Scientia Agricultura Sinica ›› 2016, Vol. 49 ›› Issue (14): 2850-2856.doi: 10.3864/j.issn.0578-1752.2016.14.020

• RESEARCH NOTES • Previous Articles    

Analysis of Resistance of Different Tomato Varieties to Tomato yellow leaf curl virus in Tomato

Tian Zhao-feng1, Liu Wei-cheng1, Hou Ling-yu1, XIE Hua3,Luo Chen1, Chai Min2   

  1. 1Institute of Plant & Environment Protection, Beijing Academy of Agriculture & Forestry Sciences, Beijing 100097
    2Vegetable Research Center, Beijing Academy of Agriculture & Forestry Sciences, Beijing 100097
    3Beijing Agro-Biotechnology Research  Center, Beijing 100097
  • Received:2016-02-15 Online:2016-07-16 Published:2016-07-16

Abstract: 【Objective】Tomato yellow leaf curl virus (TYLCV) disease is a serious threat to tomato production worldwide, breeding resistant varieties is the most economical, effective and friendly way to control this disease. Most of the tomato varieties resistant to TYLCV used in production of China were introduced from abroad. Many new tomato varieties resistant to TYLCV have been obtained by breeding, but the resistance is unknown. In this paper, the resistance levels of the new tomato varieties resistant to TYLCV bred by Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences were assessed and the expression of resistance genes Ty-1/Ty-3a and the pathogenesis-related proteins glucanase/chitinase were analyzed. The purpose is to provide a reference for rational utilization of germplasm resources and reduce the harm of TYLCV.【Method】Four tomato varieties Qiuguang 285, Peng 137×246, Qiuguang 120 and Qiuguang 81 were used as the experimental materials. TYLCV disease incidence was observed in the field. The disease resistance of these tomato varieties was examined by investigating the disease incidence and index. The resistance levels of the new tomato varieties resistant to TYLCV were assessed and the expression of resistance genes and the pathogenesis-related proteins were analyzed by RT-PCR. 【Result】 The resistance of the hybrid was no obvious differences with that of the pure and the resistance of the two genes was a little higher than that of single resistance genes, but yet no significant differences. Semi-quantitative RT-PCR results showed that the expression of genes Ty-3a and Ty-1 increased with the increase of the incidence of TYLCCV in different tomato varieties. The expression level of Ty-3a in four tomato varieties from weak to strong is Qiuguang 285, Peng 137×246, Qiuguang 120 and Qiuguang 81. The expressionof Ty-1 in Qiuguang 81 was obviously higher than that of in Qiuguang 120. The gene expression of glucanase and chitinase in vivo was significantly higher than that in the control. The expression of the two genes increased with the increase of the time. In the 20 and 30 days after appearing of disease, the expression of glucanase gene in Qiuguang 81 with the Ty-1+Ty-3a was significantly higher than that in other varieties.【Conclusion】The resistance of four tomato varieties to TYLCV from weak to strong is Qiuguang 285, Peng 137×246, Qiuguang 120 and Qiuguang 81. After the infection of TYLCV, the expression levels of resistance genes increased with the time of disease in different tomato varieties. The expression levels of glucanase and chitinase genes in vivo were significantly higher than those in the control. The results suggested that the high resistance of variety to TYLCV is related to the high expression of resistance gene and pathogenesis-related proteins.

Key words: Tomato yellow leaf curl virus, resistance gene, pathogenesis-related proteins, semi-quantitative RT-PCR

[1]    Cohen S, Harpaz I. Periodic, rather than continual acquisition of a new tomato virus by its vector, the tobacco whitefly (bemisia tabaci gennadius). Entomologia Experimentalis et Applicata, 1964, 7: 155-166.
[2]    Polston J E, McGovern R J, Brown L G. Introduction of Tomato yellow leaf curl virus in Florida and implications for the spread of this and other geminiviruses of tomato. Plant Disease, 1999, 83(11): 984-988.
[3]    张芝利, 罗晨. 我国烟粉虱的发生危害和防治对策. 植物保护, 2001, 27(2): 25-30.
Zhang Z L, Luo C. Occurrence and control countermeasures of Bemisia tabaci (Gennadius) in China. Plant Protection, 2001, 27(2): 25-30. (in Chinese)
[4]    周雪平, 崔晓峰, 陶小荣. 双生病毒——一类值得重视的植物病毒. 植物病理学报, 2003, 33(6): 487-492.
Zhou X P, Cui X F, Tao X R. Geminiviruses-an emerging threat for crop production. Acta Phytopathologica Sinica, 2003, 33(6): 487-492. (in Chinese)
[5]    丁铭, 岳宁, 董家红, 张仲凯. 侵染番茄的中国番茄黄化曲叶病毒致病性相关分子的遗传多样性. 云南大学学报(自然科学版), 2008, 30(增刊1): 63-68.
Ding M, Yue N, Dong J H, Zhang Z K. Genetic diversity of tomato yellow leaf curl China virus associated satellites DNA β infecting Solanum lycopersicon. Journal of Yunnan University (Natural Sciences), 2008, 30(Suppl.1): 63-68. (in Chinese)
[6]    Lapidot M, Friedmann M. Breeding for resistance to whitefly-transmitted geminiviruses. Annals of Applied Biology, 2002, 140(2): 109-127.
[7]    Stansly P A, Sánchez P A, Rodr?guez J M, Cañizares F, Nieto A, Lopez Leyva M J, Fajardo M, Suárez V, Urbaneja A. Prospects for biological control of Bemisia tabaci (Homoptera: Aleyrodidae) in greenhouse tomatoes of southern Spain. Crop Protection, 2004, 23(8): 701-712.
[8]    Vidavsky F, Czosnek H. Tomato breeding lines resistant and tolerant to Tomato yellow leaf curl virus issued from Lycopersicon hirsutum. Phytopathology, 1988, 88(9): 910-914.
[9]    Akad F, Eybishtz A, Edeibaum D, Gorovits R, Dar-Issa O, Iraki N, Czosnek H. Making a friend from a foe: expressing a GroEL gene from the whitefly Bemisia tabaci in the phloem of tomato plants confers resistance to Tomato yellow leaf curl virus. Archives of Virology, 2007, 152(7): 1323-1339.
[10]   Zamir D, Ekstein-Michelson I, Zakay Y, Navot N, Zeidan M, Sarfatti M, Eshed Y, Harel E, Pleban T, van-Oss H, Kedar N, Rabinowitch H D, Czosnek H. Mapping and introgression of a tomato yellow leaf curl virus tolerance gene, Ty-1. Theoretical and Applied Genetics, 1994, 88(2): 141-146.
[11]   Ji Y, Schusterd J, SCOTT J W. Ty-3, a begomovirus resistance locus near the tomato yellow leaf curl virus resistance locus Ty-1 on chromosome 6 of tomato. Molecular Breeding, 2007, 20(3): 271-284.
[12]   Mejía L, Teni R E, Vidavski F, Czosnek H, Lapidot M, Nakhla M K, Maxwell D P. Evaluation of tomato germplasm and selection of breeding lines for resistance to begomoviruses in Guatemala. International Symposium on Tomato Diseases, 2005, 695: 251-256.
[13]   Ji Y, Scott J W, Schuster D J, Maxwell D P. Molecular mapping of Ty-4, a new tomato yellow leaf curl virus resistance locus on chromosome3 of tomato. Journal of the American Society for Horticultural Science, 2009, 134(2): 281-288.
[14]   刘榛, 张延安. CAPS标记在番茄抗黄化曲叶病毒病基因Ty-1Ty3遗传关系分析上的应用. 西北农业学报, 2013, 22(4): 92-96.
Liu Z, Zhang Y A. CAPS marker use in genetic relationship analysis between Ty-1 and Ty3 resistant gene to Tomato yellow leaf curl virus. Acta Agriculturae Boreali-Occidentalis Sinica, 2013, 22(4): 92-96. (in Chinese)
[15]   胡恩美, 余文贵, 王银磊, 杨玛丽, 赵丽, 赵统敏. 番茄抗黄化曲叶病基因研究进展. 江苏农业学报, 2013, 29(6): 1496-1502.
Hu E M, Yu W G, Wang Y L, Yang M L, Zhao L, Zhao T M. Research progress in tomato yellow leaf curl virus resistance genes. Jiangsu Journal of Agricultural Sciences, 2013, 29(6): 1496-1502. (in Chinese)
[16]   叶青静, 杨悦俭, 王荣青, 李志邈, 阮美颖, 周国治, 姚祝平. 番茄抗黄化曲叶病育种研究进展. 中国农业科学, 2009, 42(4): 1230-1242.
Ye Q J, Yang Y J, Wang R Q, Li Z M, Ruan M Y, Zhou Z G, Yao Z P. Progress in research on tylcd-resistant breeding of tomato. Scientia Agricultura Sinica, 2009, 42(4): 1230-1242. (in Chinese)
[17]   田兆丰, 刘伟成, 谢欢, 邢若虹, 柴敏, 罗晨. 不同番茄品种对番茄黄化曲叶病毒的抗病性鉴定. 植物保护学报, 2013, 40(1): 56-60.
Tian Z F, Liu W C, Xie H, Xing R H, Chai M, Luo C. Resistance identification of tomato varieties against Tomato yellow leaf curl virus. Acta Phytophylacica Sinica, 2013, 40(1): 56-60. (in Chinese)
[18]   van Kan J L, Joosten M H, Wagemakers C A, van den Berg-Velthuis G C, de Wit P J. Differential accumulation of mRNAs encoding extracellular and intracellular PR proteins in tomato induced by virulent and avirulent races of Cladosporium fulvum. Plant Molecular Biology, 1992, 20(3): 513-527.
[19]   Danhash N, Wagemakers C A, VAN Kan J A, DE WIT P J. Molecular characterization of four chitinase cDNAs obtained from Cladosporium fulvum-infected tomato. Plant Molecular Biology, 1993, 22(6): 1017-1029.
[20]   李仁, 吴新新, 李蔚, 杨荣超, 赵永钦, 温常龙, 赵冰, 郭仰东. 番茄水通道蛋白基因SlAQP的克隆与序列分析. 中国农业科学, 2012, 45(2): 302-310.
LI R, WU X X, LI W, YANG R C, ZHAO Y Q, WEN C L, ZHAO B, GUO Y D. Cloning and sequence analysis of the aquaporins gene SlAQP in tomato. Scientia Agricultura Sinica, 2012, 45(2): 302-310. (in Chinese)
[21]   Aimé S, Cordier C, Alabouvette C, Olivain C. Comparative analysis of PR gene expression in tomato inoculated with virulent Fusarium oxysporum f. sp. lycopersici and the biocontrol strain F. oxysporum Fo47. Physiological and Molecular Plant Pathology, 2008, 73(1/3): 9-15.
[22]   左豫虎, 康振生, 杨传平, 芮海英, 娄树宝, 刘惕若. β-1,3-葡聚糖酶和几丁质酶活性与大豆对疫霉根腐病抗性的关系. 植物病理学报, 2009, 39(6): 600-607.
Zuo Y H, Kang Z S, Yang C P, Rui H Y, Lou S B, Liu T R. Relationship between activities of β-1, 3-glacanase and chitinase and resistance to phytophthora root rot in soybean. Acta Phytopathologica Sinica, 2009, 39(6): 600-607. (in Chinese)
[23]   吴艳兵, 谢荔岩, 谢联辉, 林奇英. 毛头鬼伞多糖对烟草酶活性和同工酶谱的影响. 微生物学杂志, 2007, 27(5): 29-33.
Wu Y B, Xie L Y, Xie L H, Lin Q Y. Effects of coprinus comatus polysaccharide on the activities of enzymes and isoenzyme zymogram in tobacco leaves. Journal of Microbiology, 2007, 27(5): 29-33. (in Chinese)
[24]   黑银秀, 朱为民, 郭世荣, 于力, 孙锦, 朱龙英. 核黄素和接种番茄黄化曲叶病毒对番茄几丁质酶和β-1,3-葡聚糖酶活性的影响. 南京农业大学学报, 2012, 35(4): 135-139.
Hei Y X, Zhu W M, Guo S R, Yu L, Sun J, Zhu LY. Effects of riboflavin and TYLCV inoculation on the activities of chitinase and β-1,3-glucanase in tomato. Journal of Nanjing Agricultural University, 2012, 35(4): 135-139. (in Chinese)
[1] LIU Jiao,LIU Chang,CHEN Jin,WANG MianZhi,XIONG WenGuang,ZENG ZhenLing. Distribution Characteristics of Prophage in Multidrug Resistant Escherichia coli as well as Its Induction and Isolation [J]. Scientia Agricultura Sinica, 2022, 55(7): 1469-1478.
[2] ZHANG YaLing, GAO Qing, ZHAO Yuhan, LIU Rui, FU Zhongju, LI Xue, SUN Yujia, JIN XueHui. Evaluation of Rice Blast Resistance and Genetic Structure Analysis of Rice Germplasm in Heilongjiang Province [J]. Scientia Agricultura Sinica, 2022, 55(4): 625-640.
[3] HU ChaoYue, WANG FengTao, LANG XiaoWei, FENG Jing, LI JunKai, LIN RuiMing, YAO XiaoBo. Resistance Analyses on Wheat Stripe Rust Resistance Genes to the Predominant Races of Puccinia striiformis f. sp. tritici in China [J]. Scientia Agricultura Sinica, 2022, 55(3): 491-502.
[4] TANG ZiYun,HU JianXin,CHEN Jin,LU YiXing,KONG LingLi,DIAO Lu,ZHANG FaFu,XIONG WenGuang,ZENG ZhenLing. Relationship Between Biofilm Formation and Molecular Typing of Staphylococcus aureus from Animal Origin [J]. Scientia Agricultura Sinica, 2022, 55(3): 602-612.
[5] CHEN ChaoXi,LI YuHan,TAN Min,WANG Lu,HUANG ZhiHong. Biofilm-Forming Phenotype, Antibacterial Resistance Genes, Integrase Genes and Virulence Genes Detection of Escherichia coli Isolated from Yaks and Tibetan Pigs in Northwest Sichuan Plateau [J]. Scientia Agricultura Sinica, 2021, 54(23): 5144-5162.
[6] Cheng LIU,Ran HAN,XiaoLu WANG,WenPing GONG,DunGong CHENG,XinYou CAO,AiFeng LIU,HaoSheng LI,JianJun LIU. Research Progress of Wheat Wild Hybridization, Disease Resistance Genes Transfer and Utilization [J]. Scientia Agricultura Sinica, 2020, 53(7): 1287-1308.
[7] WenJing HU,ChunMei ZHANG,Di WU,ChengBin LU,YaChao DONG,XiaoMing CHENG,Yong ZHANG,DeRong GAO. Screening for Resistance to Fusarium Head Blight and Agronomic Traits of Wheat Germplasms from Yangtze River Region [J]. Scientia Agricultura Sinica, 2020, 53(21): 4313-4321.
[8] GUAN FangNian,LONG Li,YAO FangJie,WANG YuQi,JIANG QianTao,KANG HouYang,JIANG YunFeng,LI Wei,DENG Mei,LI Hao,CHEN GuoYue. Evaluation of Resistance to Stripe Rust and Molecular Detection of Important Known Yr Gene(s) of 152 Chinese Wheat Landraces from the Huang-huai-hai [J]. Scientia Agricultura Sinica, 2020, 53(18): 3629-3637.
[9] WANG DaGang, LI Kai, ZHI HaiJian. Progresses of Resistance on Soybean Mosaic Virus in Soybean [J]. Scientia Agricultura Sinica, 2018, 51(16): 3040-3059.
[10] ZHA Qian, XI XiaoJun, JIANG AiLi, TIAN YiHua. Influence of Heat Stress on the Expression of Related Genes and Proteins in Grapevines [J]. Scientia Agricultura Sinica, 2017, 50(9): 1674-1683.
[11] LI Bei, XU Qi, YANG YuHeng, WANG QiLin, ZENG QingDong, WU JianHui, MU JingMei, HUANG LiLi, KANG ZhenSheng, HAN DeJun. Stripe Rust Resistance and Genes in Chongqing Wheat Cultivars and Lines [J]. Scientia Agricultura Sinica, 2017, 50(3): 413-425.
[12] HUANG Liang, LIU TaiGuo, XIAO XingZhi, QU ChunYan, LIU Bo, GAO Li, LUO PeiGao, CHEN WanQuan. Evaluation of Stripe Rust Resistance and Molecular Detection of Yr Genes of 79 Wheat Varieties (Lines) in China [J]. Scientia Agricultura Sinica, 2017, 50(16): 3122-3134.
[13] WANG HuiJuan, ZHAO Jing, SHI ZuoKun, QIU LingYu, WANG Su, ZHANG Fan, WANG ShiGui, TANG Bin. Sequence Analysis and Induced Expression of Three Novel Small Heat Shock Proteins Mediating Cold-Hardiness in Harmonia axyridis [J]. Scientia Agricultura Sinica, 2017, 50(16): 3145-3154.
[14] LIU LiNa, YANG Jing, XU LiuYan, LI ChengYun. Genetic Diversity Analysis of Pi-ta Gene 3′-UTR in Rice Landraces [J]. Scientia Agricultura Sinica, 2017, 50(15): 2851-2860.
[15] LIU Yi-ke, TONG Han-wen, ZHU Zhan-wang, CHEN Ling, ZOU Juan, ZHANG Yu-qing, GAO Chun-bao. Progress in Research on Mechanism of Resistance to Fusarium Head Blight in Wheat [J]. Scientia Agricultura Sinica, 2016, 49(8): 1476-1488.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!