Scientia Agricultura Sinica ›› 2010, Vol. 43 ›› Issue (3): 497-506 .doi: 10.3864/j.issn.0578-1752.2010.03.008

• PLANT PROTECTION • Previous Articles     Next Articles

Geostatistical Analysis on Spatial Distribution of White-Backed Planthopper Nymphs

YAN Xiang-hui, ZHAO Zhi-mo, LIU Huai, XIAO Xiao-hua, XIE Xue-mei, CHENG Deng-fa
  

  1. (西南大学植物保护学院)
  • Received:2009-06-09 Revised:2009-08-22 Online:2010-02-10 Published:2010-02-10
  • Contact: ZHAO Zhi-mo, LIU Huai

Abstract:

【Objective】 Dynamic process and spatial pattern of the white-backed planthopper (WBPH), Sogatella furcifera (Horváth) nymphs after they immigrated into the rice were studied to provide a theoretical basis for its integrated control. 【Method】Models of space variation were constructed at the directions of east-west and south-north based on the geostatistical method by using 10 survey data from the transplanting to ripening of the rice in Xiushan, Chongqing in 2008. Isoclines maps of the WBPH nymphs at each stage were created by the geostatistical software Surfer8.0 with Kriging interpolation. 【Result】 The variograms showed the higher the WBPH nymphs density was, the larger the space variation scope became. Average space variation was 38.7% caused by the random factor and 61.3% caused by the autocorrelation. The random degree of space variation became greater as the rice grew up. Space-related area was 18.99 m in the direction of east-west and 25.09 m in south-north averagely. Kriging interpolation indicated that aggregated scope in south-north was larger than in east-west. 【Conclusion】 The population of white-backed planthopper nymphs showed a clumped distribution mainly after immigrating into rice fields and south- north was the main direction for WBPH nymphs to aggregate and diffuse.

Key words: white-backed planthopper, geostatistics, spatial distribution, Surfer 8.0

[1] XIONG ShuPing,GAO Ming,ZHANG ZhiYong,QIN BuTan,XU SaiJun,FU XinLu,WANG XiaoChun,MA XinMing. Spatial and Temporal Difference Analysis of Wheat Yield and Yield Components in Henan Province Based on GIS [J]. Scientia Agricultura Sinica, 2022, 55(4): 692-706.
[2] YU WeiBao,LI Nan,KOU YiHong,CAO XinYou,SI JiSheng,HAN ShouWei,LI HaoSheng,ZHANG Bin,WANG FaHong,ZHANG HaiLin,ZHAO Xin,LI HuaWei. Study on the Quality Parameters of Strong Gluten Wheat and Analysis of Its Relationship with Meteorological Factors in Shandong Province [J]. Scientia Agricultura Sinica, 2022, 55(22): 4383-4397.
[3] SHEN Zhe,ZHANG RenLian,LONG HuaiYu,XU AiGuo. Research on Spatial Distribution of Soil Texture in Southern Ningxia Based on Machine Learning [J]. Scientia Agricultura Sinica, 2022, 55(15): 2961-2972.
[4] ZHANG WeiLi,FU BoJie,XU AiGuo,YANG Peng,CHEN Tao,ZHANG RenLian,SHI Zhou,WU WenBin,LI JianBing,JI HongJie,LIU Feng,LEI QiuLiang,LI ZhaoJun,FENG Yao,LI YanLi,XU YongBing,PEI Wei. Geostatistical Characteristics of Soil Data from National Soil Survey Works in China [J]. Scientia Agricultura Sinica, 2022, 55(13): 2572-2583.
[5] LI ShaoHua,WANG YunPeng,WANG RongCheng,YIN Ping,LI XiangDong,ZHENG FangQiang. Spatial Distribution Pattern and Sampling Technique of Conogethes punctiferalis Larvae in Maize Fields [J]. Scientia Agricultura Sinica, 2022, 55(10): 1961-1970.
[6] ZHANG DaoWei,YU YaYa,PAN BiYing,KANG Kui,ZENG BoPing,CHEN Jing,TANG Bin. Regulation Function of Trehalose-6-phosphate Synthase Genes on Chitin Synthesis in Sogatella furcifera [J]. Scientia Agricultura Sinica, 2019, 52(19): 3357-3366.
[7] ZHANG XinYue,WANG Yin,CHEN Jian,CHEN AnJi,WANG LiYing,GUO XiaoYing,NIU YaLi,ZHANG XingYu,CHEN LiDong,GAO Qiang. Effects of Soil Water and Nitrogen on Plant Growth, Root Morphology and Spatial Distribution of Maize at the Seedling Stage [J]. Scientia Agricultura Sinica, 2019, 52(1): 34-44.
[8] XIANG MingTao, WU WenBin, HU Qiong, CHEN Di, LU Miao, YU QiangYi . Spatial-Temporal Changes in Cultivated Lands in Europe over 2000-2010 [J]. Scientia Agricultura Sinica, 2018, 51(6): 1121-1133.
[9] SUN LiJuan, HU XueXu, LU Wei, WANG BuJun. Spatial Distribution Characteristics of Wheat Grain Quality and Analysis of Factors Based on GIS [J]. Scientia Agricultura Sinica, 2018, 51(5): 999-1011.
[10] WANG JianLin, ZHONG ZhiMing, FENG XiBo, FU Gang, HOU WeiHai, WANG GaiHua, Da-cizhuoga. Spatial Distribution Regulation of Protein Content of Naked Barley Varieties and Its Relationships with Environmental Factors in Qinghai-Tibet Plateau [J]. Scientia Agricultura Sinica, 2017, 50(6): 969-977.
[11] LI Tong, WANG ZiTing, LIU Lu, LIAO YunCheng, LIU Yang, HAN Juan. Effect of Conservation Tillage Practices on Soil Microbial Spatial Distribution and Soil Physico-Chemical Properties of the Northwest Dryland [J]. Scientia Agricultura Sinica, 2017, 50(5): 859-870.
[12] GUO ErJing, YANG XiaoGuang, WANG XiaoYu, ZHANG TianYi, HUANG WanHua, LIU ZiQi, TAO Li. Spatial-Temporal Distribution of Double Cropping Rice’s Yield Gap in Hunan Province [J]. Scientia Agricultura Sinica, 2017, 50(2): 399-412.
[13] CHEN YanQing, CAO YongSheng, CHEN LiNa, FANG Wei . A Spatial Partition Statistical Analysis for Quality and Agronomic Traits of Foxtail Millet Germplasm Resources [J]. Scientia Agricultura Sinica, 2017, 50(14): 2658-2669.
[14] SU Yong-Zhong-1, YANG Rong, LIU Wen-Jie, YANG Xiao, WANG Min. Irrigation Water Requirement Based on Soil Conditions in a Typical Irrigation District in a Marginal Oasis [J]. Scientia Agricultura Sinica, 2014, 47(6): 1128-1139.
[15] ZHANG Ling-E, SHUANG Wen-Yuan, YUN An-Ping, NIU Ling-An, HU Ke-Lin. Spatio-temporal Variability and the Influencing Factors of Soil Available Potassium in 30 Years in Quzhou County, Hebei Province [J]. Scientia Agricultura Sinica, 2014, 47(5): 923-933.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!