Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (7): 1419-1425.doi: 10.3864/j.issn.0578-1752.2013.07.012

• HORTICULTURE • Previous Articles     Next Articles

Isolation of Flowering Locus T Ortholog and the Effects on Blooming of Cymbidium faberi

 SUN  Chong-Bo, XIANG  Lin, LI  Xiao-Bai, QIN  De-Hui, LI  Bo-Jun, GUO  Fang-Qi, WU  Chao   

  1. Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021
  • Received:2012-05-15 Online:2013-04-01 Published:2013-01-16

Abstract: 【Objective】The objective of this study was to analyze the function of Flowering locus T(FT) on blooming in Cymbidium faberi. 【Method】 The full-length cDNA sequence of CfFT was obtained by RT-PCR and RACE cloning technology. The expression patterns of CfFT in different tissues and flower buds of different developmental stages were analyzed by real-time quantitative RT-PCR. To investigate the function of CfFT, an expression vector was constructed for transformation into tobacco by using agrobacterium-mediated method.【Result】In flowers, CfFT was expressed more in young flower buds than in mature flowers and was predominantly expressed in young ovary. Ectopic expression of CfFT in transgenic tobacco plants showed novel phenotypes by flowering earlier than wild-type plants. Real-time quantitative RT-PCR analysis suggested that expression levels of CfFT closely related with the flowering time of different 35S::CfFT transgenic tobacco lines. Further analysis of the flower time related genes indicated that the expression of genes LEAFY (LFY), APETALLA1 (AP1), FRUITFULL (FUL) and SEPALLATA1 (SEP1) were closely related with the expression of FT in 35S::CfFT transgenic tobacco plants.【Conclusion】Ectopic expression of CfFT gene promote flowering in transgenic tobacco.

Key words: Cymbidium faberi , FT gene , flower induction , tobacco , real time quantitative RT-PCR

[1]Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T. FD, a bZIP protein mediating signals from the floral path-way integrator FT at the shoot apex. Science, 2005, 309 (5737): 1052-1056.

[2]Wigge P A, Kim M C, Jaeger K E, Busch W, Schmid M, Lohmann J U, Weigel D. Integration of spatial and temporal information during floral induction in Arabidopsis. Science, 2005, 309: 1056-1059.

[3]Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C, Coupland G. FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science, 2007, 316: 1030-1033.

[4]Jaeger K E, Wigge P A. FT protein acts as a long-range signal in Arabidopsis. Current Biology, 2007, 17: 1050-1054.

[5]Parcy F. Flowering:a time for integration. International Journal of Developmental Biology, 2005, 49: 585-593.

[6]Bohlenius H, Huang T, Charbonnel-Campaa L, Brunner A M, Jansson S, Strauss S H, Nilsson O. CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science, 2006, 312(5776): 1040-1043.

[7]Helliwell C A, Wood C C, Robertson M, Peacock W J, Dennis E S. The Arabidopsis FLC protein interacts directly in vivo with SOC1 and FT chromatin and is part of a high-molecular-weight protein complex. Plant Journal, 2006, 46(2): 183-192.

[8]Kobayashi Y, Kaya H, Goto K, Iwabuchi M, Araki T. A pair of related genes with antagonistic roles in mediating flowering signals. Science, 1999, 286:1960-1962.

[9]Kardailsky I, Shukla V K, Ahn J H, Dagenais N, Christensen S K, Ngyen J T, Chory J, Harrison M J, Weigel D. Activation tagging of the floral inducer FT. Science, 1999, 286: 1962-1965.

[10]Hsu C Y, Liu Y, Luthe D S, Yuceer C. Poplar FT2 shortens the juvenile phase and promotes seasonal flowering in poplar trees. Plant Cell, 2006, 18: 1846-1861.

[11]Zhang H, Harry D E, Ma C, Yuceer C, Hsu C Y, Vikram V, Shevchenko O, Etherington E, Strauss S H. Precocious flowering in trees: the FLOWERING LOCUS T gene as a research and breeding tool in Populus. Journal of Experimental Botany, 2010, 61(10): 2549-2560.

[12]Hou C J, Yang C H. Functional analysis of FT and TFL1 orthologs from orchid (Oncidium Gower Ramsey) that regulate the vegetative to reproductive transition. Plant Cell Physiology, 2009, 50(8): 1544-1557.

[13]Trankner C, Lehmann S, Hoenicka H, Hanke M V, Fladung M, Lenhardt D, Dunemann F, Gau A, Schlangen K, Malnoy M, Flachowsky H. Over-expression of an FT-homologous gene of apple induces early flowering in annual and perennial plants. Planta, 2010, 232: 1309-1324.

[14]Kotoda N, Hayashi H, Suzuki M, Igarashi M, Hatsuyama Y, Kidou  S-i, Igasaki T, Nishiguchi M, Yano K, Shimizu T, Takahashi S, Iwanami H, Moriya S, Abe K. Molecular characterization of FLOWERING LOCUS T-like genes of apple (Malus×domestica Borkh.). Plant Cell Physiology, 2010, 51: 561-575.

[15]Blackman B K, Strasburg J L, Raduski A R, Michaels S D, Rieseberg L H. The role of recently derived FT paralogs in sunflower domestication. Current Biology, 2010, 20: 629-635.

[16]Laurie R E, Diwadkar P, Jaudal M, Zhang L, Hecht V, Wen J, Tadege M, Mysore K S, Putterill J,  Weller J L, Macknight R C. The medicago FLOWERING LOCUS T homolog, MtFTa1, is a key regulator of flowering time. Plant Physiology, 2011, 156: 2207-2224.

[17]Fukuda M, Matsuo S, Kikuchi K, Kawazu Y, Fujiyama R, Honda I. Isolation and functional characterization of the FLOWERING LOCUS T homolog, the LsFT gene, in lettuce. Journal of Plant Physiology, 2011, 168(13): 1602-1607.

[18]Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 1987, 4: 406-425.

[19]金冬雁, 黎孟枫.叶分子克隆实验指南. 2版. 北京: 科学出版社, 1992.

Jin D Y, Li M F. Molecular Cloning: A Laboratory Manual. 2nd ed. Beijing: Science Press, 1992. (in Chinese)

[20]Carmona M J, Calonje M, Martínez-Zapater J M. The FT / TFL1 gene family in grapevine. Plant Molecular Biology, 2007, 63: 637-650.

[21]Igasaki T, Watanabe Y, Nishiguchi M, Kotoda N. The FLOWERING LOCUS T / TERMINAL FLOWER 1 family in Lombardy poplar. Plant Cell Physiology, 2008, 49: 291-300.

[22]Lifschitz E, Eviatar T, Rozman A, Shalit A, Goldshmidt A, Amsellem Z, Alvarez J P, Eshed Y. The tomato FT ortholog triggers systemic signals that regulate growth and flowering and substitute for diverse environmental stimuli. Proceedings of the National Academy of Sciences of the USA, 2006, 103: 6398-6403.

[23]Zhang J, Liu G, Guo C, He Y, Li Z, Ning G, Shi X, Bao M. The FLOWERING LOCUS T orthologous gene of Platanus acerifolia is expressed as alternatively spliced forms with distinct spatial and temporal patterns. Plant Biology, 2011, 13: 809-820.

[24]Endo T, Shimada T, Fujii H, Kobayashi Y, Araki T, Omura M. Ectopic expression of an FT homolog from Citrus confers an early flowering phenotype on trifoliate orange (Poncirus trifoliata L. Raf.). Transgenic Research, 2005, 14: 703-712.

[25]Teper-Bamnolker P, Samach A. The flowering integrator FT regulates SEPALLATA3 and FRUITFULL accumulation in Arabidopsis leaves. Plant Cell, 2005, 17: 2661-2675.
[1] PEI YueHong,LI FengWei,LIU WeiNa,WEN YuXia,ZHU Xin,TIAN ShaoRui,FAN GuangJin,MA XiaoZhou,SUN XianChao. Characteristics of Cysteine Proteinase Gene Family in Nicotiana benthamiana and Its Function During TMV Infection [J]. Scientia Agricultura Sinica, 2022, 55(21): 4196-4210.
[2] YuXia WEN,Jian ZHANG,Qin WANG,Jing WANG,YueHong PEI,ShaoRui TIAN,GuangJin FAN,XiaoZhou MA,XianChao SUN. Cloning, Expression and Anti-TMV Function Analysis of Nicotiana benthamiana NbMBF1c [J]. Scientia Agricultura Sinica, 2022, 55(18): 3543-3555.
[3] GUO YingXin,CHEN YongLiang,MIAO Qi,FAN ZhiYong,SUN JunWei,CUI ZhenLing,LI JunYing. Spatial-Temporal Variability of Soil Nutrients and Assessment of Soil Fertility in Erhai Lake Basin [J]. Scientia Agricultura Sinica, 2022, 55(10): 1987-1999.
[4] CHEN Xi,LIU YingJie,DONG YongHao,LIU JinYan,LI Wei,XU PengJun,ZANG Yun,REN GuangWei. Effects of CMV-Infected Tobacco on the Performance, Feeding and Host Selection Behavior of Myzus persicae [J]. Scientia Agricultura Sinica, 2021, 54(8): 1673-1683.
[5] Xiang XU,Yi XIE,LiYun SONG,LiLi SHEN,Ying LI,Yong WANG,MingHong LIU,DongYang LIU,XiaoYan WANG,CunXiao ZHAO,FengLong WANG,JinGuang YANG. Screening and Large-Scale Preparation of dsRNA for Highly Targeted Degradation of Tobacco Mosaic Virus (TMV) Nucleic Acids [J]. Scientia Agricultura Sinica, 2021, 54(6): 1143-1153.
[6] LIU ChangYun,LI XinYu,TIAN ShaoRui,WANG Jing,PEI YueHong,MA XiaoZhou,FAN GuangJin,WANG DaiBin,SUN XianChao. Cloning, Expression and Anti-Virus Function Analysis of Solanum lycopersicum SlN-like [J]. Scientia Agricultura Sinica, 2021, 54(20): 4348-4357.
[7] WEI YanXia,LI ZhuoRan,ZHANG Bin,YUAN YuJin,YU WeiWei,CHANG RuoKui,WANG YuanHong. Screening and Function of Plant Immune Proteins from Bacillus velezensis LJ02 [J]. Scientia Agricultura Sinica, 2021, 54(16): 3451-3460.
[8] HaiYan JIA,LiYun SONG,Xiang XU,Yi XIE,ChaoQun ZHANG,TianBo LIU,CunXiao ZHAO,LiLi SHEN,Jie WANG,Ying LI,FengLong WANG,JinGuang YANG. Differential Expression of LncRNAs in Nicotiana tabacum var. Samsun NN Infected by TMV at Different Temperatures [J]. Scientia Agricultura Sinica, 2020, 53(7): 1381-1396.
[9] XIANG ShunYu,WANG Jing,XIE ZhongYu,SHI Huan,CAO Zhe,JIANG Long,MA XiaoZhou,WANG DaiBin,ZHANG Shuai,HUANG Jin,SUN XianChao. Preparation of A Novel Silver Nanoparticle and Its Antifungal Mechanism Against Alternaria alternata [J]. Scientia Agricultura Sinica, 2020, 53(14): 2885-2896.
[10] LI FeiHong,HOU YingJun,LI XueHan,YU XinYi,QU ShenChun. Cloning and Function Analysis of Apple Gibberellin Oxidase Gene MdGA2ox8 [J]. Scientia Agricultura Sinica, 2018, 51(22): 4339-4351.
[11] PENG HaoRan, PAN Qi, WEI ZhouLing, PU YunDan, ZHANG YongZhi, WU GenTu, QING Ling, SUN XianChao. Cloning, Expression and Anti-Virus Function Analysis of Tomato Resistance-Related Gene SlHin1 [J]. Scientia Agricultura Sinica, 2017, 50(7): 1242-1251.
[12] WEI ZhouLing, PENG HaoRan, PAN Qi, ZHANG YongZhi, PU YunDan, WU GenTu, QING Ling, SUN XianChao. Subcellular Localization of the Ribosome-Inactivating Protein α-MC and Its Antiviral Effect on TMV [J]. Scientia Agricultura Sinica, 2017, 50(5): 840-848.
[13] ZHAO LeiLin, FAN Xin, NIE Xing, LIANG ChengZhen, ZHANG Rui, SUN GuoQing, MENG ZhiGang, LIN Min, WANG Yuan, GUO SanDui. Salt and Drought Tolerance in Heterologous-Expression of irrE Transgenic Tobacco [J]. Scientia Agricultura Sinica, 2017, 50(20): 3860-3870.
[14] YANG Zhan-wu, YANG Jun, ZHANG Yan, WU Jin-hua, LI Zhi-kun, WANG Xing-fen, WU Li-qiang, ZHANG Gui-yin, MA Zhi-ying. Subcellular Localization and Verticillium Wilt Resistance Analysis of Cotton GbRvd in Overexpressed Tobacco [J]. Scientia Agricultura Sinica, 2016, 49(21): 4065-4073.
[15] XU Ying, YAN Guo-quan, ZHANG Yang, YU Hong-xiu. Differential Proteomic Research of Three Varieties of Tobacco in China [J]. Scientia Agricultura Sinica, 2016, 49(16): 3084-3097.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!