Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (23): 5026-5036.doi: 10.3864/j.issn.0578-1752.2013.23.020

• ANIMAL SCIENCE·VETERINARY SCIENCERE·SOURCE INSECT • Previous Articles     Next Articles

Selection of Effective SREBP1 shRNA in Cattle and the Construction of Recombinant Adenovirus Vector

 FU  Chang-Zhen-1, ZAN  Lin-Sen-12, WANG  Hong-1, CHENG  Gong-12, WANG  Hong-Bao-12, LI  Yao-Kun-1, JIANG  Bi-Jie-1, GAO  Jian-Bin-1, YANG  Ning-1   

  1. 1.College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi
    2.National Beef Cattle Improvement Center of Northwest A&F University, Yangling 712100, Shaanxi
  • Received:2013-04-25 Online:2013-12-01 Published:2013-09-30

Abstract: 【Objective】 The aim of this study was to construct recombinant adenovirus carrying effective small hairpin RNA (shRNA) which can exclusively interfere NotI bovine sterol-regulatory-element-binding protein 1 (SREBP1) gene expression, thus providing a basis for studying the function and mechanism of SREBP1 gene at cellular level.【Method】According to the coding sequence (CDS) region of SREBP1 gene, six pairs of inhibition shRNA and one pairs of negative control shRNA were designed and further inserted into pENTR-U6 to construct pENTR-U6-shRNA expression vector. The cotransfection of expression vector psiCHECK-Ⅱcarrying SREBP1 and the obtained pENTR-U6-shRNA was carried out in 293 A cell lines to select efficient shRNA. The efficient shRNA and shRNA-NC were connected to pAD/BL-DEST to construct the recombinant plasmid, respectively. The obtained recombinant adenovirus vectors were transfected into 293A cells to package. Then, the adenovirus were amplified and harvested. Real-time PCR (qRT-PCR) was used to detect and confirm the interference effect of the harvested adenovirus on the target gene SREBP1 in bovine pre-adipocytes. The viral titer was determined by GFP labeling method. 【Result】Results showed that shRNA-1053 significantly decreased the expression of SREBP1 by 87.4%. The linearized recombinant adenovirus vector carrying shRNA-1053 and shRNA-NC transfected 293A cells, and further packaged and amplified high-titer recombinant adenovirus Ad-1053 and Ad-NC (7×108 GFU/mL and 9×108 GFU/mL). qRT-PCR results elucidated Ad-1053 significantly down-regulated mRNA expression level of SREBP1 gene in bovine pre-adipocytes (Interfering efficiency >85%), while Ad-NC did not.【Conclusion】In this study, the recombinant adenovirus, carrying efficient shRNA designed for RNA interference study of bovine SREBP1 gene, was constructed successfully.

Key words: cattle , SREBP1 , shRNA , recombinant adenovirus

[1]Kazala E C, Lozeman F J, Mir P S, Laroche A, Bailey D R, Weselake R J. Relationship of fatty acid composition to intramuscular fat content in beef from crossbred Wagyu cattle. Journal of Animal Science, 1999, 77(7): 1717-1725.

[2]Eberle D, Hegarty B, Bossard P, Ferre P, Foufelle F. SREBP transcription factors: master regulators of lipid homeostasis. Biochimie, 2004, 86(11): 839-848.

[3]Raychaudhuri S, Young B P, Espenshade P J, Loewen C J. Regulation of lipid metabolism: a tale of two yeasts. Current Opinion in Cell Biology, 2012, 24(4): 502-508.

[4]Shimomura I, Shimano H, Horton J D, Goldstein J L, Brown M S. Differential expression of exons 1a and 1c in mRNAs for sterol regulatory element binding protein-1 in human and mouse organs and cultured cells. Journal of Clinical Investigation, 1997, 99(5): 838-845.

[5]Jeon T I, Osborne T F. SREBPs: metabolic integrators in physiology and metabolism. Trends in Endocrinology and Metabolism, 2012, 23(2): 65-72.

[6]廖俊蕾, 赵蕾, 陈曜, 李青, 陈昱杨, 阮堆中, 陈压西. 沉默胆固醇调节原件结合蛋白2基因对炎症因子所致HepG2细胞内胆固醇异常积聚的影响. 中华肝脏病杂志, 2012, 20(7): 526-531.

Liao J L, Zhao L, Chen Y, Li Q, Chen Y Y, Ruan X Z, Chen Y X. Effect of RNAi-mediated silencing of SREBP2 gene on inflammatory cytokine-induced cholesterol accumulation in HepG2 cells. Chinese Journal of Hepatology, 2012, 20(7): 526-531. (in Chinese)

[7]Horton J D, Goldstein J L, Brown M S. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. Journal of Clinical Investigation, 2002, 109(9): 1125-1131.

[8]Horton J D, Shimomura I, Brown M S, Hammer R E, Goldstein J L, Shimano H. Activation of cholesterol synthesis in preference to fatty acid synthesis in liver and adipose tissue of transgenic mice overproducing sterol regulatory element-binding protein-2. Journal of Clinical Investigation, 1998, 101(11): 2331-2339.

[9]Shimano H, Horton J D, Shimomura I, Hammer R E, Brown M S, Goldstein J L. Isoform 1c of sterol regulatory element binding protein is less active than isoform 1a in livers of transgenic mice and in cultured cells. Journal of Clinical Investigation, 1997, 99(5): 846-854.

[10]Hasegawa S, Noda K, Maeda A, Matsuoka M, Yamasaki M, Fukui T. Acetoacetyl-CoA synthetase, a ketone body-utilizing enzyme, is controlled by SREBP-2 and affects serum cholesterol levels. Molecular Genetics and Metabolism, 2012, 107(3):553-560.

[11]Hoashi S, Ashida N, Ohsaki H, Utsugi T, Sasazaki S, Taniguchi M, Oyama K, Mukai F, Mannen H. Genotype of bovine sterol regulatory element binding protein-1 (SREBP-1) is associated with fatty acid composition in Japanese Black cattle. Mammalian Genome, 2007, 18(12): 880-886.

[12]Shimano H. Sterol regulatory element-binding proteins (SREBPs): transcriptional regulators of lipid synthetic genes. Progress in Lipid Research, 2001, 40(6): 439-452.

[13]Kim J B, Wright H M, Wright M, Spiegelman B M. ADD1/SREBP1 activates PPARgamma through the production of endogenous ligand. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(8): 4333-4337.

[14]Kim J B, Spiegelman B M. ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism. Genes & Development, 1996, 10(9): 1096-1107.

[15]Ma L, Corl B A. Transcriptional regulation of lipid synthesis in bovine mammary epithelial cells by sterol regulatory element binding protein-1. Journal of Dairy Science, 2012, 95(7): 3743-3755.

[16]Liang G, Yang J, Horton J D, Hammer R E, Goldstein J L, Brown M S. Diminished hepatic response to fasting/refeeding and liver X receptor agonists in mice with selective deficiency of sterol regulatory element-binding protein-1c. Journal of Biological Chemistry (JBC), 2002, 277(11): 9520-9528.

[17]Huang Y Z, He H, Sun J J, Wang J, Li Z J, Lan X Y, Lei C Z, Zhang C L, Zhang E P, Wang J Q, Chen H. Haplotype combination of SREBP-1c gene sequence variants is associated with growth traits in cattle. Genome, 2011, 54(6): 507-516.

[18]Huang W C, Li X, Liu J, Lin J, Chung L W. Activation of androgen receptor, lipogenesis, and oxidative stress converged by SREBP-1 is responsible for regulating growth and progression of prostate cancer cells. Molecular Cancer Research, 2012, 10(1): 133-142.

[19]Chu X, Liu L, Na L, Lu H, Li S, Li Y, Sun C. Sterol regulatory element-binding protein-1c mediates increase of postprandial stearic acid, potential target for improving insulin resistance, in hyperlipidemia. Diabetes, 2012, 62(2):561-71.

[20]江萃英, 曾维琼, 陈压西, 戴福宏, 姜平. 乙型肝炎病毒对肝脂肪变患者肝细胞固醇调节元件结合蛋白表达的影响. 中华肝脏病杂志, 2011, 19(8): 608-613.

Jiang C Y, Zeng W Q, Chen Y X, Dai F H, Jiang P. Effect of HBV on the expression of SREBP in the hepatocyte of chronic hepatitis  B patients combined with hepatic fatty change. Chinese Journal of Hepatology, 2011, 19(8): 608-613. (in Chinese)

[21]Muller-wieland D, Knebel B, Haas J, Kotzka J. SREBP-1 and fatty liver. Clinical relevance for diabetes, obesity, dyslipidemia and atherosclerosis. Herz, 2012, 37(3): 273-278.

[22]Soufi M, Ruppert V, Kurt B, Schaefer J R. The impact of severe LDL receptor mutations on SREBP-pathway regulation in homozygous familial hypercholesterolemia (FH). Gene, 2012, 499(1): 218-222.

[23]Taghibiglou C, Lu J, Mackenzie I R, Wang Y T, Cashman N R. Sterol regulatory element binding protein-1 (SREBP1) activation in motor neurons in excitotoxicity and amyotrophic lateral sclerosis (ALS): Indip, a potential therapeutic peptide. Biochemical and Biophysical Research Communications, 2011, 413(2): 159-163.

[24]Vitto M F, Luz G, Luciano T F, Marques S O, Souza D R, Pinho R A, Lira F S, Cintra D E, Desouza C T. Reversion of steatosis by SREBP-1c antisense oligonucleotide did not improve hepatic insulin action in diet-induced obesity mice. Hormone and Metabolic Research, 2012, 44(12):885-890.

[25]Zhang C, Chen X, Zhu R M, Zhang Y, Yu T, Wang H, Zhao H, Zhao M, Ji Y L, Chen Y H, Meng X H, Wei W, Xu D X. Endoplasmic reticulum stress is involved in hepatic SREBP-1c activation and lipid accumulation in fructose-fed mice. Toxicology Letters, 2012, 212(3): 229-240.

[26]Jung S Y, Jeon H K, Choi J S, Kim Y J. Reduced expression of FASN through SREBP-1 down-regulation is responsible for hypoxic cell death in HepG2 cells. Journal of Cellular Biochemistry, 2012, 113(12):3730-9.

[27]Elbashir S M, Harborth J, Weber K, Tuschl T. Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods, 2002, 26(2): 199-213.

[28]Holen T, Amarzguioui M, Wiiger M T, Babaie E, Prydz H. Positional effects of short interfering RNAs targeting the human coagulation trigger tissue factor. Nucleic Acids Research, 2002, 30(8): 1757-1766.

[29]Lee N S, Dohjima T, Bauer G, Li H, Li M J, Ehsani A, Salvaterra P, Rossi J. Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nature Biotechnology, 2002, 20(5): 500-505.

[30]Yu J Y, Deruiter S L, Turner D L. RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(9): 6047-6052.

[31]Kapadia S B, Brideau-andersen A, Chisari F V. Interference of hepatitis C virus RNA replication by short interfering RNAs. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(4): 2014-2018.

[32]Mcmanus M T, Petersen C P, Haines B B, Chen J, Sharp P A. Gene silencing using micro-RNA designed hairpins. RNA-a Publication of the RNA Society, 2002, 8(6): 842-850.

[33]邓清华, 付世新, 刘国文, 刘磊, 王建国, 白鸽, 朱晓岩, 李慧萍, 李小兵, 王哲. siRNA特异性抑制犊牛原代肝细胞SREBP-1c基因的表达. 中国兽医学报, 2011(7): 1050-1053.

Deng H Q, Fu S X, Liu G W, Liu L, Wang J G, Bai G, Zhu X Y, Li H P, Li X B, Wang Z. Specific inhibition effect of siRNA on SREBP-1c gene expression in calf primary hepatocyte. Chinese Journal of Veterinary Science, 2011(7): 1050-1053. (in Chinese)

[34]Tuschl T. Selection of siRNA sequences for mammalian RNAi. Cold Spring Harbor Protocols, 2006, doi: 10. 1101/pdb.prot4339.

[35]Dallas A, Johnston B H. Design and Chemical Modification of Synthetic Short shRNAs as Potent RNAi Triggers. Methods in Molecular Biology, 2013, 942: 279-290.

[36]Lybarger L, Dempsey D, FT K J, Chervenak R. Rapid generation and flow cytometric analysis of stable GFP-expressing cells. Cytometry, 1996, 25(3): 211-220.

[37]Hitt D C, Booth J L, Dandapani V, Pennington L R, Gimble J M, Metcalf J. A flow cytometric protocol for titering recombinant adenoviral vectors containing the green fluorescent protein. Molecular Biotechnology, 2000, 14(3): 197-203.

[38]Ge Q, Ilves H, Dallas A, Kumar P, Shorenstein J, Kazakov S A, Johnston B H. Minimal-length short hairpin RNAs: the relationship of structure and RNAi activity. RNA-a Publication of the RNA Society, 2010, 16(1): 106-117.

[39]Vlassov A V, Korba B, Farrar K, Mukerjee S, Seyhan A A, Ilves H, Kaspar R L, Leake D, Kazakov S A, Johnston B H. shRNAs targeting hepatitis C: effects of sequence and structural features, and comparision with siRNA. Oligonucleotides, 2007, 17(2): 223-236.

[40]Breyer B, Jiang W, Cheng H, Zhou L, Paul R, Feng T, He T C. Adenoviral vector-mediated gene transfer for human gene therapy. Current Gene Therapy, 2001, 1(2): 149-162.

[41]Mcconnell M J, Imperiale M J. Biology of adenovirus and its use as a vector for gene therapy. Human Gene Therapy, 2004, 15(11): 1022-1033.

[42]王伟, 罗军, 赵旺生, 李建华, 张晓, 王龙坛. 西农萨能羊FAS基因shRNA序列筛选及其腺病毒载体的构建. 西北农业学报, 2010(3): 6-12.

Wang W, Luo J, Zhao W S, Li J H, Zhang X, Wang L T. Screening of shRNA sequence target Xinong Saanen goat FAS gene and the construction of recombinant adenovirus vector. Acta Agriculturae Boreali-Occidentalis Sinica, 2010(3): 6-12. (in Chinese)         

[43]钟瑜, 罗军, 王维, 胡仕良, 李君, 孙雨婷, 郝娟, 石恒波. 奶山羊LXRα基因shRNA序列的筛选及腺病毒载体的构建与鉴定. 西北农林科技大学学报: 自然科学版, 2011(11): 41-47.

Zhong Y, Luo J, Wang W, Hu S L, Li J, Sun Y T, Hao J,Shi H B. Screening of shRNA sequence and construction and identification of recombinant adenovirus vector of LXRα gene of dairy goats. Journal of Northwest A&F University: Natural Science Edition, 2011(11): 41-47. (in Chinese)
[1] YANG XinRan,MA XinHao,DU JiaWei,ZAN LinSen. Expression Pattern of m6A Methylase-Related Genes in Bovine Skeletal Muscle Myogenesis [J]. Scientia Agricultura Sinica, 2023, 56(1): 165-178.
[2] FANG HaoYuan, YANG Liang, WANG HongZhuang, CAO JinCheng, REN WanPing, WEI ShengJuan, YAN PeiShi. Effects of Cross-Ventilation System on Physiology and Production Performance of Beef Cattle in Summer [J]. Scientia Agricultura Sinica, 2022, 55(5): 1025-1036.
[3] DU JiaWei,DU XinZe,YANG XinRan,SONG GuiBing,ZHAO Hui,ZAN LinSen,WANG HongBao. Interference in TP53INP2 Gene Inhibits the Differentiation of Bovine Myoblasts [J]. Scientia Agricultura Sinica, 2021, 54(21): 4685-4693.
[4] CHEN GuangJi,XIONG XianQin,HE RunXia,TIAN Xiong,SHEN YingLong,ZOU XiaoMin,YANG Hong,SHANG YiShun,ZHAO MingKun,LI XiaoDong,LI ShiGe,ZHANG Rong,SHU JianHong. Evaluation of Feeding Value for Whole Broussonetia papyrifera Silage in Diet of Wuchuan Black Beef Cattle [J]. Scientia Agricultura Sinica, 2021, 54(19): 4218-4228.
[5] CHEN LuLu,WANG Hui,WANG JiKun,WANG JiaBo,CHAI ZhiXin,CHEN ZhiHua,ZHONG JinCheng. Comparative Analysis of miRNA Expression Profiles in the Hearts of Tibetan Cattle and Xuanhan Cattle [J]. Scientia Agricultura Sinica, 2020, 53(8): 1677-1687.
[6] CHEN LiJing,CHEN Zhuo,LI Na,SUN YaWei,LI HongBo,SONG WenWen,ZHANG Yang,YAO Gang. Comparison of the Carcass and Beef Quality Traits with the Expression of the Lipid Metabolism Related Genes Between Xinjiang Brown Cattle and Angus Beef Cattle [J]. Scientia Agricultura Sinica, 2020, 53(22): 4700-4709.
[7] ZHANG HaiLiang,LIU AoXing,MI SiYuan,LI Xiang,LUO HanPeng,YAN XinYi,WANG YaChun. A Review on Longevity Trait in Dairy Cattle Breeding [J]. Scientia Agricultura Sinica, 2020, 53(19): 4070-4082.
[8] TIAN Yuan,WANG Li,LONG Feng,ZAN LinSen,CHENG Gong. Codon Optimization of Human Lysozyme and High-Efficiency Expression in Bovine Mammary Cells [J]. Scientia Agricultura Sinica, 2020, 53(18): 3805-3817.
[9] LIU JiWei,ZHANG XiangLun,LI Xu,WANG Lei,QIN LiHong,BAN ZhiBin,WU Jian,ZHANG GuoLiang,WAN FaChun. Effects of Dietary Energy Levels on Metabolism and Serum Parameters of Steppe Red Cattle [J]. Scientia Agricultura Sinica, 2020, 53(12): 2502-2511.
[10] GUO HongFang,NING Yue,CHENG Gong,ZAN LinSen. The Effect of Krüppel-Like Factor 3 (KLF3) Gene on Bovine Fat Deposition [J]. Scientia Agricultura Sinica, 2019, 52(7): 1272-1281.
[11] WEI Chen,ZHAO Junjin,HUANG XiXia,YANG HongJie,ZHANG MengHua,GE JianJun,MA GuangHui,ZHANG XiaoXue,WANG Dan,YOU ZhenChen,XU Lei,JIANG Hui,ZHAO FanFan,JU Xing,LI YunXia. Selection of Nucleus Herd for Simmental Cattle in Xinjiang Area [J]. Scientia Agricultura Sinica, 2019, 52(5): 921-929.
[12] NING Yue,MI Xue,CHEN XingYi,SHAO JianHang,ZAN LinSen. Silencing and Overexpressing SMAD Family Member 1 (SMAD1) Gene and Its Effect on Myogenesis in Primary Myoblast of Qinchuan Cattle (Bos taurus) [J]. Scientia Agricultura Sinica, 2019, 52(10): 1818-1829.
[13] LIU LiYuan, ZHOU JingHang, ZHANG MengHua, LI JinXia, FANG JiQing, TAN ShiXin, WANG AiFang, HUANG XiXia, WANG YaChun. Genetic Effect Analysis of SNPs from 6 Genes on SCS and Milk Production Traits in Xinjiang Brown Cattle [J]. Scientia Agricultura Sinica, 2017, 50(13): 2592-2603.
[14] SONG NaNa, ZHONG JinCheng, CHAI ZhiXin, WANG Qi, HE ShiMing, WU JinBo, JIAN ShangLin, RAN Qiang, MENG Xin, HU HongChun. The Whole Genome Data Analysis of Sanjiang Cattle [J]. Scientia Agricultura Sinica, 2017, 50(1): 183-194.
[15] LI Zhi-teng, CHANG Guo-bin, XU Lu, MA Teng, CHEN Jing, CHEN Rong, WANG Hong-zhi, LIU Lu, XU Qi, CHEN Guo-hong. Interference Efficiency of Piwi Gene Expression in the Chicken Germ Stem Cells [J]. Scientia Agricultura Sinica, 2016, 49(3): 563-472.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!