Scientia Agricultura Sinica ›› 2014, Vol. 47 ›› Issue (15): 2971-2979.doi: 10.3864/j.issn.0578-1752.2014.15.007
• PLANT PROTECTION • Previous Articles Next Articles
LI Pei-Fen, ZHAO Fu-Xin, DONG Li-Ping, ZHENG Hui-Xin, ZHAO Bin, ZHANG Jing, SI He-Long, XING Ji-Hong, HAN Jian-Min, DONG Jin-Gao
[1]Williamson B, Tudzynski B, Tudzynski P, van Kan J A L. Botrytis cinerea: The cause of grey mould disease. Molecular Plant Pathology, 2007, 8(5): 561-580.[2]Elad Y, Williamson B, Tudzynski P, Delen N. Botrytis spp., and diseases they cause in agricultural systems-an introduction. In Botrytis: Biology, Pathology and Control, 2007: 1-8.[3]Schumacher J, De Larrinoa I F, Tudzynski B. Calcineurin-responsive zinc finger transcription factor CRZ1 of Botrytis cinerea is required for growth, development, and full virulence on bean plants. Eukaryotic Cell, 2008, 7(4): 584-601.[4]Schamber A, Leroch M, Diwo J, Mendgen K, Hahn M. The role of mitogen-activated protein (MAP) kinase signalling components and the Ste12 transcription factor in germination and pathogenicity of Botrytis cinerea. Molecular Plant Pathology, 2010, 11(1): 105-119.[5]Rui O, Hahn M. The Slt2-type MAP kinase Bmp3 of Botrytis cinerea is required for normal saprotrophic growth, conidiation, plant surface sensing and host tissue colonization. Molecular Plant Pathology, 2007, 8(2): 173-184.[6]Yan L, Yang Q, Sundin G W, Li H, Ma Z. The mitogen-activated protein kinase kinase BOS5 is involved in regulating vegetative differentiation and virulence in Botrytis cinerea. Fungal Genetics and Biology, 2010, 47(9): 753-760.[7]Heller J, Ruhnke N, Espino J J, Massaroli M, Collado I G, Tudzynski P. The mitogen-activated protein kinase BcSak1 of Botrytis cinerea is required for pathogenic development and has broad regulatory functions beyond stress response. Molecular Plant-Microbe Interactions, 2012, 25(6): 802-816.[8]Segmuller N, Ellendorf U, Tudzynski B, Tudzynski P. BcSAK1, a stress-activated mitogen-activated protein kinase, is involved in vegetative differentiation and pathogenicity in Botrytis cinerea. Eukaryotic Cell, 2007, 6(2): 211-221.[9]Choquer M, Fournier E, Kunz C, Levis C, Pradier J M, Simon A, Viaud M. Botrytis cinerea virulence factors: new insights into a necrotrophic and polyphageous pathogen. FEMS Microbiology Letters, 2007, 277(1): 1-10.[10]张玉净, 郝志敏, 郑蒙, 张金林, 董金皋. 灰葡萄孢产孢缺陷菌株的遗传分析. 华北农学报, 2011, 26(3): 86-89.Zhang Y J, Hao Z M, Zheng M, Zhang J L, Dong J G. Genetic analysis of sporulation defective in Botrytis cinerea. Acta Agriculturae Boreali-Sinica, 2011, 26(3): 86-89. (in Chinese)[11]van Kan J A. Licensed to kill: The lifestyle of a necrotrophic plant pathogen. Trends in Plant Science, 2006, 11(5): 247-253.[12]Schumacher J, Kokkelink L, Huesmann C, Jimenez-Teja D, Collado I G, Barakat R, Tudzynski P, Tudzynski B. The cAMP-dependent signaling pathway and its role in conidial germination, growth, and virulence of the gray mold Botrytis cinerea. Molecular Plant-Microbe Interactions, 2008, 21(11): 1443-1459.[13]Zheng L, Campbell M, Murphy J, Lam S, Xu J R. The BMP1 gene is essential for pathogenicity in the gray mold fungus Botrytis cinerea. Molecular Plant-Microbe Interactions, 2000, 13(7): 724-732.[14]王璇, 邢继红, 赵斌, 韩建民, 董金皋. 灰葡萄孢分生孢子产生相关基因的克隆及功能分析. 微生物学通报, 2013, 40(3): 533-543.Wang X, Xing J H, Zhao B, Han J M, Dong J G. Cloning and functional analysis of a gene related to conidiospore formation in Botrytis cinerea. Microbiology China, 2013, 40(3): 533-543. (in Chinese)[15]Choquer M, Fournier E, Kunz C, Levis C, Pradier J M, Simon A, Viaud M. Botrytis cinerea virulence factors: New insights into a necrotrophic and polyphageous pathogen. FEMS Microbiology Letters, 2007, 277(1): 1-10.[16]Tudzynski P, Kokkelink L. Botrytis cinerea: Molecular aspects of a necrotrophic life style. Plant Relationships, 2009, 5: 29-50.[17]Juge N. Plant protein inhibitors of cell wall degrading enzymes. Trends in Plant Science, 2006, 11(7): 359-367.[18]Pinedo C, Wang C M, Pradier J M, Dalmais B, Choquer M, Le Pêcheur P, Morgant G, Collado I G, Cane D E, Viaud M. Sesquiterpene synthase from the botrydial biosynthetic gene cluster of the phytopathogen Botrytis cinerea. ACS Chemical Biology, 2008, 3(12): 791-801.[19]Amaral M, Levy C, Heyes D J, Lafite P, Outeiro T F, Giorgini F, Leys D, Scrutton N S. Structural basis of kynurenine 3-monooxygenase inhibition. Nature, 2013, 496(7445): 382-385.[20]Kurnasov O, Goral V, Colabroy K, Gerdes S, Anantha S, Osterman A, Begley T P. NAD biosynthesis: Identification of the tryptophan to quinolinate pathway in bacteria. Chemistry and Biology, 2003, 10: 1195-1204.[21]Phillips R S. Structure, mechanism, and substrate specificity of kynureninase. Biochimica Biophysica Acta, 2011, 1814: 1481-1488.[22]Kurnasov O, Jablonski L, Polanuyer B, Dorrestein P, Begley T, Osterman A. Aerobic tryptophan degradation pathway in bacteria: Novel kynurenine formamidase. FEMS Microbiology Letters, 2003, 227: 219-227.[23]Matthijs S, Baysse C, Koedam N, Tehrani K A, Verheyden L, Budzikiewicz H, Schafer M, Hoorelbeke B, Meyer J M, De Greve H, Cornelis P. The Pseudomonas siderophore quinolobactin is synthesized from xanthurenic acid, an intermediate of the kynurenine pathway. Molecular Microbiology, 2004, 52: 371-384.[24]Keller U, Lang M, Crnovcic I, Pfennig F, Schauwecker F. The actinomycin biosynthetic gene cluster of Streptomyces chrysomallus: A genetic hall of mirrors for synthesis of a molecule with mirror symmetry. Journal of Bacteriology, 2010, 192: 2583-2595.[25]Hu Y, Phelan V, Ntai I, Farnet C M, Zazopoulos E, Bachmann B O. Benzodiazepine biosynthesis in Streptomyces refuineus. Chemistry and Biology, 2007, 14: 691-701. |
[1] | SHAO ShuJun,HU ZhangJian,SHI Kai. The Role and Mechanism of Linoleyl Ethanolamide in Plant Resistance Against Botrytis cinerea in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(9): 1781-1789. |
[2] | GUO ZeXi,SUN DaYun,QU JunJie,PAN FengYing,LIU LuLu,YIN Ling. The Role of Chalcone Synthase Gene in Grape Resistance to Gray Mold and Downy Mildew [J]. Scientia Agricultura Sinica, 2022, 55(6): 1139-1148. |
[3] | HUANG JiaQuan,LI Li,WU FengNian,ZHENG Zheng,DENG XiaoLing. Proliferation of Two Types Prophage of ‘Candidatus Liberibacter asiaticus’ in Diaphorina citri and their Pathogenicity [J]. Scientia Agricultura Sinica, 2022, 55(4): 719-728. |
[4] | YANG ShiMan, XU ChengZhi, XU BangFeng, WU YunPu, JIA YunHui, QIAO ChuanLing, CHEN HuaLan. Amino Acid of 225 in the HA Protein Affects the Pathogenicities of H1N1 Subtype Swine Influenza Viruses [J]. Scientia Agricultura Sinica, 2022, 55(4): 816-824. |
[5] | ZHANG JinLong,ZHAO ZhiBo,LIU Wei,HUANG LiLi. The Function of Key T3SS Effectors in Pseudomonas syringae pv. actinidiae [J]. Scientia Agricultura Sinica, 2022, 55(3): 503-513. |
[6] | LI ZhengGang,TANG YaFei,SHE XiaoMan,YU Lin,LAN GuoBing,HE ZiFu. Molecular Characteristics and Pathogenicity Analysis of Youcai Mosaic Virus Guangdong Isolate Infecting Radish [J]. Scientia Agricultura Sinica, 2022, 55(14): 2752-2761. |
[7] | ZHANG ChengQi,LIAO LuLu,QI YongXia,DING KeJian,CHEN Li. Functional Analysis of the Nucleoporin Gene FgNup42 in Fusarium graminearium [J]. Scientia Agricultura Sinica, 2021, 54(9): 1894-1903. |
[8] | CHEN Xi,LIU YingJie,DONG YongHao,LIU JinYan,LI Wei,XU PengJun,ZANG Yun,REN GuangWei. Effects of CMV-Infected Tobacco on the Performance, Feeding and Host Selection Behavior of Myzus persicae [J]. Scientia Agricultura Sinica, 2021, 54(8): 1673-1683. |
[9] | TongYu HOU,TingLi HAO,HaiJiang WANG,Ze ZHANG,Xin LÜ. Advances in Cotton Growth and Development Modelling and Its Applications in China [J]. Scientia Agricultura Sinica, 2021, 54(6): 1112-1126. |
[10] | CAO YuHan,LI ZiTeng,ZHANG JingYi,ZHANG JingNa,HU TongLe,WANG ShuTong,WANG YaNan,CAO KeQiang. Analysis of dsRNA Carried by Alternaria alternata f. sp. mali in China and Identification of a dsRNA Virus [J]. Scientia Agricultura Sinica, 2021, 54(22): 4787-4799. |
[11] | ZHANG Li,TANG YaFei,LI ZhengGang,YU Lin,LAN GuoBing,SHE XiaoMan,HE ZiFu. Molecular Characteristic of Squash Leaf Curl China Virus (SLCCNV) Infecting Cucurbitaceae Crops in Guangdong Province [J]. Scientia Agricultura Sinica, 2021, 54(19): 4097-4109. |
[12] | ZHAO JingYa,XIA HuiQing,PENG MengYa,FAN Zhuo,YIN Yue,XU SaiBo,ZHANG Nan,CHEN WenBo,CHEN LinLin. Identification and Functional Analysis of Transcription Factors FpAPSES in Fusarium pseudograminearum [J]. Scientia Agricultura Sinica, 2021, 54(16): 3428-3439. |
[13] | ZHENG XinShi,SHANG PengXiang,LI JingYuan,DING XinLun,WU ZuJian,ZHANG Jie. Effects of Proteins Encoded by “C4 ORFs” of Cotton Leaf Curl Multan Virus on Viral Pathogenicity [J]. Scientia Agricultura Sinica, 2021, 54(10): 2095-2104. |
[14] | JiaYing CHANG,ShuSen LIU,Jie SHI,Ning GUO,HaiJian ZHANG,HongXia MA,ChunFeng YANG. Pathogenicity and Genetic Diversity of Bipolaria maydis in Sanya, Hainan and Huang-Huai-Hai Region [J]. Scientia Agricultura Sinica, 2020, 53(6): 1154-1165. |
[15] | LI ZhengGang,NONG Yuan,TANG YaFei,SHE XiaoMan,YU Lin,LAN GuoBing,DENG MingGuang,HE ZiFu. Molecular Characteristic and Pathogenicity Analyses of Cucumber green mottle mosaic virus (CGMMV) Infecting Bottle Gourd in Lianzhou, Guangdong [J]. Scientia Agricultura Sinica, 2020, 53(5): 955-964. |
|