Scientia Agricultura Sinica ›› 2015, Vol. 48 ›› Issue (16): 3211-3220.doi: 10.3864/j.issn.0578-1752.2015.16.011

• HORTICULTURE • Previous Articles     Next Articles

QTL Mapping of Multi-Locule-Number Trait in Xishuangbanna Cucumber

ZHANG Kai-jing1, SONG Hui2, BO Kai-liang1, LI Ji1, MA Zheng3, LOU Qun-feng1, QIAN Chun-tao1, CHEN Jin-feng1   

  1. 1College of Horticulture, Nanjing Agricultural University/State Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing 210095
    2Ningbo Academy of Agricultural Sciences, Ningbo 315040, Zhejiang
    3Agriculture Committee of Jiangyan District, Taizhou 225500, Jiangsu
  • Received:2015-02-05 Online:2015-08-16 Published:2015-08-16

Abstract: 【Objective】Xishuangbanna cucumber (Cucumis sativus L. var. xishuangbannanesis Qi et Yuan) is an elite Chinese original cucumber germplasm that produces fruits with multi-locule-number, of which the diameter is much larger than the 3-locules fruit. The purpose of this study is to investigate the inheritance and QTL locations of the multi-locule-number trait in Xishuangbanna cucumber. The results of the study will provide a preliminary basis for further study on mechanism of multi-locule-number trait and molecular assistant selection breeding, they also can provide helpful information for improvement of fruit characters of cucumber.【Method】The ovaries of Beijingjietou cucumber (CC3, 3-locules) and Xishuangbanna cucumber (SWCC8, 5-locules) were harvested at different developmental stages for paraffin sections. According to the genetic linkage map constructed based on 124 F9 recombinant inbred lines (RILs) derived from the cross of Beijingjietou×Xishuangbanna, the multi-locule-number QTLs were analyzed with the locule number statistics of RILs population in two seasons. Result Histological observation showed that the ovary of Xishuangbanna cucumber is consisted with five involute carpels which formed the multi-locules. By comparing with 3-locules cucumber ovary, the 5-locules cucumber ovary has a larger diameter and more placentas. QTL analysis indicated that 5 QTLs (LOD>2.5) distributed on chromosomes 1, 2, and 6. The major QTL ln1.1 locating between SSR16472-SSR12070 was detected in two seasons, having two LOD scores of 10.96, 9.24 and R2 of 39.24%, 20.49%, respectively. The another major QTL ln1.3 locating between UW083751-SSR04278 was detected in two seasons, having two LOD scores of 27.31 and 21.45, and R2 of 75.90% and 47.11%, respectively. The rest QTLs were minor QTLs. Combined with previous findings, there were two genes that control multi-locule-number in ln1.1 and ln1.3 regions, respectively. The two genes in ln1.1 region were WD40 repeat protein gene, Csa1M071910.1 and Csa1M072490.1. The two genes in ln1.3 region were Aux/IAA auxin responsive genes, Csa1M231530.1 and Csa1M207820.1.【Conclusion】 The QTLs of ln1.1 and ln1.3 located on Chr.1 were the major QTLs that control the multi-locule-number trait. The Aux/IAA auxin responsive genes, Csa1M071910.1 and Csa1M072490.1, and the two WD40 repeat protein genes, Csa1M231530.1 and Csa1M207820.1, were predicted as candidate genes.

Key words: Xishuangbanna cucumber, multi-locule-number, QTL mapping, paraffin section

[1]    苗晗, 顾兴芳, 张圣平, 张忠华, 黄三文, 王烨, 程周超, 张若纬, 穆生奇, 李曼, 张振贤, 方智远. 黄瓜果实相关性状qtl定位分析. 中国农业科学, 2011, 44(24): 5031-5040.
Miao H, Gu X F, Zhang S P, Zhang Z H, Huang S W, Wang Y, Cheng Z C, Zhang R W, Mu S Q, Li M, Zhang Z X, Fang Z Y, Mapping QTLs for fruit-associated traits in Cucumis sativus L.. Scientia Agricultura Sinica, 2011, 44(24): 5031-5040. (in Chinese)
[2]    王敏, 董邵云, 张圣平, 苗晗, 王烨, 顾兴芳. 黄瓜果实品质性状遗传及相关基因分子标记研究进展. 园艺学报, 2013, 40(9): 1752-1766.
Wang M, Dong S Y, Zhang S P, Miao H, Wang Y, Gu X F, Research progress on inheritance and molecular markers of relative genes in cucumber. Acta Horticulturae Sinica, 2013, 40(9): 1752-1766. (in Chinese)
[3]    Bo K L, Ma Z, Chen J F, Weng Y Q. Molecular mapping reveals structural rearrangements and quantitative trait loci underlying traits with local adaptation in semi-wild Xishuangbanna cucumber (Cucumis sativus L. var. xishuangbannanesis Qi et Yuan). Theoretical and Applied Genetics, 2015, 128(1): 25-39.
[4]    Yuan X J, Li X Z, Pan J S, Wang G, Jiang S, Li X H, Deng S L, He H L, Si M X, Lai L, Wu A Z, Zhu L H, Cai R. Genetic linkage map construction and location of QTLs for fruit-related traits in cucumber. Plant Breeding, 2008, 127(2): 180-188.
[5]    Dijkhuizen A, Staub J E. QTL conditioning yield and fruit quality traits in cucumber (Cucumis sativus L.): Effects of environment and genetic background. Journal of New Seeds, 2002, 4(4): 1-30.
[6]    Tanksley S D. The genetic, developmental, and molecular bases of fruit size and shape variation in tomato. Plant Cell, 2004, 16: S181-S189.
[7]    Barrero L S, Tanksley S D. Evaluating the genetic basis of multiple-locule fruit in a broad cross section of tomato cultivars. Theoretical and Applied Genetics, 2004, 109(3): 669-679.
[8]    Cong B, Barrero L S, Tanksley S D. Regulatory change in YABBY-like transcription factor led to evolution of extreme fruit size during tomato domestication. Nature Genetics, 2008, 40(6): 800-804.
[9]    Huang Z J, van der Knaap E. Tomato fruit weight 11.3 maps close to fasciated on the bottom of chromosome 11. Theoretical and Applied Genetics, 2011, 123(3): 465-474.
[10]   Muños S, Ranc N, Botton E, Bérard A, Rolland S, Duffé P, Carretero Y, Le Paslier M C, Delalande C, Bouzayen M, Brunel D, Causse M. Increase in tomato locule number is controlled by two single-nucleotide polymorphisms located near WUSCHEL. Plant Physiology, 2011, 156(4): 2244-2254.
[11]   Lippman Z, Tanksley S D. Dissecting the genetic pathway to extreme fruit size in tomato using a cross between the small-fruited wild species Lycopersicon pimpinellifolium and L. esculentum var. Giant Heirloom. Genetics, 2001, 158(1): 413-422.
[12]   Xiao L, Zhao H Y, Zhao Z, Du D Z, Xu L, Yao Y M, Zhao Z G, Xing X R, Shang G X, Zhao H C. Genetic and physical fine mapping of a multilocular gene Bjln1 in Brassica juncea to a 208-kb region. Molecular Breeding, 2013, 32(2): 373-383.
[13]   沈镝. 西双版纳黄瓜群体遗传多样性分析及黄瓜果肉色QTL定位研究[D]. 北京: 中国农业科学院, 2009.
Shen D. Analysis of population genetic diversity in Cucumis sativus L. var. xishuangbannanesis and study on the QTL mapping of fruit flesh color in cucumber [D]. Beijing: Chinese Academy of Agricultural Sciences, 2009. (in Chinese)
[14]   宋慧. 黄瓜花药培养及橙色果肉QTL分析和类胡萝卜素合成酶基因定位研究[D]. 南京: 南京农业大学, 2009.
Song H. Anther culture, QTL analyses of orange flesh and mapping of carotenoid biosynthesis genes in cucumber (Cucumis sativus L.) [D]. Nanjing: Nanjing Agriculture University, 2009. (in Chinese)
[15]   薄凯亮, 沈佳, 钱春桃, 宋慧, 陈劲枫. ‘北京截头’×西双版纳黄瓜重组自交系群体重要农艺性状的遗传分析. 南京农业大学学报, 2011, 34(3): 20-24.
Bo K L, Shen J, Qian C T, Song H, Chen J F. Genetic analysis of the important agronomic traits on ‘Beijingjietou’×Xishuangbanna cucumber recombinant inbred lines. Journal of Nanjing Agricultural University, 2011, 34(3): 20-24. (in Chinese)
[16]   Kosambi D D. The estimation of map distance from recombination values. Annals of Eugenics, 1944, 12: 172-175.
[17]   Ren Y, Zhang Z, Liu J, Staub J E, Han Y, Cheng Z, Li X, Lu J, Miao H, Kang H. An integrated genetic and cytogenetic map of the cucumber genome. Plos One, 2009, 4(6): 5795.
[18]   李和平. 植物显微技术. 第二版. 北京: 科学出版社, 2009.
Li H P. Plant Microscopy Techniques. 2nd ed. Beijing: Science Press, 2009. (in Chinese)
[19]   Huang S W, Li R Q, Zhang Z H, Li L, Gu X F, Fan W, Lucas W J, Wang X W, Xie B Y, Ni P X, Ren Y, Zhu H M, Li J, Lin K, Jin W W, Fei Z J, Li G C, Staub J B, Kilian A, van der Vossen E A G, Wu Y, GuoJ, He J, Jia Z Q, Ren Y, Tian G, Lu Y, Ruan J, Qian W, Wang M W,Huang Q F, Li B, Xuan Z L, Cao J J, San A, Wu Z G, Zhang J B, Cai Q L, Bai Y Q, Zhao B W, Han Y H, Li Y, Li X F, Wang S H, Shi Q X, Liu SQ, Cho W K, Kim J Y, Xu Y, Heller-Uszynska K, Miao H, Cheng Z C, Zhang S P, Wu J, Yang Y H, Kang H X, Li M, Liang H Q, Ren X L, Shi Z B, Wen M, Jian M, Yang H L, Zhang G J, Yang Z T,Chen R, Liu S F, Li J W, Ma L J, Liu H, Zhou Y, Zhao J, Fang X D, LiG Q, Fang L, Li Y G, Liu D Y, Zheng H K, Zhang Y, Qin N, Li Z, Yang G H, Yang S, Bolund L, Kristiansen K, Zheng H C, Li S C, Zhang X Q, Yang H M, Wang J, Sun R F, Zhang B X, Jiang S Z, WangJ, Du Y C, Li S G. The genome of the cucumber, Cucumis sativus L.. Nature Genetics, 2009, 41(12): 1275-1281.
[20]   吕泽文, 徐平, 张向向, 文静, 易斌, 马朝芝, 涂金星, 傅廷栋, 沈金雄. 芥菜型油菜多室角果的解剖特征及遗传分析. 中国油料作物学报, 2012, 34(5): 461-466.
Lv Z W, Xu P, Zhang X X, Weng J, Yi B, Ma C Z, Tu J X, Fu T D, Shen J X. Primary study on anatomic and genetic characteristics of multi- loculus in Brassica juncea. Chinese Journal of Oil Crop Sciences, 2012, 34(5): 461-466. (in Chinese)
[21]   朱彦涛, 胡选萍, 刘湛, 李殿荣, 郭蔼光. 油菜角果多室性状及其研究进展. 中国油料作物学报, 2012, 34(3): 321-325.
Zhu Y T, Hu X P, Liu Z, Li D R, Guo A G. Research progress on multi-loculus silique of rapeseed. Chinese Journal of Oil Crop Sciences, 2012, 34(3): 321-325. (in Chinese)
[22]   葛秀秀, 张立平, 何中虎, 章元明. 冬小麦PPO活性的主基因+多基因混合遗传分析. 作物学报, 2004, 30(1): 18-20.
Ge X X, Zhang L P, He Z H, Zhang Y M. The mixed inheritance analysis of polyphenol oxidase activities in winter wheat. Acta Agronomica Sinica, 2004, 30(1): 18-20. (in Chinese)
[23]   盖钧镒, 章元明, 王建康. 植物数量性状遗传体系. 北京: 科学出版社, 2002.
Gai J Y, Zhang Y M, Wang J K. Genetics System of Quantitative Traits in Plants. Beijing: Science Press, 2002. (in Chinese)
[24]   何余堂. 白菜型油菜的遗传多样性及特殊种质资源的研究[D]. 武汉: 华中农业大学, 2004.
He Y T. Studies on special germplasm and genetic diversity of Brassica campestris L. in China [D]. Wuhan: Huazhong Agricultural University, 2004. (in Chinese)
[25]   李慧慧, 张鲁燕, 王建康. 数量性状基因定位研究中若干常见问题的分析与解答. 作物学报, 2010, 36(6): 918-931.
Li H H, Zhang L Y, Wang J K. Analysis and answers to frequently asked questions in quantitative trait locus mapping. Acta Agronomica Sinica, 2010, 36(6): 918-931. (in Chinese)
[26]   Dai M Q, Zhao Y, Ma Q, Hu Y F, Hedden P, Zhang Q F, Zhou D X. The rice YABBY1 gene is involved in the feedback regulation of gibberellin metabolism. Plant Physiology, 2007, 144(1): 121-133.
[27]   李悦, 李天来, 王丹. 番茄花芽分化期茎尖内源激素水平与果实心室数目的相关性研究. 中国农业科学, 2008, 41(9): 2727-2733.
Li Y, Li T L, Wang D. Correlation between endogenous hormone content of stem apices and fruit locule number in tomato during floral bud differentiation stage. Scientia Agricultura Sinica, 2008, 41(9): 2727-2733. (in Chinese)
[28]   Hosoki T, Ohta K, Asahira T. Cultivar differences in fruit malformation in tomato and its relationship with nutrient and hormone levels in shoot apices. Journal of the Japanese Society for Horticultural Science, 1990, 58(4): 971-976.
[29]   Asahira T, Hosoki T, Shinya K. Regulation of low temperature induced malformation of tomato fruit by plant growth regulators. Journal of the Japanese Society for Horticultural Science, 1982, 50(4): 468-474.
[30]   Smith T F, Gaitatzes C, Saxena K, Neer E J. The WD repeat: a common architecture for diverse functions. Trends in Biochemical Sciences, 1999, 24(5): 181-185.
[31]   Li D, Roberts R. WD-repeat proteins: structure characteristics, biological function, and their involvement in human diseases. Cellular and Molecular Life Sciences, 2001, 58(14): 2085-2097.
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] LIU Jin,HU JiaXiao,MA XiaoDing,CHEN Wu,LE Si,JO Sumin,CUI Di,ZHOU HuiYing,ZHANG LiNa,SHIN Dongjin,LI MaoMao,HAN LongZhi,YU LiQin. Construction of High Density Genetic Map for RIL Population and QTL Analysis of Heat Tolerance at Seedling Stage in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2022, 55(22): 4327-4341.
[3] LinHan ZOU,XinYing ZHOU,ZeYuan ZHANG,Rui YU,Meng YUAN,XiaoPeng SONG,JunTao JIAN,ChuanLiang ZHANG,DeJun HAN,QuanHao SONG. QTL Mapping of Thousand-Grain-Weight and Its Related Traits in Zhou 8425B × Xiaoyan 81 Population and Haplotype Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3473-3483.
[4] CHANG LiGuo,HE KunHui,LIU JianChao. Mining of Genetic Locus of Maize Stay-Green Related Traits Under Multi-Environments [J]. Scientia Agricultura Sinica, 2022, 55(16): 3071-3081.
[5] ZHANG YaDong,LIANG WenHua,HE Lei,ZHAO ChunFang,ZHU Zhen,CHEN Tao,ZHAO QingYong,ZHAO Ling,YAO Shu,ZHOU LiHui,LU Kai,WANG CaiLin. Construction of High-Density Genetic Map and QTL Analysis of Grain Shape in Rice RIL Population [J]. Scientia Agricultura Sinica, 2021, 54(24): 5163-5176.
[6] QU KeXin,HAN Lu,XIE JianGuo,PAN WenJing,ZHANG ZeXin,XIN DaWei,LIU ChunYan,CHEN QingShan,QI ZhaoMing. Mapping QTL for Soybean Fatty Acid Composition Based on RIL and CSSL Population [J]. Scientia Agricultura Sinica, 2021, 54(15): 3168-3182.
[7] ZHANG Jian,YANG Jing,WANG Hao,LI DongXiu,YANG GuiLi,HUANG CuiHong,ZHOU DanHua,GUO Tao,CHEN ZhiQiang,WANG Hui. QTL Mapping for Grain Size Related Traits Based on a High-Density Map in Rice [J]. Scientia Agricultura Sinica, 2020, 53(2): 225-238.
[8] WANG Qin,LIU ZeHou,WAN HongShen,WEI HuiTing,LONG Hai,LI Tao,DENG GuangBing,LI Jun,YANG WuYun. Identification and Pyramiding of QTLs for Traits Associated with Pre-Harvest Sprouting Resistance in Two Wheat Cultivars Chuanmai 42 and Chuannong 16 [J]. Scientia Agricultura Sinica, 2020, 53(17): 3421-3431.
[9] ZhiHong NIU,XiaoFei SONG,XiaoLi LI,XiaoYu GUO,ShuQiang HE,LuanJingZhi HE,ZhiHong FENG,ChengZhen SUN,LiYing YAN. Inheritance and QTL Mapping for Parthenocarpy in Cucumber [J]. Scientia Agricultura Sinica, 2020, 53(1): 160-171.
[10] CHEN JingJing, LIU XieXiang, YU LiLi, LU YiPeng, ZHANG SiTian, ZHANG HaoChen, GUAN RongXia, QIU LiJuan. QTL Mapping of Hard Seededness in Wild Soybean Using BSA Method [J]. Scientia Agricultura Sinica, 2019, 52(13): 2208-2219.
[11] WANG BingWei, QIN JiaMing, SHI ChengQiao, ZHENG JiaXing, QIN YongAi, HUANG AnXia. QTL Mapping and Genetic Analysis of a Gene with High Resistance to Southern Corn Rust [J]. Scientia Agricultura Sinica, 2019, 52(12): 2033-2041.
[12] YingBin DING, LiZhen ZHANG, Rui XU, YanYan WANG, XiaoMing ZHENG, LiFang ZHANG, YunLian CHENG, Fan WU, QingWen YANG, WeiHua QIAO, JinHao LAN. Fine Mapping of Grain Length Associated QTL, qGL12 in Wild Rice (Oryza sativa L.) Using a Chromosome Segment Substitution Line [J]. Scientia Agricultura Sinica, 2018, 51(18): 3435-3444.
[13] MA YaRu, FENG JianCan, LIU ChongHuai, FAN XiuCai, SUN HaiSheng, JIANG JianFu, ZHANG Ying. Development and Application of SSR New Molecular Marker for Seedless Traits in Grape [J]. Scientia Agricultura Sinica, 2018, 51(13): 2622-2630.
[14] LI HaiJun, YU BoYang, DUAN YunJiao, LIU XingYu, WENG YaZheng, DU ChenGuang, WANG XiuMei. A Modified Paraffin-Section Technique for Ovine Cumulus-Oocyte Complexes [J]. Scientia Agricultura Sinica, 2017, 50(8): 1543-1550.
[15] LIANG YinPei, SUN Jian, SUO YiNing, LIU HuaLong, WANG JingGuo, ZHENG HongLiang, SUN XiaoXue, ZOU DeTang. QTL Mapping and QTL × Environment Interaction Analysis of Salt and Alkali Tolerance-Related Traits in Rice(Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2017, 50(10): 1747-1762.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!