Scientia Agricultura Sinica ›› 2016, Vol. 49 ›› Issue (15): 2935-2944.doi: 10.3864/j.issn.0578-1752.2016.15.008

;

• PLANT PROTECTION • Previous Articles     Next Articles

Isolation and Identification of Lipopeptide Antibiotics Produced by Bacillus amyloliquefaciens B1619 and the Inhibition of the Lipopeptide Antibiotics to Fusarium oxysporum f. sp. lycopersici

XIANG Ya-ping1,2, ZHOU Hua-fei1,2, LIU Yong-feng2, CHEN Zhi-yi1,2   

  1. 1Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014
    2College of Plant Protection, Nanjing Agricultural University, Nanjing 210095
  • Received:2015-03-14 Online:2016-08-01 Published:2016-08-01

Abstract: 【Objective】 Bacillus amyloliquefaciens, biocontrol strain B1619, can effectively prevent and control the occurrence and damage of tomato fusarium wilt. In order to study and analyze theantifungal substancesproduced by strain B1619, the lipopeptide antibiotics were isolated from the supernatant of fermented broth.【Method】Three primers designed based on the known lipopeptide genes sfp, ituA and fenB were used to amplify the corresponding genes from the genome of B1619 strain. The crude lipopeptides extracts were extracted by acid precipitation and methanol. The supelcleanTM LC-18 column and PHASE HF-NH2 column were used to separate lipopeptide antibiotics. All the samples were analyzed by HPLC and MALDI-TOF-MS techniques. Inhibition rates of the three lipopeptide antibiotics against Fusarium oxysporum f. sp. lycopersici were tested by dual culture on plate. 【Result】The PCR products with three primer pairs were cloned and sequenced. The result showed that the sfp, ituA and fenB genes existed in the genome of B1619. The HPLC results showed that the peak time of 60% methanol eluent isolates were at 12,16.5 and 18 min, the secretion was 18.5 mg·L-1, and the retention times were consistent with bacillomycin L standards. The peak time of 70% methanol eluent isolates were at 22, 34, 37, 51 and 53 min, the secretion was 5.1 mg·L-1, and the retention times were consistent with fengycins standards. The peak time of 100% methanol eluent isolates were at 27, 37, 41, 51 and 53 min, the secretion was 74.3 mg·L-1, and the retention times were consistent with surfactins standards. The further verification of MALDI-TOF-MS results showed that 60% methanol eluent isolates which m/z were 1 043.4, 1 057.5 and 1 071.4 Da, was C13-C15 bacillomycin L, 70% methanol eluent isolates which m/z were 1 463.9, 1 477.9, 1 491.9 and 1 505.9 Da, was C15-C17 fengycins, 100% methanol eluent isolates which m/z were 1 008.6, 1 022.7 and 1 036.7 Da, was C13-C15 surfactins.  The mycostatic tests showed that the antifungal activities of 1 mg·mL-1 fengycins were higher than 1 mg·mL-1 bacillomycin L, and the 1 mg·mL-1 surfactins had the weakest effect onF. oxysporum. However, when the concentration of surfactins was increased to 3 and 6 mg·mL-1, the antifungal activities didn’t change obviously. 【Conclusion】B1619 strain secreted the three kinds of lipopeptide antibiotics in which fengycins and bacillomycin L played an important role in the inhibitory effect on F. oxysporum, while the surfactins had no obvious effect on it.

Key words: Bacillus amyloliquefaciens B1619, lipopeptide antibiotics, antifungal activities; Fusarium oxysporum f. sp. lycopersici

[1]    胡江春, 薛德林, 马成新, 王书锦. 植物根际促生菌(PGPR)的研究与应用前景. 应用生态学报, 2004, 15(10): 1963-1966.
Hu J C, Xue D L, Ma C X, Wang S J. Research advances in plant growth-promoting rhizobacteria and its application prospects. Chinese Journal of Applied Ecology, 2004, 15(10): 1963-1966. (in Chinese)
[2]    张斌, 杨晓云, 刘邮洲, 陈志谊. 江苏省3个番茄种植基地枯萎病菌种群数量监测及生防菌B1619的控病效果. 西南农业学报, 2015, 28(6): 2521-2526.
Zhang B, Yang X Y, Liu Y Z, Chen Z Y. Monitoring population dynamics of tomato fusarium wilt and control effect of bio-control bacteria B1619 at 3 tomato planting bases in Jiangsu province. Southwest China Journal of Agricultural Sciences, 2015, 28(6): 2521- 2526. (in Chinese)
[3]    罗楚平, 刘邮洲, 吴荷芳, 王晓宇, 刘永锋, 聂亚锋, 张荣胜, 陈志谊. 脂肽类化合物 bacillomycin L抗真菌活性及其对水稻病害的防治. 中国生物防治学报, 2011, 27(1): 76-81.
Luo C P, Liu Y Z, Wu H F, Wang X Y, Liu Y F, Nie Y F, Zhang R S, Chen Z Y. Antifungal activity and rice disease biocontrol performance of lipopeptide antibiotic bacillomycin L. Chinese Journal of Biological Control, 2011, 27(1): 76-81. (in Chinese)
[4]    Tsuge K, Akiyama T, Shoda M. Cloning, sequencing and characterization of the iturin A Operon. Journal of Bacteriology, 2001, 183(21): 6265-6273.
[5]    Romero D, de Vicente A, Olmos J L, Dávila J C, Pérez-García A. Effect of lipopeptides of antagonistic strains of Bacillus subtilis on the morphology and ultrastructure of the cucurbit fungal pathogen Podosphaera fusca. Journal of Applied Microbiology, 2007, 103(4): 969-976.
[6]    Zeriouh H, Romero D, Garcia-Gutierrez L, Cazorla F M, de Vicente A, Pérez-García A. The iturin-like lipopeptides are essential components in the biological control arsenal of Bacillus subtilis against bacterial diseases of cucurbits. Molecular Plant-Microbe Interactions, 2011, 24(12): 1540-1552.
[7]    郝晓娟, 刘波, 谢关林, 葛慈斌, 林抗美. 短短芽孢杆菌JK-2菌株对番茄枯萎病的抑菌作用及其小区防效. 中国生物防治, 2007, 23(3): 233-236.
Hao X J, Liu B, Xie G L, Ge C B, Lin K M. Inhibition of Brevibacillus brevis JK-2 strain against the pathogen of tomato Fusarium wilt. Chinese Journal of Biological Control, 2007, 23(3): 233-236. (in Chinese)
[8]    詹发强, 侯敏, 杨蓉, 龙宣杞. 一株番茄枯萎病生防菌的鉴定、定殖与盆栽防效研究. 新疆农业科学, 2013, 50(7): 1277-1287.
Zhan F Q, Hou M, Yang R, Long X Q. Identification, colonization and control effect of an antagonistic bacterium against Fusarium wilt tomato. Xinjiang Agricultural Sciences, 2013, 50(7): 1277-1287. (in Chinese)
[9]    Chen X H, Koumoutsi A, Scholz R,Eisenreich A,Schneider K,Heinemeyer I,Morgenstern B,Voss B,Hess W R,Reva O,Junge H,Voigt B,Jungblut PR,Vater J,Süssmuth R,Liesegang H,Strittmatter A,Gottschalk G,Borriss R. Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nature Biotechnology, 2007, 25(9): 1007-1014.
[10]   戴秀华, 张荣胜, 陈志谊. 解淀粉芽孢杆菌Lx-11生物学特性研究. 中国生物防治学报, 2014, 30(4): 573-580.
Dai X H, Zhang R S, Chen Z Y. The biological characterization of Bacillus amyloliquefaciens Lx-11. Chinese Journal of Biological Control, 2014, 30(4): 573-580. (in Chinese)
[11]   Zhao J F, Li Y H, Zhang C, Yao Z Y, Zhang L, Bie X M, Lu F X, Lu Z X. Genome shuffling of Bacillus amyloliquefaciens for improving antimicrobial lipopeptide production and an analysis of relative gene expression using FQ RT-PCR. Journal of Industrial Microbiology & Biotechnology, 2012, 39(6): 889-896.
[12]   Chen X H, Koumoutsi A, Scholz R, Schneider K, Vater J, Süssmuth R, Piel J, Borriss R. Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens. Journal of Biotechnology, 2009, 140(1): 27-37.
[13]   Moyne A L, Cleveland T E, Tuzun S. Molecular characterization and analysis of the operon encoding the antifugal lipopeptide bacillomycin D. Fems Microbiology Letters, 2004, 234(1): 43-49.
[14]   Koumoutsi A, Chen X H, Henne A, Liesegang H, Hitzeroth G, Franke P, Vater J, Borriss R. Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. Journal of Bacteriology, 2004, 186(4): 1084-1096.
[15]   Chen X H, Vater J, Piel J, Franke P, Scholz R, Scheider K, Koumoutsi A, Hitzeroth G, Grammel N, Strittmatter A W, Gottschalk G, Süssmuth R D, Borriss R. Structural and functional characterization of three polyketide synthase gene clusters in Bacillus amyloliquefaciens strains FZB42. Journal of Bacteriology, 2006, 188(11): 4024-4036.
[16]   Meena K R, Kanwar S S.Lipopeptides as the antifungal and antibacterial agents: applications in food safety and therapeutics. Biomed Research International, 2015, 2015: Article ID 473050.
[17] Gordillo M A, Maldonado M C. Purification of peptides from Bacillus strains with biological activity//Dhanarasu S. Chromatography and Its Applications, InTech, 2012: 201-225.
[18] 汪静杰, 赵东洋, 刘永贵, 敖翔, 范蕊, 段正巧, 刘艳萍, 陈倩茜, 金志雄, 万永继. 解淀粉芽孢杆菌SWB16菌株脂肽类代谢产物对球孢白僵菌的拮抗作用. 微生物学报, 2014, 54(7): 778-785.
Wang J J, Zhao D Y, Liu Y G, Ao X, Fan R, Duan Z Q, Liu Y P, Chen Q Q , Jin Z X, Wan Y J. Antagonism against Beauveria bassiana by lipopeptide metabolites produced by entophyte Bacillus amyloliquefaciens strain SWB16. Acta Microbiologica Sinica, 2014, 54(7): 778-785. (in Chinese)
[19]   Arrebola E, Jacobs R, Korsten L. Iturin A is the principal inhibitor in the biocontrol activity of Bacillus amyloliquefaciens PPCB004 against postharvest fungal pathogens. Journal of Applied Microbiology, 2010, 108: 386-395.
[20]   乔俊卿, 刘邮洲, 夏彦飞, 慕少锋, 陈志谊. 生防菌B1619在番茄根部的定殖及对根际微生态的影响. 植物保护学报, 2013, 40(6): 507-511.
Qiao J Q, Liu Y Z, Xia Y F, Mu S F, Chen Z Y. Root colonization by Bacillus amyloliquefaciens B1619 and its impact on the microbial community of tomato rhizosphere. Acta Phytophylacica Sinica, 2013, 40(6): 507-511. (in Chinese)
[21]   朱丽梅, 吴小芹, 徐旭麟. 松材线虫拮抗细菌的筛选和鉴定. 南京林业大学学报 (自然科学版), 2008, 32(3): 91-94.
Zhu L M, Wu X Q, Xu X L. The screening and identification of the bacterium with nematicidal activity to Bursaphelenchusxy lophilus. Journal of Nanjing Forestry University (Natural Sciences Edition), 2008, 32(3): 91-94. (in Chinese)
[22]   明亮, 刘程程, 杨晓云, 储西平, 陆凡, 陈志谊. 生物杀菌剂解淀粉芽孢杆菌B1619水分散粒剂配方及助剂筛选. 中国生物防治学报, 2015, 31(4): 529-535.
Ming L, Liu C C, Yang X Y, Chu X P, Lu F, Chen Z Y. Screening on formula and auxiliaries for biological germicide Bacillus amyloliquefaciens B1619. Chinese Journal of Biological Control, 2015, 31(4): 529-535. (in Chinese)
[23]   Luo C P, Liu X H, Zhou H F, Wang X Y, Chen Z Y. Nonribosomal peptide synthase gene clusters for lipopeptide biosynthesis in Bacillus subtilis 916 and their phenotypic functions. Applied and Environmental Microbiology, 2015, 81(1): 422-431.
[24]   Luo C P, Liu X H, Zhou H F, Zou J C, Wang X Y, Zhang R S, Xiang Y P, Chen Z Y. Bacillomycin L and surfactin contribute synergistically to the phenotypic features of Bacillus subtilis 916 and the biocontrol of rice sheath blight induced by Rhizoctonia solani. Applied Microbiology and Biotechnology, 2015, 99: 1897-1910.
[25]   Vater J, Gao X W, Hitzeroth G, Wilde C, Franke P. “Whole cell”-matrix-assisted laser desorption ionization-time of flight-mass spectrometry, an emerging technique for efficient screening of biocombinatorial libraries of natural compounds-present state of research. Combinatorial Chemistry & High Throughput Screening, 2003, 6(6): 557-567.
[26]   何美玉. 现代有机与生物质谱. 北京: 北京大学出版社, 2002.
He M Y. Modern Organic and Biological Mass Spectrometry. Beijing: Beijing University Press, 2002. (in Chinese)
[27]   Strieker M, Tanovi? A, Marahiel M A. Nonribosomal peptide synthetases: structures and dynamics. Current Opinion in Structural Biology, 2010, 20(2): 234-240.
[28]   Liu J, Zhou T, He D, Li D, Wu H, Liu W, Gao X. Functions of lipopeptides bacillomycin D and fengycin in antagonism of Bacillusa myloliquefaciens C06 towards Monilinia fructicola. Journal of Molecular Microbiology and Biotechnology, 2011, 20(1): 43-52.
[29]   Yanez-Mendizabal V, Zeriouh H, Viñas I, Torres R, Usall J, de Vicente A, Pérez-García A, Teixidó N. Biological control of peach brown rot (Monilinia spp.) by Bacillus subtilis CPA-8 is based on production of fengycin-like lipopeptides. European Journal of Plant Pathology, 2012, 132(4): 609-619.
[30]   王雅. 枯草芽孢杆菌菌株Bv10胞外抗菌物质的纯化及其特性测定[D]. 南宁: 广西大学, 2013.
Wang Y. Purification and characterization of antimicrobial substances produced by Bacillus subtilis strain Bv10[D]. Nanning: GuangxiUniversity, 2013. (in Chinese)
[31]   Leifert C, White D, Killham K, Malathracis N E, Wolf G A, Li H. Advances in biological control of plant diseases//Proceeding of the International Workshop on Biological Control of Plant Disease. Beijing: China Agricultural University Press, 1996.
[32]   Bais H P, Fall R, Vivanco J M. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringaeis facilitated by biofilm formation and surfactin production. Plant Physiology, 2004, 134(1): 307-319.
[33]   Ongena M, Jacques P. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends in Microbiology, 2008, 16(3): 115-125.
[34]   Ongena M, Duby F, Jourdan E, Beaudry T, Jadin V, Dommes J, Thonart P. Bacillus subtilis M4 decreases plant susceptibility towards fungal pathogens by increasing host resistance associated with differential gene expression. Applied Microbiology and Biotechnology, 2005, 67(5): 692-698.
[35]   任鹏举, 谢永丽, 张岩, 伍辉军, 高学文. 枯草芽孢杆菌OKB105产生的surfactin防治烟草花叶病毒病及其机理研究. 中国生物防治学报, 2014, 30(2): 216-221.
Ren P J, Xie Y L, Zhang Y, Ren H J, Gao X W. Effect and mechanism of controlling TMV disease on tobacco by surfactin produced by Bacillus subtilis OKB105. Chinese Journal of Biological Control, 2014, 30(2): 216-221. (in Chinese)
[36]   张荣胜, 王晓宇, 罗楚平, 刘永锋, 刘邮洲, 陈志谊. 解淀粉芽孢杆菌Lx-11产脂肽类物质鉴定及表面活性素对水稻细菌性条斑病的防治作用. 中国农业科学, 2013, 46(10): 2014-2021.
Zhang R S, Wang X Y, Luo C P, Liu Y F, Liu Y Z, Chen Z Y. Identification of the lipopeptides from Bacillus amyloliquefaciens Lx-11 and biocontrol efficacy of surfactin against bacterial leaf streak. Scientia Agricultura Sinica, 2013, 46(10): 2014-2021. (in Chinese)
[37]   别小妹, 陆兆新, 吕凤霞, 赵海珍, 杨胜远, 孙力军. Bacillus subtilis fmbR抗菌物质的分离和鉴定. 中国农业科学, 2006, 39(11): 2327-2334.
Bie X M, LU Z X, Lü F X, Zhao H Z, Yang S Y, Sun L J. Isolation and identification of the antimicrobial substance produced by Bacillus subtilis fmbR. Scientia Agricultura Sinica, 2006, 39(11): 2327-2334. (in Chinese)
[38]   Sun L J, Lu Z X, Bie X M, Lu F X, Yang S Y. Isolation and characterization of a co-producer of fengycins and surfactins, endophytic Bacillus amyloliquefaciens ES-2, from Scutellaria baicalensis Georgi. World Journal of Microbiology and Biotechnology, 2006, 22(12): 1259-1266.
[39]   Mukherjee S, Das P, Sivapathasekaran C, Sen R. Antimicrobial biosurfactants from marine Bacillus circulans: extracellular synthesis and purification. Letters in Applied Microbiology, 2009, 48(3): 281-288.
[40]   Lin S C, Minton M A, Sharma M M, Georgiou G. Structural and immunological characterization of a biosurfactant produced by Bacillus licheniformis JF-2. Applied and Environmental Microbiology, 1994, 60(1): 31-38.
[41]   Leclere V, Bechet M, Adam A, Glue J, Wathelet B, Ongena M, Thonart P, Gancel F, Imbert M, Jacques P. Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism’s antagonistic and biocontrol activities. Applied and Environmental Microbiology, 2005, 71(8): 4577-4584.
[1] LI YangFan,SHAO MeiQi,LIU CHANG,GUO QingGang,WANG PeiPei,CHEN XiuYe,SU ZhenHe,MA Ping. Identification of the Antifungal Active Compounds from Bacillus amyloliquefaciens Strain HMB33604 and Its Control Efficacy Against Potato Black Scurf [J]. Scientia Agricultura Sinica, 2021, 54(12): 2559-2569.
[2] HuaFei ZHOU,HongFu YANG,KeBing YAO,YiQing ZHUANG,ZhaoLin SHU,ZhiYi CHEN. FliZ Regulated the Biofilm Formation of Bacillus subtilis Bs916 and Its Biocontrol Efficacy on Rice Sheath Blight [J]. Scientia Agricultura Sinica, 2020, 53(1): 55-64.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!