CHEN C Q, ZHENG W M, BUCHENAUER H, HUANG L L, LU N H, KANG Z S. Isolation of microsatellite loci from expressed sequence tag library of Puccinia striiformis f. sp. tritici. Molecular Ecology Resources, 2009,9:236-238.
doi: 10.1111/j.1755-0998.2008.02423.x pmid: 21564613
[3] CHEN X M. Epidemiology and control of stripe rust [ Puccinia striiformis f. sp. tritici] on wheat. Canadian Journal of Plant Pathology, 2005,27:314-337.
doi: 10.1080/07060660509507230
[4] 马占鸿. 中国小麦条锈病研究与防控. 植物保护学报, 2018,45(1):1-6.
MA Z H. Researches and control of wheat stripe rust in China. Journal of Plant Protection, 2018,45(1):1-6. (in Chinese)
[5] 陈万权, 康振生, 马占鸿, 徐世昌, 金社林, 姜玉英. 中国小麦条锈病综合治理理论与实践. 中国农业科学, 2013,46(20):4254-4262.
doi: 10.3864/j.issn.0578-1752.2013.20.008
CHEN W Q, KANG Z S, MA Z H, XU S C, JIN S L, JIANG Y Y. Integrated management of wheat stripe rust caused by Puccinia striiformis f. sp. tritici in China. Scientia Agricultura Sinica, 2013,46(20):4254-4262. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2013.20.008
[6] HU X P, MA L J, LIU T G, WANG C H, PENG Y L, PU Q, XU X M. Population genetic analysis of Puccinia striiformis f. sp. tritici suggests two distinct populations in Tibet and the other regions of China. Plant Disease, 2017,101(2):288-296.
doi: 10.1094/PDIS-02-16-0190-RE pmid: 30681929
[7] LIANG J M, LIU X F, LI Y, WAN Q, MA Z H, LUO Y. Population genetic structure and the migration of Puccinia striiformis f. sp. tritici between the Gansu and Sichuan Basin populations of China. Phytopathology, 2016,106(2):192-201.
doi: 10.1094/PHYTO-03-15-0081-R pmid: 26506459
[8] LIANG J M, WAN Q, LUO Y, MA Z H. Population genetic structures of Puccinia striiformis in Ningxia and Gansu provinces of China. Plant Disease, 2013,97(4):501-509.
doi: 10.1094/PDIS-01-12-0072-RE
[9] LIU X F, HUANG C, SUN Z Y, LIANG J M, LUO Y, MA Z H. Analysis of population structure of Puccinia striiformis in Yunnan Province of China by using AFLP. European Journal of Plant Pathology, 2011,129:43-55.
doi: 10.1007/s10658-010-9688-8
[10] LU N H, WANG J, CHEN X M, ZHAN G M, CHEN C Q, HUANG L L, KANG Z S. Spatial genetic diversity and interregional spread of Puccinia striiformis f. sp. tritici in Northwest China. European Journal of Plant Pathology, 2011,131:685-693.
doi: 10.1007/s10658-011-9842-y
[11] 陆宁海, 郑文明, 王建锋, 詹刚明, 黄丽丽, 康振生. 陇南地区小麦条锈菌群体遗传多样性SSR分析. 中国农业科学, 2009,42(8):2763-2770.
LU N H, ZHENG W M, WANG J F, ZHAN G M, HUANG L L, KANG Z S. SSR analysis of population genetic diversity of Puccinia striiformis f. sp. tritici in Longnan Region of Gansu, China. Scientia Agricultura Sinica, 2009,42(8):2763-2770. (in Chinese)
[12] 张羽. 甘肃、青海、新疆、西藏四省小麦条锈菌毒性及遗传多样性分析[D]. 雅安: 四川农业大学, 2013.
ZHANG Y. Virulence and genetic polymorphism of Puccinia striiformis f. sp. tritici in Gansu, Qinghai, Xinjiang and Tibet provinces[D]. Yaan: Sichuan Agricultural University, 2013. (in Chinese)
[13] 张勃, 黄瑾, 贾秋珍, 曹世勤, 孙振宇, 金社林. 甘肃中部及周边地区小麦条锈菌种群的遗传结构分析. 植物保护学报, 2015,42(3):334-339.
ZHANG B, HUANG J, JIA Q Z, CAO S Q, SUN Z Y, JIN S L. Analysis of population genetic structure of Puccinia striiformis f. sp. tritici from central Gansu and the surrounding areas. Journal of Plant Protection, 2015,42(3):334-339. (in Chinese)
[14] 陈万权, 刘太国, 陈巨莲, 徐世昌. 小麦抗病虫性评价技术规范. 第1 部分: 小麦抗条锈病评价技术规范: NY/T1443.1-2007. 2007-12-01)[2020-01-20].
CHEN W Q, LIU T G, CHEN J L, XU S C. Rules for resistance evaluation of wheat to diseases and insect pests. Part 1: Rule for resistance evaluation of wheat to yellow rust (Puccinia striiformis West. f. sp. tritici Eriks.et Henn.): NY/T1443.1-2007. 2007-12-01) [2020-01-20]. (in Chinese)
[15] ENJALBERT J, DUAN X, GIRAUD T, VAUTRIN D, DE VALLAVIEILLE- POPE C, SOLIGNAC M. Isolation of twelve microsatellite loci, using an enrichment protocol, in the phytopathogenic fungus Puccinia striiformis f. sp. tritici. Molecular Ecology Notes, 2002,2:563-565.
[16] PEAKALL R, SMOUSE P E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics, 2012,28(19):2537-2539.
doi: 10.1093/bioinformatics/bts460
[17] KAMVAR Z N, BROOKS J C, GRüNWALD N J. Novel R tools for analysis of genome-wide population genetic data with emphasis on clonality. Frontiers in Genetics, 2015, 6: Article 208.
doi: 10.3389/fgene.2015.00348 pmid: 26734060
[18] BROWN A H D, FELDMAN M W, NEVO E. Multilocus structure of natural populations of Hordeum spontaneum. Genetics, 1980,96:523-536.
pmid: 17249067
[19] GRÜNWALD N J, EVERHART S E, KNAUS B J, KAMVAR Z N. Best practices for population genetic analyses. Phytopathology, 2017,107(9):1000-1010.
doi: 10.1094/PHYTO-12-16-0425-RVW pmid: 28513284
[20] BRUVO R, MICHIELS N K, D’SOUZA T G, SCHULENBURG H. A simple method for the calculation of microsatellite genotype distances irrespective of ploidy level. Molecular Ecology, 2004,13:2101-2106.
doi: 10.1111/j.1365-294X.2004.02209.x pmid: 15189230
[21] JOMBART T, DEVILLARD S, BALLOUX F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genetics, 2010,11:94.
doi: 10.1186/1471-2156-11-94 pmid: 20950446
[22] 陈长卿. 中国小麦条锈菌分子群体遗传结构研究[D]. 杨凌: 西北农林科技大学, 2008.
CHEN C Q. Molecular population genetic structure of Puccinia striiformis f. sp. tritici in China[D]. Yangling: Northwest A&F University, 2008. (in Chinese)
[23] 周祥椿, 杜久元, 尚勋武. 甘肃省小麦品种的现状及对今后育种工作的思考. 甘肃农业科技, 2000(2):3-7.
ZHOU X C, DU J Y, SHANG X W. The present situation of wheat varieties and the thinking of breeding in future in Gansu Province. Gansu Agricultural Science and Technology, 2000(2):3-7. (in Chinese)
[24] 周祥椿, 杜久元. 陇南小麦生产品种抗条锈病持久性研究. 麦类作物学报, 2006,26(1):108-112.
doi: 10.7606/j.issn.1009-1041.2006.01.028
ZHOU X C, DU J Y. Study on resistance durability of commercial wheat cultivars grown in southern region of Gansu Province to stripe rust. Journal of Triticeae Crops, 2006,26(1):108-112. (in Chinese)
doi: 10.7606/j.issn.1009-1041.2006.01.028
[25] DUAN X, TELLIER A, WAN A, LECONTE M, VALLAVIEILLE-POPE C, ENJALBERT J. Puccinia striiformis f. sp. tritici presents high diversity and recombination in the over-summering zone of Gansu, China. Mycologia, 2010,102(1):44-53.
doi: 10.3852/08-098 pmid: 20120228
[26] MBOUP M, LECONTE M, GAUTIER A, WAN A M, CHEN W, DE VALLAVIEILLE-POPE C, ENJALBERT J. Evidence of genetic recombination in wheat yellow rust populations of a Chinese oversummering area. Fungal Genetics and Biology, 2009,46:299-307.
doi: 10.1016/j.fgb.2008.12.007 pmid: 19570502
[27] MA L J, KONG X Y, QIAO J X, AN F, HU X P, XU X M. Overwintering of Puccinia striiformis f. sp. tritici on winter wheat at varying altitudes in Gansu and Qinghai provinces. Plant Disease, 2016,100(6):1138-1145.
doi: 10.1094/PDIS-09-15-1112-RE pmid: 30682289
[28] HOVMøLLER M S, JUSTESEN A F, BROWN J K M. Clonality and long-distance migration of Puccinia striiformis f. sp. tritici in north-west Europe. Plant Pathology, 2002,51:24-32.
[29] MCDONALD B A, LINDE C. The population genetics of plant pathogens and breeding strategies for durable resistance. Euphytica, 2002,124:163-180.
doi: 10.1023/A:1015678432355
[30] ZHAN G M, ZHUANG H, WANG F P, WEI G R, HUANG L L, KANG Z S. Population genetic diversity of Puccinia striiformis f. sp. tritici on different wheat varieties in Tianshui, Gansu Province. World Journal of Microbiology and Biotechnology, 2013,29:173-181.
doi: 10.1007/s11274-012-1170-7 pmid: 23054697
[31] ZHAO J, WANG L, WANG Z Y, CHEN X M, ZHANG H C, YAO J N, ZHAN G M, CHEN W, HUANG L L, KANG Z S. Identification of eighteen Berberis species as alternate hosts of Puccinia striiformis f. sp. tritici and virulence variation in the pathogen isolates from natural infection of barberry plants in China. Phytopathology, 2013,103(9):927-934.
doi: 10.1094/PHYTO-09-12-0249-R pmid: 23514262
[32] JIN Y, SZABO L J, CARSON M. Century-old mystery of Puccinia striiformis life history solved with the identification of Berberis as an alternate host. Phytopathology, 2010,100(5):432-435.
doi: 10.1094/PHYTO-100-5-0432 pmid: 20373963
[33] 姚强. 青海省小麦条锈病流行规律研究[D]. 杨凌: 西北农林科技大学, 2018.
YAO Q. Study on the epidemic rule of wheat stripe rust in Qinghai Province[D]. Yangling: Northwest A&F University, 2018. (in Chinese)
[34] 杜志敏, 姚强, 黄淑杰, 闫佳会, 候璐, 郭青云, 赵杰, 康振生. 青海东部小麦条锈菌转主寄主小檗资源调查与鉴定. 植物病理学报, 2019,43(3):370-378.
DU Z M, YAO Q, HUANG S J, YAN J H, HOU L, GUO Q Y, ZHAO J, KANG Z S. Investigation and identification of barberry as alternate hosts for Puccinia striiformis f. sp. tritici in eastern Qinghai. Acta Phytopathologica Sinica, 2019,43(3):370-378. (in Chinese)
[35] 赵杰, 郑丹, 左淑霞, 王龙, 黄丽丽, 康振生. 小麦条锈菌有性生殖与毒性变异的研究进展. 植物保护学报, 2018,45(1):7-19.
ZHAO J, ZHENG D, ZUO S X, WANG L, HUANG L L, KANG Z S. Research advances in alternate host and sexual reproduction of wheat yellow rust pathogen Puccinia striiformis f. sp. tritici Erikss. et Henn. Journal of Plant Protection, 2018,45(1):7-19. (in Chinese)
[1] HU ChaoYue, WANG FengTao, LANG XiaoWei, FENG Jing, LI JunKai, LIN RuiMing, YAO XiaoBo. Resistance Analyses on Wheat Stripe Rust Resistance Genes to the Predominant Races of Puccinia striiformis f. sp. tritici in China [J]. Scientia Agricultura Sinica, 2022, 55(3): 491-502.
[2] SUN XiaoFang,LIU Min,PAN TingMin,GONG GuoShu. Mating Type and Fertility of Cochliobolus heterostrophus Causing Southern Corn Leaf Blight in Sichuan Province [J]. Scientia Agricultura Sinica, 2021, 54(12): 2547-2558.
[3] MoRan XU,RuiMing LIN,FengTao WANG,Jing FENG,ShiChang XU. Evaluation of Resistance to Stripe Rust and Genetic Diversity and Detection of Resistance Genes in 103 Wheat Cultivars (Lines) [J]. Scientia Agricultura Sinica, 2020, 53(4): 748-760.
[4] WEI Xiao,ZHANG QiuPing,LIU Ning,ZHANG YuPing,XU Ming,LIU Shuo,ZHANG YuJun,MA XiaoXue,LIU WeiSheng. Genetic Diversity of the Prunus salicina L. from Different Sources and Their Related Species [J]. Scientia Agricultura Sinica, 2019, 52(3): 568-578.
[5] HUANG Liang, LIU TaiGuo, XIAO XingZhi, QU ChunYan, LIU Bo, GAO Li, LUO PeiGao, CHEN WanQuan. Evaluation of Stripe Rust Resistance and Molecular Detection of Yr Genes of 79 Wheat Varieties (Lines) in China [J]. Scientia Agricultura Sinica, 2017, 50(16): 3122-3134.
[6] ZHOU Xin-li, ZHAN Gang-ming, HUANG Li-li, HAN De-jun, KANG Zhen-sheng. Evaluation of Resistance to Stripe Rust in Eighty Abroad Spring Wheat Germplasms [J]. Scientia Agricultura Sinica, 2015, 48(8): 1518-1526.
[7] WANG Tu-hong, GUO Qing-yun, LIN Rui-ming, YAO Qiang, FENG Jing, WANG Feng-tao, CHEN Wan-quan, XU Shi-chang. Postulation of Stripe Rust Resistance Genes in Chinese 40 Wheat Landraces and 40 Commercial Cultivars in the Southern Region of Gansu Province [J]. Scientia Agricultura Sinica, 2015, 48(19): 3834-3847.
[8] WANG Ling, ZUO Shi-min, ZHANG Ya-fang, CHEN Zong-xiang, HUANG Shi-wen, PAN Xue-biao. SSR Analysis of Population Genetic Structure of Rice Sheath Blight Causing Agent Rhizoctonia solani AG1-IA Collected from Eight Provinces (Autonomous Region) in Southern China [J]. Scientia Agricultura Sinica, 2015, 48(13): 2538-2548.
[9] HU Ning, YAO Ke-min, YUAN Qian-hua, JIA Shi-rong, HE Mei-dan, JIANG Xiao-dong, XU Li-xin, HU Ji-chao, PEI Xin-wu. The Maximum Threshold Distances of Rice Gene Flow and Its Temporal and Spatial Distribution in the Hainan Crop Winter-Season Multiplication Region of China [J]. Scientia Agricultura Sinica, 2014, 47(23): 4551-4562.
[10] JIA Shi-Rong-1, YUAN Qian-Hua-2, WANG Feng-3, YAO Ke-Min-4, PEI Xin-Wu-1, HU Ning-4, WANG Zhi-Xing-1, WANG Xu-Jing-1, LIU Wu-Ge-3, QIAN Qian-5. What We Have Learnt in Ten Years′ Study of Rice Transgene Flow [J]. Scientia Agricultura Sinica, 2014, 47(1): 1-10.
[11] HAN De-Jun, ZHANG Pei-Yu, WANG Qi-Lin, ZENG Qing-Dong, WU Jian-Hui, ZHOU Xin-Li, WANG Xiao-Jie, HUANG Li-Li, KANG Zhen-Sheng. Identification and Evaluation of Resistance to Stripe Rust in 1980 Wheat Landraces and Abroad Germplasm [J]. Scientia Agricultura Sinica, 2012, 45(24): 5013-5023.
[12] HAN Guo-Fei, WANG Hai-Guang, MA Zhan-Hong. Effects of Elevated CO2 and Enhanced UV-B on Epidemic Components of Wheat Stripe Rust [J]. Scientia Agricultura Sinica, 2011, 44(20): 4326-4332.
[13] ZHANG Chun-Xiang, ZHANG Xue-Feng, CHEN Ting-Zhu, TENG Yue-Zhong, LIU Wen-Zhong, JIANG Yu-Suo. Analysis of Genetic Diversity in Twelve Honeybee Populations Based on AFLP Technique [J]. Scientia Agricultura Sinica, 2011, 44(18): 3877-3885.
[14] ZHU Hua-zhong,WANG Zhong-wei,WU Ling,Ravi P. SINGH,J. HUERTA-ESPINO,HE Zhong-hu, HU Jia,CHEN Fang,XIA Xian-chun
. QTL Mapping for Adult-Plant Resistance to Stripe Rust in Wheat Cultivar Chuanmai 107
[J]. Scientia Agricultura Sinica, 2010, 43(4): 706-712 .
[15] WANG Zhen,DENG Xin,ZHAO Ting-chang,LIU Xue-min . Dynamics in Kanamycin-Resistant Bacterial Population and Detection of npt II Gene Flow in the Rhizosphere of Insect-Resistant Transgenic Cotton#br# [J]. Scientia Agricultura Sinica, 2010, 43(21): 4401-4408 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!