Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (5): 881-888.doi: 10.3864/j.issn.0578-1752.2013.05.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Cloning and Functional Analysis of StAC Gene in Setosphaeria turcica

 SHEN  Shen, WANG  Jing-Jing, TONG  Ya-Meng, LI  Po, HAO  Zhi-Min, DONG  Jin-Gao   

  1. 1.College of Life Sciences, Agricultural University of Hebei/Mycotoxin and Plant Molecular Pathology Laboratory, Baoding 071001, Hebei
    2.Plant Protection Institute, Hebei Academy of Agricultural and Forestry Sciences, Baoding 071001, Hebei
  • Received:2012-11-02 Online:2013-03-01 Published:2013-01-23

Abstract: 【Objective】 To understand the function of adenylate cyclase (AC) during regulating the fungal pathogenicity, the gene encoding AC in S. turcica was cloned and knocked out.【Method】Degenerated primer-PCR and genome walking were used to obtain the full length DNA of StAC in S. turcica. The structure and homology sequence alignment of StAC were analyzed by bioinformatics methods and its copy number was verified by Southern blotting. Furthermore, the function of StAC was analyzed by gene knockout technology.【Result】StAC, encoding a protein of 2 005 amino acid residues and including 5 exons and 4 introns, was 6 816 bp of DNA and 6 018 bp of ORF. The nucleotide sequence of StAC gene showed 96% identity with its homology in Pyrenophora tritici-repentis. Southern blotting showed that there was only single copy of StAC in genome of S. turcica. The phenotypic analysis showed that the aerial hyphae of StAC knockout mutant named Δstac were gray. The mutant failed to sporulate, and the toxin activity and pathogenicity on leaves of susceptible host was significantly reduced, but the resistance against hyperosmotic stress was enhanced.【Conclusion】It is suggested that StAC is involved in many procedures of S. turcica, including conidial formation, pathogenicity, hyperosmotic stress response, HT-toxin activity and the biosynthesis metabolism of pigmen.

Key words: Setosphaeria turcica , adenylate cyclase , pathogenicity , hyperosmotic stress

[1]董金皋. 农业植物病理学: 北方本. 北京: 中国农业出版社, 2001.

Dong J G. Agricultural Plant Pathology: North Version. Beijing: Chinese Agricultural Press, 2001. (in Chinese)

[2]Klaus B, Lengeler R C, Davidson C D, Harashima T, Shen W C, Wang P, Pan X, Waugh M, Heitman J. Signal transduction cascades regulating fungal development and virulence. Microbiology Molecular Biology, 2000, 64(4): 746-785.

[3]Choi W, Dean R A. The adenylate cyclase gene MAC1 of Magnaporthe grisea controls appressorium formation and other aspects of growth and development. The Plant Cell, 1997, 9(11): 1973-1983.

[4]Alspaugh J A, Pukkila W R, Harashima T, Cavallo L M, Funnell D, Cox G M, Perfect J R, Kronstad J W, Heitman J. Adenylyl cyclase functions downstream of the Ga protein Gpa1 and controls mating and pathogenicity of Cryptococcus neoformans. Eukaryotic Cell, 2002, 1(1): 75-84.

[5]Kimura Y, Mishima Y, Nakano H, Takegawa K. An adenylyl cyclase, CyaA, of Myxococcus xanthus functions in signal transduction during osmotic stress. Journal of Bacteriology, 2002, 184(13): 3578-3585.

[6]Douglas F I, Ann M K, Katherine A B. Shared and independent roles for a Ga protein and adenylyl cyclase in regulating development and stress responses in Neurospora crassa. Eukaryotic Cell, 2002, 1(4): 634-642.

[7]张利辉, 刘云惠, 董金皋, 李正平. 玉米大斑病菌特异性毒素组分的分离与纯化. 植物病理学报, 2003, 33(1): 67-71.

Zhang L H, Liu Y H, Dong J G, Li Z P. Isolation and purification of specific toxin fractions produced by Exserohilum turcicum. Acta Phytopathologica Sinica, 2003, 33(1): 67-71. (in Chinese)

[8]Thevelein J M, Winde J H. Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae. Molecular Microbiology, 1999, 33(5): 904-918.

[9]Kraakman L, Lemaire K, Ma P, Teunissen A W, Donaton M C, Dijck P V, Winderickx J, Winde J H, Thevelein J M. A Saccharomyces cerevisiae G-protein coupled receptor, Gpr1, is specifically   required for glucose activation of the cAMP pathway during the transition to growth on glucose. Molecular Microbiology, 1999, 32(5): 1002-1012.

[10]Lemaire K, Van S V, Dijck P V, Thevelein J M. Glucose and sucrose act as agonist and mannose as antagonist ligands of the G protein- coupled receptor Gpr1 in the yeast Saccharomyces cerevisiae. Molecular Cell, 2004, 16(2): 293-299.

[11]Oliver B G, Panepinto J C, Askew D S, Rhodes J C. cAMP alteration of growth rate of Aspergillus fumigatus and Aspergillus niger is carbon-source dependent. Microbiology, 2002, 148(8): 2627-2633.

[12]Xu J R. MAP kinases in fungal pathogens. Fungal Genetics and Biology, 2000, 31(3): 137-152.

[13]Gold S, Duncan G, Barrett K, Kronstad J. cAMP regulates morphogenesis in the fungal pathogen Ustilago maydis. Genes and Development, 1994, 8(23): 2805-2816.

[14]Shenhar G, Kassir Y. A positive regulator of mitosis, Sok2, functions as a negative regulator of meiosis in Saccharomyces cerevisiae. Molecular Biology of the Cell, 2001, 21(5): 1603-1612.

[15]García Martínez J, Ádám A L, Avalos J. Adenylyl cyclase plays a regulatory role in development, stress resistance and secondary metabolism in Fusarium fujikuroi. PloS One, 2012, 7(1): e28849.

[16]Choi Y E, Xu J R. The cAMP signaling pathway in Fusarium verticillioides is important for conidiation, plant infection, and stress responses but not fumonisin production. Molecular Plant-Microbe Interactions, 2010, 23(4): 522-533.

[17]董金皋, 李正平, 李秉华, 王瑞瑶. 玉米大斑病菌HT-毒素组分分析. 植物病理学报, 1996, 26(2): 139-144.

Dong J G, Li Z P, Li B H, Wang R Y. Analysis of toxicity composition of HT-toxin produced by Helminthosporium turcicum. Acta Phytopathologica Sinica, 1996, 26(2): 139-144. (in Chinese)

[18]曹志艳, 杨胜勇, 董金皋. 植物病原真菌黑色素与致病性关系的研究进展. 微生物学通报, 2006, 33(1): 154-158.

Cao Z Y, Yang S Y, Dong J G. A review on relations between pathogenicity and melanin of plant fungi. Microbiology China, 2006, 33(1): 154-158. (in Chinese)

[19]Lengeler K B, Davidson R C, D'Souza C, Harashima T, Shen W C, Wang P, Pan X, Waugh M, Heitman J. Signal transduction cascades regulating fungal development and virulence. Microbiology and Molecular Biology Reviews, 2000, 64(4): 746-785.

[20]Grosse C, Heinekamp T, Kniemeyer O, Gehrke A, Brakhage A A. Protein kinase A regulates growth, sporulation, and pigment formation in Aspergillus fumigatus. Applied and Environmental Microbiology, 2008, 74(15): 4923-4933.

[21]詹旭, 曹志艳, 邢继红, 董金皋. 植物病原真菌产漆酶菌株的筛选. 中国农业科学, 2011, 44(4): 723-729.

Zhan X, Cao Z Y, Xing J H, Dong J G. Screening of laccase- producing isolates among plant pathogenic fungi. Scientia Agricultura Sinica, 2011, 44(4): 723-729. (in Chinese)

[22]Tong X Z, Zhang X W, Plummer K M, Stowell K M, Sullivan P A. GcStuA, an APSES transcription factor, is required for generation of appressorial turgor pressure and full pathogenicity of Glomerella cingulata. Molecular Plant-Microbe Interactions, 2007, 20(9): 1102-1111.

[23]Cao F, Lane S, Raniga P P, Lu Y, Zhou Z. The Flo8 transcription factor is essential for hyphal development and virulence in Candida albicans. Molecular Biology of the Cell, 2006, 17(1): 295-307.

[24]Nishimura M, Fukada J, Moriwaki A, Fujikawa T, Ohashi M. Mstu1, an APSES transcription factor, is required for appressorium-mediated infection in Magnaporthe grisea. Bioscience Biotechnology Biochemistry, 2009, 73(8): 1779-1786.

[25]Ohara T, Tsuge T. FoSTUA, encoding a basic helix-loop-helix protein, differentially regulates development of three kinds of asexual spores, macroconidia, microconidia, and chlamydospores, in the fungal plant pathogen Fusarium oxysporum. Eukaryotic Cell, 2004, 3(6): 1412-1422.
[1] HUANG JiaQuan,LI Li,WU FengNian,ZHENG Zheng,DENG XiaoLing. Proliferation of Two Types Prophage of ‘Candidatus Liberibacter asiaticus’ in Diaphorina citri and their Pathogenicity [J]. Scientia Agricultura Sinica, 2022, 55(4): 719-728.
[2] YANG ShiMan, XU ChengZhi, XU BangFeng, WU YunPu, JIA YunHui, QIAO ChuanLing, CHEN HuaLan. Amino Acid of 225 in the HA Protein Affects the Pathogenicities of H1N1 Subtype Swine Influenza Viruses [J]. Scientia Agricultura Sinica, 2022, 55(4): 816-824.
[3] ZHANG JinLong,ZHAO ZhiBo,LIU Wei,HUANG LiLi. The Function of Key T3SS Effectors in Pseudomonas syringae pv. actinidiae [J]. Scientia Agricultura Sinica, 2022, 55(3): 503-513.
[4] HAO YuBin,LI HaiXiao,ZHANG Sai,LIU Ning,LIU YingZi,CAO ZhiYan,DONG JinGao. Identification and Functional Analysis of StSCD Family in Setosphaeria turcica [J]. Scientia Agricultura Sinica, 2022, 55(16): 3134-3143.
[5] LI ZhengGang,TANG YaFei,SHE XiaoMan,YU Lin,LAN GuoBing,HE ZiFu. Molecular Characteristics and Pathogenicity Analysis of Youcai Mosaic Virus Guangdong Isolate Infecting Radish [J]. Scientia Agricultura Sinica, 2022, 55(14): 2752-2761.
[6] ZHANG ChengQi,LIAO LuLu,QI YongXia,DING KeJian,CHEN Li. Functional Analysis of the Nucleoporin Gene FgNup42 in Fusarium graminearium [J]. Scientia Agricultura Sinica, 2021, 54(9): 1894-1903.
[7] LI TianCong,ZHU Hang,WEI Ning,LONG Feng,WU JianYing,ZHANG Yan,DONG JinGao,SHEN Shen,HAO ZhiMin. The Expression Pattern and Interaction Analysis of the Homologues of Splicing Factor SC35 in Setosphaeria turcica [J]. Scientia Agricultura Sinica, 2021, 54(4): 733-743.
[8] CAO YuHan,LI ZiTeng,ZHANG JingYi,ZHANG JingNa,HU TongLe,WANG ShuTong,WANG YaNan,CAO KeQiang. Analysis of dsRNA Carried by Alternaria alternata f. sp. mali in China and Identification of a dsRNA Virus [J]. Scientia Agricultura Sinica, 2021, 54(22): 4787-4799.
[9] ZHANG Li,TANG YaFei,LI ZhengGang,YU Lin,LAN GuoBing,SHE XiaoMan,HE ZiFu. Molecular Characteristic of Squash Leaf Curl China Virus (SLCCNV) Infecting Cucurbitaceae Crops in Guangdong Province [J]. Scientia Agricultura Sinica, 2021, 54(19): 4097-4109.
[10] ZHAO JingYa,XIA HuiQing,PENG MengYa,FAN Zhuo,YIN Yue,XU SaiBo,ZHANG Nan,CHEN WenBo,CHEN LinLin. Identification and Functional Analysis of Transcription Factors FpAPSES in Fusarium pseudograminearum [J]. Scientia Agricultura Sinica, 2021, 54(16): 3428-3439.
[11] ZHENG XinShi,SHANG PengXiang,LI JingYuan,DING XinLun,WU ZuJian,ZHANG Jie. Effects of Proteins Encoded by “C4 ORFs” of Cotton Leaf Curl Multan Virus on Viral Pathogenicity [J]. Scientia Agricultura Sinica, 2021, 54(10): 2095-2104.
[12] JiaYing CHANG,ShuSen LIU,Jie SHI,Ning GUO,HaiJian ZHANG,HongXia MA,ChunFeng YANG. Pathogenicity and Genetic Diversity of Bipolaria maydis in Sanya, Hainan and Huang-Huai-Hai Region [J]. Scientia Agricultura Sinica, 2020, 53(6): 1154-1165.
[13] LI ZhengGang,NONG Yuan,TANG YaFei,SHE XiaoMan,YU Lin,LAN GuoBing,DENG MingGuang,HE ZiFu. Molecular Characteristic and Pathogenicity Analyses of Cucumber green mottle mosaic virus (CGMMV) Infecting Bottle Gourd in Lianzhou, Guangdong [J]. Scientia Agricultura Sinica, 2020, 53(5): 955-964.
[14] LI YueYue,ZHOU WenPeng,LU SiQian,CHEN DeRong,DAI JianHong,GUO QiaoYou,LIU Yong,LI Fan,TAN GuanLin. Occurrence and Biological Characteristics of Tomato mottle mosaic virus on Solanaceae Crops in China [J]. Scientia Agricultura Sinica, 2020, 53(3): 539-550.
[15] LONG Feng,WANG Qing,ZHU Hang,WANG JianXia,SHEN Shen,LIU Ning,HAO ZhiMin,DONG JinGao. Identification and Expression Pattern Analysis of Septin Gene Family of Setosphaeria turcica [J]. Scientia Agricultura Sinica, 2020, 53(24): 5017-5026.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!