Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (14): 2956-5963.doi: 10.3864/j.issn.0578-1752.2020.14.018

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

The Analysis of PI3K-AKT Signal Pathway Based on the Proteomic Results of Sheep Embryonic Skeletal Muscle

WANG XinYue(),SHI TianPei,ZHAO ZhiDa,HU WenPing,SHANG MingYu,ZHANG Li()   

  1. Institute of Animal Sciences, Chinese Academy of Agriculture Sciences, Beijing 100193
  • Received:2019-08-29 Accepted:2020-03-30 Online:2020-07-16 Published:2020-08-10
  • Contact: Li ZHANG E-mail:wxyanimalgenetic@163.com;zhangli07@caas.cn

Abstract:

【Objective】Sheep is an important economic livestock and its skeletal muscle growth and development have a deep bond with meat production traits. The sheep embryonic period is an essential stage for skeletal muscle growth, analyzing and mining the proteome data of sheep embryonic skeletal muscle in this period has a great significance to reveal the muscle development process and screen their key regulation proteins.【Method】The longissimus dorsi of Chinese merino sheep at embryonic age of 85 days, 105 days and 135 days were selected for protein qualification by using tandem mass tag (TMT) and 1316 differential abundance proteins were obtained finally. GO, KEGG and R bioinformatic methods were used to cluster, annotate and analyze the differential abundance proteins. And the candidate proteins were testified by using bioinformatic methods.【Result】Based on the previous results, the cluster analysis on differential abundance proteins illustrated that the cluster 5 proteins were significantly expressed on embryonic age of 105 days with high abundance. GO and KEGG analysis on cluster 5 proteins showed these proteins were significantly involved in protein metabolism biology process and notably enriched in PI3K-AKT signal pathway in which RAC-beta serine/threonine-protein kinase isoform X1(ATK2) has a high abundance. Meanwhile, the results of bioinformatics showed that the AKT2 was composed of 481 amino acids and the theoretical molecular weight was 55.58kD. It consists of 66 positively charged amino acid residues and 72 negatively charged amino acid residues, the theoretical isoelectric point was 6.08, the hydrophilicaverage coefficient was -0.454, 12 N-terminal glycosylation sites and 71 phosphorylation sites were found in AKT2. The homology of AKT2 and protein kinase-like (PK-like) was 99% and it belongs to the family of protein kinases catalytic subunit.【Conclusion】The proteome data analysis of sheep embryonic skeletal muscle showed that embryonic age of 105 days is a key point of sheep embryonic skeletal fiber cell from proliferation and differentiation to hypertrophy. The PI3K-AKT signaling pathway which has function of regulating growth and development of embryonic skeletal muscle fibers was significantly enriched, and ATK2 is a key candidate regulation protein in this pathway. To summarize, the study has a theoretical guiding significance to reveal the growth and development and its molecular regulation mechanism of embryonic skeletal muscle.

Key words: sheep (Ovis aries), embryonic longissimus dorsi, proteomic, bioinformatics analysis

Fig. 1

Expression patterns cluster analysis of differential abundance proteins"

Fig. 2

GO biology process analysis of cluster 5 differential abundance proteins Y: Enrichment index; X: Biology process"

Fig. 3

KEGG enrichment of cluster 5 differential abundance proteins Y: Pathway name;X: Fisher’s exact test p-value"

Fig. 4

PI3K-AKT signaling pathway Red: Significant enrichment up-regulation gene"

Fig. 5

Transmembrane structure analysis of AKT2 protein"

Fig. 6

Prediction on glycosylation and phosphorylation sites of AKT2 protein (a)12 N-glycosylation sites in AKT2;(b)71 phosphorylation sites in AKT2"

Fig. 7

3D structure model prediction of AKT2 protein"

[1] BENTZINGER, C F, YU X W, RUDNICKI M A. Building Muscle: Molecular Regulation of Myogenesis. Cold Spring Harbor Perspectives in Biology, 2012,4(2):441-441.
[2] TAJBAKHSH S, BUCKINGHAM M. 6 The Birth of Muscle Progenitor Cells in the Mouse: Spatiotemporal Considerations. Current Topics in Developmental Biology, 1999,48:225-268.
doi: 10.1016/s0070-2153(08)60758-9 pmid: 10635461
[3] BUCKINGHAM M. Skeletal muscle progenitor cells and the role of Pax genes. Comptes Rendus Biologies, 2007,330(6-7):530-533.
doi: 10.1016/j.crvi.2007.03.015 pmid: 17631448
[4] DONG Y, XIE M, JIANG Y, XIAO N, DU X, ZHANG W, TOSSER-KLOPP G, WANG J, YANG S, LIANG J, CHEN W, CHEN J, ZENG P, HOU Y, BIAN C, PAN S, LI Y, LIU X, WANG W, SERVIN B, SAYRE B, ZHU B, SWEENEY D, MOORE R, NIE W, SHEN Y, ZHAO R, ZHANG G, LI J, FARAUT T, WOMACK J, ZHANG Y, KIJAS J, COCKETT N, XU X, ZHAO S, WANG J, WANG W. Sequencing and automated whole-genome optical mapping of the genome of a domestic goat (Capra hircus). Nature Biotechnology, 2013,31(2):135-141.
doi: 10.1038/nbt.2478
[5] MURPHY, M, KARDON G. Origin of vertebrate limb muscle: The role of progenitor and myoblast populations. Current Topics in Developmental Biology, 2011,96:1-32.
doi: 10.1016/B978-0-12-385940-2.00001-2 pmid: 21621065
[6] KAWAKAMI, K, SATO S, OZAKI H, IKEDA K. Six family genes—structure and function as transcription factors and their roles in development. Bioessays, 2000,22(7):616-626.
doi: 10.1002/1521-1878(200007)22:7<616::AID-BIES4>3.0.CO;2-R pmid: 10878574
[7] 史新娥, 吴国芳, 宋子仪, 路宏朝, 贾龙, 朱嘉宇, 杨公社. 阻断PI3K/AKT通路通过激活FoxO1抑制猪骨骼肌卫星细胞分化. 中国农业科学, 2014,47(01):154-160.
doi: 10.3864/j.issn.0578-1752.2014.01.016
SHI X E, WU G F, SONG Z Y, LU H C, JIA L, ZHU J Y, YANG G S. Inhibition of PI3K/AKT pathway suppressing porcine skeletal muscle sattelite differentiation through activation of FoxO1 transcription factor. Scientia Agricultura Sinica, 2014,47(1):154-160. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2014.01.016
[8] LIU J, FU R, LIU R, ZHAO G, ZHENG M, CUI H, LI Q, SONG J, WANG J, WEN J. Protein profiles for muscle development and intramuscular fat accumulation at different post-hatching ages in chickens. PloS One, 2016,11(8):e0159722.
pmid: 27508388
[9] ASHMORE, C R, ROBINSON D W, RATTRAY P, DOERR L. Biphasic development of muscle fibers in the fetal lamb. Experimental Neurology, 1972,37(2):241-55.
doi: 10.1016/0014-4886(72)90071-4 pmid: 4118074
[10] 李雪娇, 刘晨曦, 孙亚伟, 杨开伦, 刘明军. 德国美利奴羊胎儿期骨骼肌组织学结构发育特征研究. 西北农林科技大学学报(自然科学版), 2018,332(5):7-13.
LI X J, LIU C X, SUN Y W, YANG K L, LIU M J. Study on structure development characteristics of German Merion sheep fetal skeletal muscle tissue. Journal of Northwest A&F University, 2018,332(5):7-13. (in Chinese)
[11] OUYANG H, WANG Z, CHEN X, YU J, LI Z, NIE Q. Proteomic analysis of chicken skeletal muscle during embryonic development. Frontiers in Physiology, 2017,8:281.
pmid: 28533755
[12] POLETI M D, REGITANO L C, SOUZA G H, CESAR A S, SIMAS R C, SILVA-VIGNATO B, OLIVEIRA G B, ANDRADE S C, CAMERON L C, COUTINHO L L. Longissimus dorsi muscle label- free quantitative proteomic reveals biological mechanisms associated with intramuscular fat deposition. Journal of Proteomics, 2018,179:30-41.
pmid: 29510239
[13] ZHANG, X, CHEN Y, PAN J, LIU X, CHEN H, ZHOU X, YUAN Z, WANG X, MO D. iTRAQ-based quantitative proteomic analysis reveals the distinct early embryo myofiber type characteristics involved in landrace and miniature pig. BMC Genomics, 2016,17(1):137.
doi: 10.1186/s12864-016-2464-1
[14] HAMELIN, M, SAYD T, CHAMBON C, BOUIX J, LAVILLE E. Proteomic analysis of ovine muscle hypertrophy. Journal of Animal Science, 2007,84(12):3266-3276.
pmid: 17093219
[15] THOMPSON A, SCHäFER J, KUHN K, KIENLE S, SCHWARZ J, SCHMIDT G, NEUMANN T, HAMON C. Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Analytical Chemistry, 2003,75(8):1895-1904.
pmid: 12713048
[16] 石田培, 王欣悦, 侯浩宾, 赵志达, 尚明玉, 张莉. 基于全转录组测序的绵羊胚胎不同发育阶段骨骼肌circRNA的分析与鉴定. 中国农业科学, 2020,53(03):642-657.
doi: 10.3864/j.issn.0578-1752.2020.03.015
SHI T P, WANG X Y, HOU H B, ZHAO Z D, SHANG M Y, ZHANG L. Analysis and identification of circrnas of skeletal muscle at different stages of sheep embryos based on whole transcriptome sequencing. Scientia Agricultura Sinica, 2020,53(3):642-657. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2020.03.015
[17] 王素兰, 高华萍, 张菁, 叶翔. 基于稳定同位素标记和平行反应监测的蛋白质组学定量技术用于肝癌生物标志物的筛选和验证. 色谱, 2017,35(9):934-940.
WANG S L, GAO H P, ZHANG J, YE X. Stable isotope labeling and parallel reaction monitoring-based proteomic quantification for biomarker screening and validation of hepatocellular carcinoma. Chromatography, 2017,35(9):934-940. (in Chinese)
[18] KUMAR L, FUTSCHIK M E. Mfuzz: a software package for soft clustering of microarray data. Bioinformation, 2007,2(1):5.
pmid: 18084642
[19] GASTEIGER E, HOOGLAND C, GATTIKER A, WILKINS M R, APPEL R D, BAIROCH A. Protein identification and analysis tools on the ExPASy server. Springer, 2005: 571-607.
[20] SONNHAMMER E L, VON HEIJNE G, KROGH A. A hidden Markov model for predicting transmembrane helices in protein sequences. Proceedings /. International Conference on Intelligent Systems for Molecular Biology; ISMB. International Conference on Intelligent Systems for Molecular Biology, 1998,6:175-182.
[21] BLOM N, GAMMELTOFT S, BRUNAK S. Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. Journal of Molecular Biology, 1999,294(5):1351-1362.
pmid: 10600390
[22] BLOM N, SICHERITZ-PONTéN T, GUPTA R, GAMMELTOFT S, BRUNAK S. Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics, 2004,4(6):1633-1649.
doi: 10.1002/pmic.200300771 pmid: 15174133
[23] STEENTOFT C, VAKHRUSHEV S Y, JOSHI H J, KONG Y, VESTER-CHRISTENSEN M B, KATRINE T, SCHJOLDAGER B, LAVRSEN K, DABELSTEEN S, PEDERSEN N B. Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. The EMBO Journal, 2013,32(10):1478-1488.
doi: 10.1038/emboj.2013.79 pmid: 23584533
[24] DENETCLAW W, CHRIST B, ORDAHL C P. Location and growth of epaxial myotome precursor cells. Development, 1997,124(8):1601-1610.
pmid: 9108376
[25] VENTERS S J, ORDAHL C P. Persistent myogenic capacity of the dermomyotome dorsomedial lip and restriction of myogenic competence. Development, 2002,129(16):3873-3885.
pmid: 12135925
[26] KAZANSKAYA O, GLINKA A, DEL BARCO BARRANTES I, STANNEK P, NIEHRS C, WU W. R-Spondin2 is a secreted activator of Wnt/β-catenin signaling and is required for Xenopus myogenesis. Developmental Cell, 2004,7(4):525-534.
doi: 10.1016/j.devcel.2004.07.019 pmid: 15469841
[27] TAJBAKHSH S, BORELLO U, VIVARELLI E, KELLY R, PAPKOFF J, DUPREZ D, BUCKINGHAM M, COSSU G. Differential activation of Myf5 and MyoD by different Wnts in explants of mouse paraxial mesoderm and the later activation of myogenesis in the absence of Myf5. Development, 1998,125(21):4155-4162.
pmid: 9753670
[28] WANG Y X, ZHANG C L, RUTH T Y, CHO H K, NELSON M C, BAYUGA-OCAMPO C R, HAM J, KANG H, EVANS R M. Regulation of muscle fiber type and running endurance by PPARδ. PLoS Biology, 2004,2(10):e294.
pmid: 15328533
[29] ZIZOLA C, KENNEL P J, AKASHI H, JI R, CASTILLERO E, GEORGE I, HOMMA S, SCHULZE P C. Activation of PPARδ signaling improves skeletal muscle oxidative metabolism and endurance function in an animal model of ischemic left ventricular dysfunction. American Journal of Physiology-Heart and Circulatory Physiology, 2015,308(9):1078-1085.
[30] WANG X Y, SHI T P, ZHAO Z D, HOU H B, ZHANG L. Proteomic analyses of sheep (ovisaries) embryonic skeletal muscle. Scientific Reports, 1750(2020)10:1750.
pmid: 32019949
[31] 李雪娇, 刘晨曦, 杨开伦, 刘明军. 德美羊与中美羊胎儿期骨骼肌组织学结构发育特征差异性研究. 草食家畜, 2017 (04):1-6.
LI X J, LIU C X, YANG K L, LIU M J. Study on differentiation of fetal skeletal muscle development characteristics between German and Chinese merino sheep. Grass-Feeding Livestock, 2017 (04):1-6. (in Chinese)
[32] BAI L, LIANG R, YANG Y, HOU X, WANG Z, ZHU S, WANG C, TANG Z, LI K. Microrna-21 regulates pi3k/akt/mtor signaling by targeting tgfβi during skeletal muscle development in pigs. PLoS One, 2015,10(5):e0119396.
doi: 10.1371/journal.pone.0119396 pmid: 25950587
[33] ROMMEL C, BODINE S C, CLARKE B A, ROSSMAN R, NUNEZ L, STITT T N, YANCOPOULOS G D, GLASS D J. Mediation of IGF-1-induced skeletal myotube hypertrophy by PI (3) K/Akt/mTOR and PI (3) K/Akt/GSK3 pathways. Nature Cell Biology, 2001,3(11):1009.
doi: 10.1038/ncb1101-1009 pmid: 11715022
[34] NICHOLSON K M, ANDERSON N G. The protein kinase B/Akt signalling pathway in human malignancy. Cellular Signalling, 2002,14(5):381-395.
pmid: 11882383
[35] AMIROUCHE A, DURIEUX A-C, BANZET S, KOULMANN N, BONNEFOY R, MOURET C, BIGARD X, PEINNEQUIN A, FREYSSENET D. Down-regulation of Akt/mammalian target of rapamycin signaling pathway in response to myostatin overexpression in skeletal muscle. Endocrinology, 2008,150(1):286-294.
pmid: 18801898
[36] JI M, ZHANG Q, YE J, WANG X, YANG W, ZHU D. Myostatin induces p300 degradation to silence cyclin D1 expression through the PI3K/PTEN/Akt pathway. Cellular Signalling, 2008,20(8):1452-1458.
doi: 10.1016/j.cellsig.2008.03.013 pmid: 18472397
[37] TRENDELENBURG A U, MEYER A, ROHNER D, BOYLE J, HATAKEYAMA S, GLASS D J. Myostatin reduces Akt/TORC1/ p70S6K signaling, inhibiting myoblast differentiation and myotube size. American Journal of Physiology-Cell Physiology, 2009,296(6):C1258-C1270.
pmid: 19357233
[38] 孙伟, 王鹏, 丁家桐, 马月辉, 关伟军, 储明星, 李碧春, 吴文忠陈玲. 湖羊Myostain和Myogenin基因表达的发育性变化及与屠宰性状的关联分析. 中国农业科学, 2010,43(24):5129-5136.
SUN W, WANG P, DING J T, MA Y H, GUAN W J, CHU M X, LI B C, WU W Z, CHEN L. Developmental changes of gene expression of myostain and myogenin genes and their association analysis with carcass traits in Hu Sheep. Scientia Agricultura Sinica, 2010,43(24):5129-5136. (in Chinese)
[39] 李晶, 张云生, 李宁, 胡晓湘, 石国庆, 刘守仁, 柳楠. PI3K/AKT信号通路调控 Myogenin和MCK基因的表达. 遗传, 2013,35(5):637-642.
LI J, ZHANG Y S, LI N, HU X X, SHI G Q, LIU S R, LIU N. Expression of Myogenin and MCK genes regulated by PI3K/AKT pathway, Hereditas(Beijing), 2013,35(5):637-642. (in Chinese)
[40] FIGUEROA A, CUADRADO A, FAN J, ATASOY U, MUSCAT G E, MUNOZ-CANOVES P, GOROSPE M, MUNOZ A. Role of HuR in skeletal myogenesis through coordinate regulation of muscle differentiation genes. Molecular and Cellular Biology, 2003,23(14):4991-5004
doi: 10.1128/mcb.23.14.4991-5004.2003 pmid: 12832484
[1] LI ShiJia,LÜ ZiJing,ZHAO Jin. Identification of R2R3-MYB Subfamily in Chinese Jujube and Their Expression Pattern During the Fruit Development [J]. Scientia Agricultura Sinica, 2022, 55(6): 1199-1212.
[2] WANG Chao,FANG DongLu,ZHANG PanRong,JIANG Wen,PEI Fei,HU QiuHui,MA Ning. Physiological Metabolic Rol e of Nanocomposite Packaged Agaricus bisporus During Postharvest Cold Storage Analyzed by TMT-Based Quantitative Proteomics [J]. Scientia Agricultura Sinica, 2022, 55(23): 4728-4742.
[3] ZHOU GuiYing,YANG XiaoMin,TENG ZiWen,SUN LiJuan,ZHENG ChangYing. Quantitative Proteomic Analysis of Spirotetramat Inhibiting Hatching of Frankliniella occidentalis Eggs [J]. Scientia Agricultura Sinica, 2022, 55(15): 2938-2948.
[4] ZENG WeiYing, SUN ZuDong, LAI ZhenGuang, CAI ZhaoYan, CHEN HuaiZhu, YANG ShouZhen, TANG XiangMin. Correlation Analysis on Transcriptomic and Proteome of Soybean Resistance to Bean Pyralid(Lamprosema indicata) [J]. Scientia Agricultura Sinica, 2018, 51(7): 1244-1260.
[5] WANG ZhuangWei,WANG QingLian,XIA Jin,WANG XiCheng,SONG ZhiZhong,WU WeiMin. Cloning, Characterization and Expression Analysis of K +/H + Antiporter Genes in Grape [J]. Scientia Agricultura Sinica, 2018, 51(23): 4522-4534.
[6] ZHANG Yan, DONG ZhaoMing, XI XingHang, ZHANG XiaoLu, YE Lin, GUO KaiYu, XIA QingYou, ZHAO Ping. Protein Components of Degumming Bombyx mori Silk [J]. Scientia Agricultura Sinica, 2018, 51(11): 2216-2224.
[7] LIU Lu, LU Jing, WANG Ying, PANG XiaoYang, XU Man, ZHANG ShuWen, Lü JiaPing. Antitumor Effect of Violacein Against HT29 by Comparative Proteomics [J]. Scientia Agricultura Sinica, 2017, 50(9): 1694-1704.
[8] HAO WenYuan, LI FeiWu, YAN Wei, LI CongCong, HAO DongYun, GUO ChangHong. Assessment of the Unintended Effects of Four Genetically Modified Maize Varieties by Proteomic Approach [J]. Scientia Agricultura Sinica, 2017, 50(19): 3652-3664.
[9] YU Tao, LI Geng, LIU Peng, DONG ShuTing, ZHANG JiWang, ZHAO Bin. Proteomic Analysis of Maize Reveals Expression Characteristics of Stress-Related Proteins During Grain Development [J]. Scientia Agricultura Sinica, 2017, 50(11): 2114-2128.
[10] XU Chuang, ZHU Kui-ling, CHEN Yuan-yuan, YANG Wei, XIA Cheng, ZHANG Hong-you, WU Ling, SHU Shi, SHEN Tai-yu, YU Hong-jiang, XU Qiu-shi, ZHANG Zi-yang . Isolation Identification and Bioinformatics of Differences Protein in Plasma of Cows Suffer from Fatty Liver with SELDI-TOF-MS Techniques [J]. Scientia Agricultura Sinica, 2016, 49(8): 1585-1598.
[11] YANG Li-qun, JIA Le-mei, TANG Mei, CHEN Yi-biao, CUI Hong-juan. Identification and Expression Analysis of BmYki-1 in the Silkworm (Bombyx mori) [J]. Scientia Agricultura Sinica, 2016, 49(8): 1607-1616.
[12] HOU Chang-liang, WANG Jing-bo, LI Yong-qiang, WU Hua, MA Zhi-qing, FENG Jun-tao, ZHANG Xing. Cloning and Expression Analysis of Cytochrome C Oxidase Subunit Ⅲ from Sitophilus zeamais [J]. Scientia Agricultura Sinica, 2016, 49(23): 4544-4554.
[13] DU Ya-li, ZHANG Zhong-yin, PAN Jian-fang, WANG Shu-jie, YANG Shuang, ZHAO Hui-ting, JIANG Yu-suo. Cloning and Expression Analysis of Odorant Binding Protein Gene AcerOBP14 from Apis cerana cerana [J]. Scientia Agricultura Sinica, 2016, 49(19): 3852-3862.
[14] XU Ying, YAN Guo-quan, ZHANG Yang, YU Hong-xiu. Differential Proteomic Research of Three Varieties of Tobacco in China [J]. Scientia Agricultura Sinica, 2016, 49(16): 3084-3097.
[15] Lü Xiao-su, LI Yu-xuan, MIAO Ying, CHEN Liang-ke, SHEN Yuan-yue, QIN Ling, XING Yu. Analysis of Protein Phosphorylation Level at Different Developmental Stages of Strawberry Fruit [J]. Scientia Agricultura Sinica, 2016, 49(10): 1946-1959.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!