Scientia Agricultura Sinica ›› 2016, Vol. 49 ›› Issue (10): 2027-2038.doi: 10.3864/j.issn.0578-1752.2016.10.018
• ANIMAL SCIENCE·VETERINARY SCIENCERE·SOURCE INSECT • Previous Articles
ZHAO Peng1, WANG Ye-jing1, 2, WEI Shu-guang1, LIU Li-na1, LI Zhen-zhen1, ZHAO Ping1, HE Hua-wei1, 2, 3
[1] Kimoto M, Tsubota T, Uchino K, Sezutsu H, Takiya S. LIM-homeodomain transcription factor Awh is a key component activating all three fibroin genes, fibH, fibL and fhx, in the silk gland of the silkworm, Bombyx mori. Insect Biochemistry and Molecular Biology, 2015, 56: 29-35.
[2] Kojima K, Kuwana Y, Sezutsu H, Kobayashi I, Uchino K, Tamura T, Tamada Y. A new method for the modification of fibroin heavy chain protein in the transgenic silkworm. Bioscience, Biotechnology and Biochemistry, 2007, 71(12): 2943-2951.
[3] Zhao X M, Liu C, Jiang L J, Li Q Y, Zhou M T, Cheng T C, Mita K, Xia Q Y. A juvenile hormone transcription factor Bmdimm-Fibroin H chain pathway is involved in the synthesis of silk protein in silkworm, Bombyx mori. Journal of Biological Chemistry, 2015, 290(2): 972-986.
[4] Wang Y, Chen K P, Yao Q, Wang W B, Zhu Z. The basic helix-loop-helix transcription factor family in Bombyx mori. Development Genes and Evolution, 2007, 217(10): 715-723.
[5] 阮班军, 代鹏, 王伟, 孙建斌, 张文涛, 颜真, 杨静华. 蛋白质翻译后修饰研究进展. 中国细胞生物学学报, 2014, 36(7): 1027-1037.
Ruan B J, Dai P, Wang W, Sun J B, Zhang W T, Yan Z, Yang J H. Progress on post-translational modification of proteins. Chinese Journal of Cell Biology, 2014, 36(7): 1027-1037. (in Chinese)
[6] 郭芸菲, 王涛, 徐小洁, 宋金洁, 王宣, 王子政, 叶棋浓, 江泽飞. 热休克蛋白70羧基末端相互作用蛋白 (CHIP) 对HER2的降解作用. 细胞与分子免疫学杂志, 2014, 30(6): 611-613.
Guo Y F, Wang T, Xu X J, Song J J, Wang X, Wang Z Z, Ye Q N, Jiang Z F. Degradation of heat shock protein 70 carboxy terminus interacting protein (CHIP) for HER2. Chinese Journal of Cellular and Molecular Immunology, 2014, 30(6): 611-613. (in Chinese)
[7] 张志清, 钱令嘉. 协同伴侣分子CHIP的E3连接酶活性及其生物学意义. 细胞生物学杂志, 2008, 30: 435-439.
Zhang Z Q, Qian L J. E3 ligase activity of CHIP, a cochaperones and its biological significance. Chinese Journal of Cell Biology, 2008, 30: 435-439. (in Chinese)
[8] Huq E, Al-Sady B, Hudson M, Kim C H, Apel M, Quail P H. Phytochrome-interacting factor 1 is a critical bHLH regulator of chlorophyll biosynthesis. Science, 2004, 305(5692): 1937-1941.
[9] Grove C A, De Masi F, Barrasa M I, Newburger D E, Alkema M J, Bulyk M L, Walhout A J M. A multiparameter network reveals extensive divergence between C. elegans bHLH transcription factors. Cell, 2009, 138(2): 314-327.
[10] Wang L H, Baker N E. Proteins and ID proteins: Helix-loop-helix partners in development and disease. Developmental Cell, 2015, 35(3): 269-280.
[11] De Masi F, Grove C A, Vedenko A, Alibes A, Gisselbrecht S S, Serrano L, Bulyk M L, Walhout A J M. Using a structural and logics systems approach to infer bHLH-DNA binding specificity determinants. Nucleic Acids Research, 2011, 39(11): 4553-4563.
[12] Gordan R, Shen N, Dror I, Zhou T, Horton J, Rohs R, Bulyk M L. Genomic regions flanking E-Box binding sites influence DNA binding specificity of bHLH transcription factors through DNA Shape. Cell Reports, 2013, 3(4): 1093-1104.
[13] Wang Y, Chen K, Yao Q, Wang W, Zhu Z. The basic helix- loop-helix transcription factor family in Bombyx mori. Development Genes and Evolution, 2007, 217(10): 715-723.
[14] Hewes R S, Park D, Gauthier S A, Schaefer A M, Taghert P H. The bHLH protein Dimmed controls neuroendocrine cell differentiation in Drosophila. Development, 2003, 130(9): 1771-1781.
[15] Jia D, Sun Y, Konieczny S F. Mist1 regulates pancreatic acinar cell proliferation through p21CIP1/WAF1. Gastroenterology, 2008, 135(5): 1687-1697.
[16] Pin C L, Rukstalis J M, Johnson C, Konieczny S F. The bHLH transcription factor Mist1 is required to maintain exocrine pancreas cell organization and acinar cell identity. The Journal of Cell Biology, 2001, 155(4): 519-530.
[17] Hamanaka Y, Park D, Yin P, Annangudi S P, Edwards T N, Sweedler J, Meinertzhagen I A, Taghert P H. Transcriptional orchestration of the regulated secretory pathway in neurons by the bHLH protein DIMM. Current Biology, 2010, 20(1): 9-18.
[18] Darosa P A, Wang Z Z, Jiang X M, Pruneda J N, Cong F, Klevit R E, Xu W Q. Allosteric activation of the RNF146 ubiquitin ligase by a poly (ADP-ribosyl) ation signal. Nature, 2015, 517(7533): 223-226.
[19] Hettema E H, Valdez-Taubas J, Pelham H R B. Bsd2 binds the ubiquitin ligase Rsp5 and mediates the ubiquitination of transmembrane proteins. The EMBO Journal, 2004, 23(6): 1279-1288.
[20] Chen Z J. Ubiquitin signalling in the NF-κB pathway. Nature Cell Biology, 2005, 7(8): 758-765.
[21] 洪小琦, 梁敏, 黄芳. 泛素连接酶在神经系统中的作用. 细胞生物学杂志, 2009, 31(3): 325-330.
Hong X Q, Liang M, Huang F. Roles of ubiquitin ligase in the nervous system. Chinese Journal of Cell Biology, 2009, 31(3): 325-330. (in Chinese)
[22] Goo M S, Scudder S L, Patrick G N. Ubiquitin-dependent trafficking and turnover of ionotropic glutamate receptors. Frontiers in Molecular Neuroscience, 2015, 8: Article 60.
[23] 石号, 孙大燕, 李宾, 方合志, 吕建新. 蛋白质量控制研究. 中国细胞生物学学报, 2015, 37(2): 241-248.
Shi H, Sun D Y, Li B, Fang H Z, Lü J X. protein quality control. Chinese Journal of Cell Biology, 2015, 37(2): 241-248. (in Chinese)
[24] Li M Y, Brooks C L, Wu-Baer F, Chen D L, Baer R, Gu W. Mono-versus polyubiquitination: Differential control of p53 fate by Mdm2. Science, 2003, 302(5652): 1972-1975.
[25] Liu Y C. Ubiquitin ligases and the immune response. Annual Review of Immunology, 2004, 22: 81-127.
[26] 何珊, 张令强. 线性泛素化修饰研究进展. 遗传, 2015, 37(9): 911-917.
HE S, ZHANG L q. Research progress in linear ubiquitin modification. Hereditas, 2015, 37(9): 911-917. (in Chinese)
[27] Zou X, Gal L, Blank M. Molecular functions of NEDD4 E3 ubiquitin ligases in cancer. Biochimica et Biophysica Acta (BBA)- Reviews on Cancer, 2015, 1856(1): 91-106.
[28] Murata S, Chiba T, Tanaka K. CHIP: a quality-control E3 ligase collaborating with molecular chaperones. The International Journal of Biochemistry and Cell Biology, 2003, 35(5): 572-578.
[29] Rees I, Lee S, Kim H, Tsai F T F. The E3 ubiquitin ligase CHIP binds the androgen receptor in a phosphorylation-dependent manner. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 2006, 1764(6): 1073-1079.
[30] Deng W K, Wang Y B, Liu Z X, Cheng H, Xue Y. HemI: A toolkit for illustrating heatmaps. Plos One, 2014, 9(11): e111988.
[31] Huang P Y, Leu J H, Chen L L. A newly identified protein complex that mediates white spot syndrome virus infection via chitin-binding protein. Journal of General Virology, 2014, 95(8): 1799-1808.
[32] Wang X Q, Corin K, Baaske P, Wienken C J, Moran J W, Duhr S, Braun D, Zhang S G. Peptide surfactants for cell-free production of functional G protein-coupled receptors. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(22): 9049-9054.
[33] Zhou C Z, Confalonieri F, Esnault C, Zivanovic Y, Jacquet M, Janin J, Perasso R, Li Z G, Duguet M. The 62-kb upstream region of Bombyx mori fibroin heavy chain gene is clustered of repetitive elements and candidate matrix association regions. Gene, 2003, 312: 189-195.
[34] Jiang J H, Ballinger C A, Wu Y X, Dai Q, Cyr D M, Hohfeld J, Patterson C. CHIP is a U-box-dependent E3 ubiquitin ligase - Identification of Hsc70 as a target for ubiquitylation. The Journal of Biological Chemistry, 2001, 276(46): 42938-42944.
[35] Stankiewicz M, Nikolay R, Rybin V, Mayer M P. CHIP participates in protein triage decisions by preferentially ubiquitinating Hsp70-bound substrates. The FEBS Journal, 2010, 277(16): 3353-3367. |
[1] | FAN YanGen,WANG Yu,LIU FuHao,ZHAO XiuXiu,XIANG QinZeng,ZHANG LiXia. Screening and Verification of CsHIPP26.1 Interaction Protein in Tea Plant [J]. Scientia Agricultura Sinica, 2022, 55(8): 1630-1641. |
[2] | LI ShiJia,LÜ ZiJing,ZHAO Jin. Identification of R2R3-MYB Subfamily in Chinese Jujube and Their Expression Pattern During the Fruit Development [J]. Scientia Agricultura Sinica, 2022, 55(6): 1199-1212. |
[3] | SHI XiaoLong,GUO Pei,REN JingYao,ZHANG He,DONG QiQi,ZHAO XinHua,ZHOU YuFei,ZHANG Zheng,WAN ShuBo,YU HaiQiu. A Salt Stress Tolerance Effect Study in Peanut Based on Peanut//Sorghum Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(15): 2927-2937. |
[4] | WANG Bing,LI HuiMin,CAO HaiQun,WANG GuiRong. Mechanisms and Applications of Plant-Herbivore-Natural Enemy Tritrophic Interactions Mediated by Volatile Organic Compounds [J]. Scientia Agricultura Sinica, 2021, 54(8): 1653-1672. |
[5] | ZHAO WeiSong,GUO QingGang,DONG LiHong,WANG PeiPei,SU ZhenHe,ZHANG XiaoYun,LU XiuYun,LI SheZeng,MA Ping. Transcriptome and Proteome Analysis of Bacillus subtilis NCD-2 Response to L-proline from Cotton Root Exudates [J]. Scientia Agricultura Sinica, 2021, 54(21): 4585-4600. |
[6] | YANG FengKe,HE BaoLin,DONG Bo,WANG LiMing. Effects of Black Film Mulched Ridge-Furrow Tillage on Soil Water- Fertilizer Environment and Potato Yield and Benefit Under Different Rainfall Year in Semiarid Region [J]. Scientia Agricultura Sinica, 2021, 54(20): 4312-4325. |
[7] | YU BaoJun,DENG ZhanZhao,XIN GuoSheng,CAI ZhengYun,GU YaLing,ZHANG Juan. Correlation Analysis of Inosine Monophosphate Specific Deposition Related LNC_003828-gga-miR-107-3P-MINPP1 in Jingyuan Chicken Muscle Tissue [J]. Scientia Agricultura Sinica, 2021, 54(19): 4229-4242. |
[8] | ZHANG ZhiXing,MIN XiuMei,SONG Guo,CHEN Hua,XU HaiLong,LIN WenXiong. Identification of 14-3-3 Client Proteins in Rice Grains and Their Response to Exogenous Hormones During the Grain Filling Stage [J]. Scientia Agricultura Sinica, 2021, 54(12): 2523-2537. |
[9] | YUAN XinBo,CHENG TingTing,XI XiaoHan,CHEN ZhangYu,WANG RuiHong,KE WeiDong,GUO HongBo. Screening of Polyphenol Oxidase Interaction Proteins from Nelumbo nucifera and Their Verification [J]. Scientia Agricultura Sinica, 2020, 53(18): 3777-3791. |
[10] | YUAN GuiBo,MO ShuangRong,QIAN Ying,ZANG DongNan,YANG Fan,JIANG HongLiang,WU Yuan,DING HaiDong. Screening of Interacting Protein of Tomato SIVQ6 by GST Pull-Down [J]. Scientia Agricultura Sinica, 2020, 53(15): 3146-3157. |
[11] | ZOU ShuangXia,JIN ChengYan,BAO JianJun,WANG Yue,CHEN WeiHao,WU TianYi,WANG LiHong,LÜ XiaoYang,GAO Wen,WANG BuZhong,ZHU GuoQiang,DAI GuoJun,SHI DongFang,SUN Wei. Differential circRNA Analysis in the Spleen of Hu-sheep Lambs Infected with F17 Escherichia coli [J]. Scientia Agricultura Sinica, 2019, 52(6): 1090-1101. |
[12] | CHEN Peng,BAO XiYan,KANG TaoTao,DONG ZhanQi,ZHU Yan,PAN MinHui,LU Cheng. Screening and Identification of Proteins Interacting with Bombyx mori IAP and Their Effects on BmNPV Proliferation [J]. Scientia Agricultura Sinica, 2019, 52(3): 558-567. |
[13] | DONG ZhanQi,JIANG YaMing,PAN MinHui. Screening and Identification of Candidate Proteins Interacting with BmHSP60 in the Silkworm (Bombyx mori) [J]. Scientia Agricultura Sinica, 2019, 52(2): 376-384. |
[14] | ZHANG Kui, PAN GuangZhao, SU JingJing, TAN Juan, XU Man, LI YuTian, CUI HongJuan. Identification, Expression, Subcelluar Localization, and Function of glial cell missing (gcm) in Silkworm (Bombyx mori) [J]. Scientia Agricultura Sinica, 2018, 51(7): 1401-1411. |
[15] | WANG Fei, LI XianYang, HUA XiaoTing, XIA QingYou. Screening and Analysis of Anti-BmNPV Cytokines in Silkworm (Bombyx mori) [J]. Scientia Agricultura Sinica, 2018, 51(4): 789-799. |
|