Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (5): 883-892.doi: 10.3864/j.issn.0578-1752.2018.05.007

• PLANT PROTECTION • Previous Articles     Next Articles

Antagonism of Bacillus methylotrophicus Strain BH21 to Botrytis cinerea

WEI XinYan1, HUANG YuanYuan2, HUANG YaLi2, DU KeJiu1   

  1. 1College of Forestry, Hebei Agricultural University/National Engineering Research Center for Agriculture in Northern Mountainous Areas, Baoding 071001, Hebei; 2Institute of Biology, Hebei Academy of Sciences, Shijiazhuang 050051
  • Received:2017-07-31 Online:2018-03-01 Published:2018-03-01

Abstract: 【Objective】Bacillusmethylotrophicusstrain BH21 is a marine derived bacterium that has a good antagonistic effect on Botrytis cinerea. The objective of this study is to identify the lipopeptide synthesis genes of the strain BH21 and investigate the antagonism of the crude extracts of lipopeptide to B. cinerea, and to provide a scientific basis for the prevention and control of B. cinerea. 【Method】 To determine the mechanisms of the antagonistic strain, PCR was used to screen strain BH21 for genes involved in biosynthesis of antimicrobial lipopeptide. Crude lipopeptide was extracted from the culture broth by hydrochloric acid precipitation and methanol extraction. surface activity of the crude lipopeptide was determined by oil spreading method. The inhibition ability of the crude lipopeptide on mycelial growth of B. cinerea was investigated by mycelial growth rate method and EC50 was calculated. The crude lipopeptide was separated by liquid chromatography (HPLC) and the inhibition ability of each component to B. cinerea was detected by the mycelium growth rate method. Reversed phase high performance liquid chromatography (RP-HPLC) was used to analyze the types of the main antifungal components. the effect of the crude lipopeptide on the control of B. cinerea in grape was detected by tissue inoculation in vitro. 【Result】 A total of 11 pairs of specific primers were used for genomic amplification of strain BH21, and 7 gene fragments of the size expected to be correlated with biocontrol activities were efficiently amplified. after amplification, sequencing and BLAST analysis, the results showed that the similarity between the amplified products and the related lipopeptide genes was 96%-99%, the similarity between the protein produced by the nucleic acid fragment and the lipopeptide synthesized protein of the related strain was 96%-100%, which showed that the genome of strain BH21 contained ituA, bamD, ituC, ituD, fenD, srfAB and yndJ genes and the strain had the ability to synthesize antimicrobial lipopeptide such as surfactins, iturins and fengycins. Antifungal lipopeptide produced by BH21 was extracted by hydrochloric acid precipitation and methanol extraction, and the yield was 428 mg·L-1. The results of the oil spreading test showed that the crude lipopeptide had surface activity. The crude lipopeptide significantly inhibited mycelial growth of B. cinerea when the concentration was 440 μg·mL-1, the relative inhibition rate of mycelial growth of B. cinerea was 82.8%, and the effective medium concentration EC50 was 144.39 μg·mL-1. Six fractions were collected with elution time through HPLC, only BH21-2 and BH21-3 inhibited the growth of B. cinerea. RP-HPLC chromatogram analysis showed that the components BH21-2 and BH21-3 belong to the fengycin family. Grape leaf in vitro test results showed that when the concentration of crude lipopeptide was 440 μg·mL-1,the control effect againstgrape gray leaf spot was 100%, while the concentration was 220 μg·mL-1, the relative inhibitory rate of grape leaf lesion was 94.4%.【Conclusion】 The strain BH21 has the genes for synthesizing antimicrobial lipopeptide such as surfactins, iturins and fengycins, and the lipopeptide extracted from this strain has strong antagonism to B. cinerea, so it has potential application in the biological control of B. cinerea.

Key words: Bacillus methylotrophicus, Botrytis cinerea, antifungal activity, lipopeptide, grape gray mold

[1]    张玮, 乔广行, 黄金宝, 王忠跃, 李兴红. 中国葡萄灰霉病菌对嘧霉胺的抗药性检测. 中国农业科学, 2013, 46(6): 1208-1212.
Zhang W, Qiao G X, Huang J B, Wang Z Y, Li X H. Evaluation on resistance of grape gray mold pathogen Botrytis cinerea to pyrimethanil in China. Scientia Agricultura Sinica, 2013, 46(6): 1208-1212. (in Chinese)
[2]    严红, 燕继晔, 王忠跃, 李亚宁, 金桂华, 李兴红. 葡萄灰霉病菌对3种杀菌剂的多重抗药性检测. 果树学报, 2012, 29(4): 625-629.
Yan H, Yan J Y, Wang Z Y, Li Y N, Jin G H, Li X H. Multiple fungicide resistance of Botrytis cinerea from grapevine to three fungicides. Journal of Fruit Science, 2012, 29(4): 625-629. (in Chinese)
[3]    Madhaiyan M, Poonguzhali S, Kwon S W, Sa T M. Bacillus methylotrophicus sp. nov., a methanol-utilizing, plant- growth-promoting bacterium isolated from rice rhizosphere soil. International Journal of Systematic and Evolutionary Microbiology, 2010, 60(10): 2490-2495.
[4]    王洪梅, 吴云成, 沈标. 青枯病生防菌N5的特性及其生物学效应. 土壤, 2013, 45(6): 1082-1090.
Wang H M, Wu Y C, Shen B. Characterization and biological effects of antagonistic N5 against Ralstonia solanacearum. Soils, 2013, 45(6): 1082-1090. (in Chinese)
[5]    刘伟, 宋双, 沈小英, 安天赐, 牛小义, 安德荣. 番茄灰霉病拮抗芽孢杆菌LW-6-1的筛选、鉴定及抑菌活性研究. 西北农林科技大学学报(自然科学版), 2013, 41(11): 73-79.
Liu W, Song S, Shen X Y, An T C, Niu X Y, An D R.  Screening, identification and antibacterial activity of antagonistic bacteria LW-6-1 against Botrytis cinerea. Journal of Northwest A&F University (Natural Science Edition), 2013, 41(11): 73-79. (in Chinese)
[6]    黄霄, 陈波, 周登博, 谭昕, 张锡炎. 菌株BM-24的分离鉴定及对香蕉枯萎病菌的抑菌活性. 植物保护学报, 2013, 40(2): 121-127.
Huang X, Chen B, Zhou D B, Tan X, Zhang X Y. Isolation, identification of BM-24 strains and its antifungal activity of antagonistic bacteria against Fusarium oxysporum f. sp. cubense. Acta Phytophylacica Sinica, 2013, 40(2): 121-127. (in Chinese)
[7]    伏波, 姚娟妮, 高小宁, 黄丽丽, 康振生, 韩青梅. 植物内生枯草芽孢杆菌Em7菌株对葡萄灰霉病菌的抑菌活性. 农药学学报, 2016, 18(4): 465-471.
FU B, YAO J N, GAO X N, HUANG L L, KANG Z S, HAN Q M. Antifungal activity of plant endophytic Bacillus subtilis strain Em7 against Botrytis cinerea. Chinese Journal of Pesticide Science, 2016, 18(4): 465-471. (in Chinese)
[8]    周泠璇, 刘娅. 红提葡萄内生细菌的分离鉴定及灰霉病拮抗菌的筛选. 生物技术通报, 2016, 32(4): 184-189.
Zhou L X, Liu Y. Isolation and identification of endophytic  bacteria in red grape, and screening of antagonistic bacteria against Botrytis cinerea. Biotechnology bulletin, 2016, 32(4): 184-189. (in Chinese)
[9]    Ge B B, Liu B H, Nwet T T, zhao W J, Shi L M, ZHANG K. Bacillus methylotrophicus strain NKG-1, isolated from Changbai Mountain, China, has potential applications as a biofertilizer or biocontrol agent. PLoS One, 2016, 11(11): e0166079.
[10]   Ongena M, Jacques P. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends in Microbiology, 2008, 16(3): 115-125.
[11]   Mora I, Cabrefiga J, Montesinos E. Cyclic lipopeptide biosynthetic genes and products, and inhibitory activity of plant- associated Bacillus against phytopathogenic bacteria. PLoS One, 2015, 10(5): e0127738.
[12]   向亚萍, 陈志谊, 罗楚平, 周华飞, 刘永锋. 芽孢杆菌的抑菌活性与其产脂肽类抗生素的相关性. 中国农业科学, 2015, 48(20): 4064-4076.
Xiang Y P, Chen Z Y, Luo C P, Zhou H F, Liu Y F. The antifungal activities of Bacillus spp. and its relationship with lipopeptide antibiotics produced by Bacillus spp.. Scientia Agricultura Sinica, 2015, 48(20): 4064-4076. (in Chinese)
[13]   吕倩, 胡江春, 王楠, 王雪梅, 王书锦. 南海深海甲基营养型芽孢杆菌SHB114抗真菌脂肽活性产物的研究. 中国生物防治学报, 2014, 30(1): 113-120.
LÜ Q, Hu J C, Wang N, Wang X M, Wang S J. Anti-fungal lipopeptides produced by Bacillus methylotrophicus SHB114 isolated from south China sea. Chinese Journal of Biological Control, 2014, 30(1): 113-120. (in Chinese)
[14]   Liu R F, Zhang D J, Li Y G, Li M T, Li T. A new antifungal cyclic lipopeptide from Bacillus marinus B-9987. Helvetica Chimica Acta, 2010, 93(12): 2419-2425.
[15]   李德全, 钱亚明, 周鸣鸣, 谈蓉, 邓自发, 袁素霞. 海洋细菌NH-8防治草莓灰霉病机理及其抗菌物质分析. 植物保护学报, 2016, 43(2): 215-221.
Li D Q, Qian Y M, Zhou M M, Tan R, Deng Z F, Yuan S X. The mechanism of biological control of strawberry gray mould using the marine bacterial NH-8 strain and analysis of the antifungal substances from the strain. Journal of Plant Protection, 2016, 43(2): 215-221. (in Chinese)
[16]   赵杨, 苗则彦, 李颖, 白元俊. 番茄灰霉病防治研究进展. 中国植保导刊, 2014, 34(7): 21-29.
Zhao Y, Miao Z Y, Li Y, Bai Y J. Research progress on controlling against tomato gray mold. China Plant Protection, 2014, 34(7): 21-29. (in Chinese)
[17]   陈宇飞, 文景芝, 李立军. 葡萄灰霉病研究进展. 东北农业大学学报, 2006, 37(5): 693-699.
Chen Y F, Wen J Z, Li L J. Research advance of grape grey mould. Journal of Northeast Agricultural University, 2006, 37(5): 693-699. (in Chinese)
[18]   方中达. 植病研究方法. 北京: 中国农业出版社, 1998.
FANG Z D. Research Method for Plant Pathology. Beijing: China Agriculture Press, 1998. (in Chinese)
[19]   孙菽蔚, 王子峰, 岳海东, 肖天. 一株海洋几丁质酶产生菌的筛选及其产酶条件的初步研究. 海洋科学, 2007, 31(5): 10-16.
Sun S W, Wang Z F, Yue H D, Xiao T. Screening of chitinase-producing marine bacterial strains and preliminary studies on chitinase-producing conditions. Marine Sciences, 2007, 31(5): 10-16. (in Chinese)
[20]   Cao Y, Xu Z H, Ling N, Yuan Y J, Yang X M, Chen L H, Shen B, Shen Q R. Isolation and identification of lipopeptides produced by B. subtilis SQR 9 for suppressing Fusarium wilt of cucumber. Scientia Horticulturae, 2012, 135(1): 32-39.
[21]   曹小红, 廖振宇, 王春玲, 哈志瑞, 杨亚静, 鲁梅芳, 励建荣. Bacillus natto TK-1产脂肽的纯化、抑菌活性及其表面活性剂特性. 中国生物工程杂志, 2008, 28(1): 44-48.
Cao X H, Liao Z Y, Wang C L, Ha Z R, Yang Y J, Lu M F, Li J R. Purification and antimicrobial activity of lipopeptide produced by Bacillus natto TK-1 and its surfactant property. China Biotechnology, 2008, 28(1): 44-48. (in Chinese)
[22]   黄大野, 周婷, 姚经武, 刘晓艳, 曹春霞, 杨妮娜, 胡洪涛, 龙同, 杨自文. 死亡谷芽孢杆菌NBIF-001防治灰霉病研究. 中国蔬菜, 2016(10): 63-66.
Huang D Y, ZHOU T, Yao J W, Liu X Y, Cao C X, Yang N N, Hu H T, Long T, Yang Z W. Studies on controlling effect of Bacillus vallismortis NBIF-001 on gray mold. China Vegetables, 2016(10): 63-66. (in Chinese)
[23]   Dunlap C A, Kim S J, Kwon S W, ROONEY A P. Phylogenomic analysis shows that Bacillus amyloliquefaciens subsp. plantarum is a later heterotypic synonym of Bacillus methylotrophicus. International Journal of Systematic and Evolutionary Microbiology, 2015, 65(7): 2104-2109.
[24]   Tsuge K, Akiyama T, Shoda M. Cloning, sequencing, and characterization of the iturin A operon. Journal of Bacteriology, 2001, 183(21): 6265-6273.
[25]   Moyne A L, Cleveland T E, Tuzun S. Molecular characterization and analysis of the operon encoding the antifungal lipopeptide bacillomycin D. Fems Microbiology Letters, 2004, 234(1): 43-49.
[26]   Koumoutsi A, Chen X H, Henne A, Liesegang H, Hitzeroth G, Franke P, Vater J, Borriss R. Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. Journal of Bacteriology, 2004, 186(4): 1084-1096.
[27]   Blom J, Rueckert C, Niu B, WANG Q, BORRISS R. The complete genome of Bacillus amyloliquefaciens subsp. plantarum CAU B946 contains a gene cluster for nonribosomal synthesis of iturin A. Journal of Bacteriology, 2012, 194(7): 1845-1846.
[28]   Zhang N, Yang D Q, Wang D D, Miao Y Z, Shao J H, Zhou X, Xu Z H, Li Q, Feng H C, Li S Q, Shen Q R, Zhang R F. Whole transcriptomic analysis of the plant-beneficial rhizobacterium Bacillus amyloliquefaciens SQR9 during enhanced biofilm formation regulated by maize root exudates. BMC Genomics, 2015, 16(1): 685.
[29]   Joshi R, Gardener B B M. Identification and characterization of novel genetic markers associated with biological control activities in Bacillus subtilis. Phytopathology, 2006, 96(2): 145-154.
[30]   Arrebola E, Jacobs R, Korsten L. Iturin A is the principal inhibitor in the biocontrol activity of Bacillus amyloliquefaciens PPCB004 against postharvest fungal pathogens. Journal of Applied Microbiology, 2010, 108(2): 386-395.
[31]   刘淼, 王继红, 姜健, 杨宝灵, 温小红, 陈玉飞, 刘丽. 海洋微生物应用于生物农药的研究进展. 中国农学通报, 2014, 30(3): 232-236.
Liu M, Wang J H, Jiang J, Yang B L, Wen X H, Chen Y F, Liu L. Advances in the studies on the application of marine microorganism in biological pesticides. Chinese Agricultural Science Bulletin, 2014, 30(3): 232-236. (in Chinese)
[32]   高伟, 田黎, 张久明, 周俊英, 郑立, 崔志松, 李元广. 海洋芽孢杆菌B-9987菌株对番茄灰霉病和早疫病的作用机制初探. 植物保护, 2010, 36(1): 55-59.
Gao W, Tian L, Zhang J M, Zhou J Y, Zheng L, Cui Z S, Li Y G. A primary study on the biocontrol mechanisms of Bacillus marinus B-9987 against the tomato gray mold and early blight. Plant Protection, 2010, 36(1): 55-59. (in Chinese)
[33]   巩文峰, 李月飞, 上官妮妮, 赵新贝, 王阳, 马青. 出芽短梗霉对苹果采后灰霉病的防治. 中国生物防治学报, 2016, 32(2): 251-257.
Gong W F, Li Y F, Shangguan N N, Zhao X B, Wang Y, Ma Q. Control of apple postharvest gray mold by Aureobasidium pullulans. Chinese Journal of Biological Control, 2016, 32(2): 251-257. (in Chinese)
[34]   申顺善, 张莹莹, 张维娜, 吕雅悠, 朱卓琳, 朴凤植. 绿针假单胞菌HL5-4对番茄灰霉菌的抑制活性及其定殖能力. 园艺学报, 2016, 43(6): 1195-1202.
Shen S S, Zhang Y Y, Zhang W N, LÜ Y Y, Zhu Z L, Piao F Z. Antifungal activity of Pseudomonas choloeaphtis HL5-4 against tomato gray mold and its colonization ability. Acta Horticulturae Sinica, 2016, 43(6): 1195-1202. (in Chinese)
[35] Hsieh F C, Lin T C, Meng M, Kao S S. Comparing methods for identifying Bacillus strains capable of producing the antifungal lipopeptide iturin A. Current Microbiology, 2008, 56(1): 1-5.
[1] LI YangFan,SHAO MeiQi,LIU CHANG,GUO QingGang,WANG PeiPei,CHEN XiuYe,SU ZhenHe,MA Ping. Identification of the Antifungal Active Compounds from Bacillus amyloliquefaciens Strain HMB33604 and Its Control Efficacy Against Potato Black Scurf [J]. Scientia Agricultura Sinica, 2021, 54(12): 2559-2569.
[2] HuaFei ZHOU,HongFu YANG,KeBing YAO,YiQing ZHUANG,ZhaoLin SHU,ZhiYi CHEN. FliZ Regulated the Biofilm Formation of Bacillus subtilis Bs916 and Its Biocontrol Efficacy on Rice Sheath Blight [J]. Scientia Agricultura Sinica, 2020, 53(1): 55-64.
[3] GONG AnDong, ZHU ZiYu, LU YaNan, WAN HaiYan, WU NanNan, Cheelo Dimuna, GONG ShuangJun, WEN ShuTing, HOU Xiao. Functional Analysis of Burkholderia pyrrocinia WY6-5 on Phosphate Solubilizing, Antifungal and Growth-Promoting Activity of Maize [J]. Scientia Agricultura Sinica, 2019, 52(9): 1574-1586.
[4] YUAN XueMei, WANG Min, ZANG JinPing, CAO HongZhe, ZHANG Kang, ZHANG Jing, XING JiHong, DONG JinGao . Relationship between kynurenine 3-monooxygenase gene BcKMO and cAMP signaling pathway in Botrytis cinerea [J]. Scientia Agricultura Sinica, 2018, 51(13): 2504-2512.
[5] GAO CuiZhu, YANG HongLing, HUANGXIA YuQi, HUANG JunBin, LI GuoQing, ZHENG Lu. Occurrence of Grey Mould Disease in Greenhouse-Grown Strawberry and Its Correlations with Epidemic Factors in Hubei Province [J]. Scientia Agricultura Sinica, 2017, 50(9): 1617-1623.
[6] CUI KaiDi, HUANG XuePing, HE LeiMing, ZHAI YongBiao, MU Wei, LIU Feng. The Inhibition Effect of Microbial Volatile Compound Benzothiazole on Botrytis cinerea [J]. Scientia Agricultura Sinica, 2017, 50(19): 3714-3722.
[7] XIANG Ya-ping, ZHOU Hua-fei, LIU Yong-feng, CHEN Zhi-yi. Isolation and Identification of Lipopeptide Antibiotics Produced by Bacillus amyloliquefaciens B1619 and the Inhibition of the Lipopeptide Antibiotics to Fusarium oxysporum f. sp. lycopersici [J]. Scientia Agricultura Sinica, 2016, 49(15): 2935-2944.
[8] SU Qian-fu, JIA Jiao, MENG Ling-min, LI Hong, ZHANG Wei, JIN Qi-ming, CONG Bin. Antifungal Activities of Penicillium minioluteum ZF1 and Its Metabolites to Fusarium graminearum [J]. Scientia Agricultura Sinica, 2015, 48(20): 4056-4063.
[9] XIANG Ya-ping, CHEN Zhi-yi, LUO Chu-ping, ZHOU Hua-fei, LIU Yong-feng. The Antifungal Activities of Bacillus spp. and Its Relationship with Lipopeptide Antibiotics Produced by Bacillus spp. [J]. Scientia Agricultura Sinica, 2015, 48(20): 4064-4076.
[10] HU Lin-Gang, LI Jian-Peng, LI Yong-Cai, BI Yang, GE Yong-Hong, WANG Yi. Control of Exogenous H2O2 on Dry Rot of Potato Tuber and Possible Mechanism of Action [J]. Scientia Agricultura Sinica, 2013, 46(22): 4745-4752.
[11] ZHANG Rong-Sheng, WANG Xiao-Yu, LUO Chu-Ping, LIU Yong-Feng, LIU You-Zhou, CHEN Zhi-Yi. Identification of the Lipopeptides from Bacillus amyloliquefaciens Lx-11 and Biocontrol Efficacy of Surfactin Against Bacterial Leaf Streak [J]. Scientia Agricultura Sinica, 2013, 46(10): 2014-2021.
[12] LI Bao-qing,LU Xiu-yun,GUO Qing-gang,QIAN Chang-di,LI She-zeng,MA Ping
. Isolation and Identification of Lipopeptides and Volatile Compounds Produced by Bacillus subtilis Strain BAB-1
[J]. Scientia Agricultura Sinica, 2010, 43(17): 3547-3554 .
[13] TENG Yun,YU Zhi-yi,CUI Wen-hua,ZHANG Xin-gang,QUAN Xin,SUN Qiu,HOU Tai-ping
. An Antifungal Active Component from Spiraea alpina to Plant Fungi#br# [J]. Scientia Agricultura Sinica, 2009, 42(7): 2380-2385 .
[14] . Cloning and Expression of a Neutral Protein Gene BS2 from Bacillus subtilis B111 in Pichia pastoris
[J]. Scientia Agricultura Sinica, 2009, 42(3): 876-883 .
[15] . Stability of Antifungal Substance Produced by Actinomycete CCTCC M207210 and Its Application
[J]. Scientia Agricultura Sinica, 2009, 42(2): 636-641 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!