Scientia Agricultura Sinica ›› 2026, Vol. 59 ›› Issue (4): 850-861.doi: 10.3864/j.issn.0578-1752.2026.04.011

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Water and Fertilizer Management for Reducing Nitrogen Leaching in Facility Vegetable Fields and Achieving Concurrent Yield Increase and Efficiency Improvement

YANG Yan1(), JIANG LiHua2, LI Ni2, SHI Jing1, TAN DeShui1, LIU YuMin1, ZHAO HuanYu1, XU Yu1()   

  1. 1 Institute of Resource and Environment, Shandong Academy of Agricultural Sciences/State Key Laboratory of Nutrient Use and Management/Key Laboratory of Wastes Matrix Utilization, Ministry of Agriculture and Rural Affairs, Ji'nan 250100
    2 Shandong Agriculture and Engineering University, Ji'nan 250100
  • Received:2025-03-31 Online:2026-02-10 Published:2026-02-10
  • Contact: XU Yu

Abstract:

【Objective】Nitrogen leaching is one of the significant sources of nitrate pollution in groundwater in vegetable-growing areas with facilities. This study aimed to explicit the characteristics of nitrogen leaching in facility vegetable fields for the calculation of agricultural non-point source pollution and achieving green, efficient and sustainable vegetable production.【Method】This study took the one-year two-crop system of facility tomato and cucumber as the research object, and conducted an 8-year field experiment from 2016 to 2023 in Yucheng City, Shandong Province, to investigate the effects of different water and fertilizer management strategies on nitrogen leaching, yield, water and fertilizer use efficiency in facility vegetable fields.【Result】Under the rotation mode of facility tomato and cucumber, the peak leaching flow mainly occurred in March and October, which were basically during the fruiting periods; the runoff yield of peak season accounted for more than 34.6% of the annual flow. The optimized water and fertilizer management (OPTW) significantly reduced the leaching flow in facility vegetable fields by more than 32.6%, but had no significant effect on the leaching intensity. The proportion of total soluble nitrogen in the leachate of each treatment was more than 70.0%, which was the main form of nitrogen loss. Compared with the traditional water and fertilizer management (FP), the optimized fertilization (OPT) reduced the total nitrogen leaching by 24.7%, increased the annual vegetable yield by 3.2%, and improved the water and fertilizer use efficiency by more than 2.7%, while OPTW significantly reduced the total nitrogen leaching by 49.6%, increased the annual yield of facility vegetables by 19.6%, and improved the water and fertilizer use efficiency by more than 55.5%. The total nitrogen leaching coefficients of OPT and OPTW were 24.9% and 16.3%, respectively, with no significant difference between them, and OPTW was 31.9% lower than FP.【Conclusion】The optimized water and fertilizer integrated management could ensure vegetable yield increase while reducing nitrogen emissions and improving water and fertilizer use efficiency, providing a reliable technical support for reducing the risk of nitrogen leaching in facility vegetable fields. However, in subsequent research or actual production, the irrigation regime needed to be further optimized, and agronomic measures should be added, such as nitrogen form regulation and enhancement of soil water and fertilizer retention capacity.

Key words: positioning monitoring, water and fertilizer optimization, irrigation and fertilization, facility vegetable field, nitrogen leaching loss

Table 1

Application rates of chemical fertilizers of various treatments (kg·hm-2)"

处理
Treatment
黄瓜季Cucumber season (N-P2O5-K2O) 番茄季Tomato season (N-P2O5-K2O)
基肥 Base fertilizer 追肥 Additional fertilizer 基肥 Base fertilizer 追肥 Additional fertilizer
CK 0-225-225 0-195-450 0-300-225 0-0-315
FP 225-225-225 450-195-450 225-300-225 525-0-315
OPT 225-225-225 300-195-450 225-300-225 225-0-315
OPTW 225-225-225 300-195-450 225-300-225 225-0-315

Table 2

Planting situation of crops in each season, irrigation times and total amount of irrigation during the growth period of each treatment"

年度Annual 种植季
Planting season
作物
Crop
定植时间
Planting time
收获时间
Harvest time
灌水次数
Irrigation times
畦灌
Border irrigation (mm)
滴灌
Drip irrigation (mm)
2016 1 番茄Tomato 2015-12-18 2016-05-26 14 469.6 383.3
2 黄瓜Cucumber 2016-08-06 2016-12-02 12 363.6 234.7
2017 1 番茄Tomato 2017-01-06 2017-06-03 11 548.1 354.3
2 黄瓜Cucumber 2017-08-04 2017-11-27 12 442.4 355.0
2018 1 番茄Tomato 2017-12-24 2018-05-31 10 450.4 363.7
2 黄瓜Cucumber 2018-08-12 2018-11-22 7 423.1 252.8
2019 1 番茄Tomato 2018-12-17 2019-05-27 9 613.5 488.4
2 黄瓜Cucumber 2019-08-16 2019-11-22 10 545.9 438.9
2020 1 番茄Tomato 2019-12-06 2020-05-29 9 580.7 470.4
2 黄瓜Cucumber 2020-08-01 2020-11-24 9 640.0 514.8
2021 1 番茄Tomato 2021-01-04 2021-05-26 9 573.3 463.0
2022 1 黄瓜Cucumber 2021-09-10 2022-01-05 9 502.2 403.7
2 番茄Tomato 2022-01-20 2022-06-20 7 523.0 418.5
2023 1 黄瓜Cucumber 2022-09-24 2023-01-10 10 576.3 459.3
2 番茄Tomato 2023-02-28 2023-06-19 8 349.6 280.4

Fig. 1

Schematic diagram of field percolation unit"

Fig. 2

Dynamic changes of irrigation quantity and leaching Letter n in the figure represents the cumulative irrigation times of natural months during the monitoring period"

Fig. 3

Influences of water and fertilizer optimization on annual leaching yield and leaching intensity"

Fig. 4

Influences of water and fertilizer optimization on nitrogen concentration of different forms in leaching solution"

Fig. 5

Influences of water and fertilizer optimization on total nitrogen leaching"

Fig. 6

Influences of water and fertilizer optimization on total nitrogen leaching coefficient"

Fig. 7

Effects of water and fertilizer optimization on vegetable yield"

Fig. 8

Influences of water and fertilizer optimization on vegetable water and fertilizer utilization efficiency"

Fig. 9

Principal component loadings plot of nitrogen leaching loss"

[1]
RIVETT M O, BUSS S R, MORGAN P, SMITH J W N, BEMMENT C D. Nitrate attenuation in groundwater: A review of biogeochemical controlling processes. Water Research, 2008, 42(16): 4215-4232.

doi: 10.1016/j.watres.2008.07.020 pmid: 18721996
[2]
ZHANG Y, LI F D, ZHANG Q Y, LI J, LIU Q. Tracing nitrate pollution sources and transformation in surface- and ground-waters using environmental isotopes. Science of the Total Environment, 2014, 490: 213-222.

doi: 10.1016/j.scitotenv.2014.05.004
[3]
ZHAO C S, HU C X, HUANG W, SUN X C, TAN Q L, DI H J. A lysimeter study of nitrate leaching and optimum nitrogen application rates for intensively irrigated vegetable production systems in Central China. Journal of Soils and Sediments, 2010, 10(1): 9-17.

doi: 10.1007/s11368-009-0063-3
[4]
ZHANG J J, HE P, DING W C, ULLAH S, ABBAS T, LI M Y, AI C, ZHOU W. Identifying the critical nitrogen fertilizer rate for optimum yield and minimum nitrate leaching in a typical field radish cropping system in China. Environmental Pollution, 2021, 268: 115004.

doi: 10.1016/j.envpol.2020.115004
[5]
QASIM W, XIA L L, LIN S, WAN L, ZHAO Y M, BUTTERBACH- BAHL K. Global greenhouse vegetable production systems are hotspots of soil N2O emissions and nitrogen leaching: A meta-analysis. Environmental Pollution, 2021, 272: 116372.

doi: 10.1016/j.envpol.2020.116372
[6]
薄录吉, 李彦, 王艳芹, 仲子文, 井永苹. 设施番茄土壤氮素流失控制技术措施比较. 中国生态农业学报 (中英文), 2025, 33(1): 1-8.
BO L J, LI Y, WANG Y Q, ZHONG Z W, JING Y P. Comparison of various technical measures for controlling nitrogen loss from tomato-grown soil in greenhouse facilities. Chinese Journal of Eco-Agriculture, 2025, 33(1): 1-8. (in Chinese)
[7]
H F, LIN S, WANG Y F, LIAN X J, ZHAO Y M, LI Y J, DU J Y, WANG Z X, WANG J G, BUTTERBACH-BAHL K. Drip fertigation significantly reduces nitrogen leaching in solar greenhouse vegetable production system. Environmental Pollution, 2019, 245: 694-701.

doi: S0269-7491(18)34040-5 pmid: 30500748
[8]
THORUP-KRISTENSEN K. Effect of deep and shallow root systems on the dynamics of soil inorganic N during 3-year crop rotations. Plant and Soil, 2006, 288(1): 233-248.

doi: 10.1007/s11104-006-9110-7
[9]
ZHANG B G, LI Q, CAO J, ZHANG C Y, SONG Z, ZHANG F S, CHEN X P. Reducing nitrogen leaching in a subtropical vegetable system. Agriculture, Ecosystems & Environment, 2017, 241: 133-141.

doi: 10.1016/j.agee.2017.03.006
[10]
WANG D Y, GUO L P, ZHENG L, ZHANG Y G, YANG R Q, LI M, MA F, ZHANG X Y, LI Y C. Effects of nitrogen fertilizer and water management practices on nitrogen leaching from a typical open field used for vegetable planting in northern China. Agricultural Water Management, 2019, 213: 913-921.

doi: 10.1016/j.agwat.2018.12.015
[11]
ZHOU W W, LV H F, CHEN F, WANG Q Y, LI J L, CHEN Q, LIANG B. Optimizing nitrogen management reduces mineral nitrogen leaching loss mainly by decreasing water leakage in vegetable fields under plastic-shed greenhouse. Environmental Pollution, 2022, 308: 119616.

doi: 10.1016/j.envpol.2022.119616
[12]
SONG X Z, ZHAO C X, WANG X L, LI J. Study of nitrate leaching and nitrogen fate under intensive vegetable production pattern in northern China. Comptes Rendus Biologies, 2009, 332(4): 385-392.

doi: 10.1016/j.crvi.2008.11.005
[13]
雷豪杰. 水肥一体化对设施菜地氮素淋失的影响及其机制模拟研究[D]. 北京: 中国农业科学院, 2021.
LEI H J. Simulation study on the effect and mechanism of nitrogen leaching in greenhouse vegetable field under integration of water and fertilizer[D]. Beijing: Chinese Academy of Agricultural Sciences, 2021. (in Chinese)
[14]
马林, 王洪媛, 刘刚, 胡克林, 梁超, 杜连凤, 郭胜利, 柏兆海, 王凤花, 李晓欣, 王仕琴, 胡春胜. 中国北方农田氮磷淋溶损失污染与防控机制. 中国生态农业学报(中英文), 2021, 29(1): 1-10.
MA L, WANG H Y, LIU G, HU K L, LIANG C, DU L F, GUO S L, BAI Z H, WANG F H, LI X X, WANG S Q, HU C S. Mitigation of nitrogen and phosphorus leaching from cropland in northern China. Chinese Journal of Eco-Agriculture, 2021, 29(1): 1-10. (in Chinese)
[15]
安志装, 索琳娜, 刘宝存. 我国农业面源污染研究与展望. 植物营养与肥料学报, 2024, 30(7): 1422-1436.
AN Z Z, SUO L N, LIU B C. Prospect and research on agricultural non-point source pollution in China. Journal of Plant Nutrition and Fertilizers, 2024, 30(7): 1422-1436. (in Chinese)
[16]
阚炜杰, 徐明泽, 田硕, 王金凤, 董楚轩, 祝宁. 设施栽培系统土壤氮磷淋溶特征与影响因素. 天津农业科学, 2023, 29(5): 34-40.
KAN W J, XU M Z, TIAN S, WANG J F, DONG C X, ZHU N. Study on the influencing factors and correlation of nitrogen and phosphorus leaching in greenhouse. Tianjin Agricultural Sciences, 2023, 29(5): 34-40. (in Chinese)
[17]
杨荣全, 谢立勇, 郑益旻, 李明, 魏娜, 李迎春, 巨晓棠, 郭李萍. 不同水肥措施下华北露地菜地氮淋溶特征. 中国生态农业学报(中英文), 2021, 29(1): 176-186.
YANG R Q, XIE L Y, ZHENG Y M, LI M, WEI N, LI Y C, JU X T, GUO L P. The effects of water and fertilizer practices on nitrogen leaching in open-field vegetable soil in North China. Chinese Journal of Eco-Agriculture, 2021, 29(1): 176-186. (in Chinese)
[18]
鲍士旦. 土壤农化分析. 3版. 北京: 中国农业出版社, 2000.
BAO S D. Soil and Agricultural Chemistry Analysis. 3rd ed. Beijing: China Agriculture Press, 2000. (in Chinese)
[19]
姜玲玲, 赵同科, 杜连凤, 康凌云. 设施菜地氮淋溶研究方法评价. 北方园艺, 2018(23): 156-163.
JIANG L L, ZHAO T K, DU L F, KANG L Y. Evaluation of research methods for nitrogen leaching from greenhouse vegetable fields. Northern Horticulture, 2018(23): 156-163. (in Chinese)
[20]
刘健. 三种质地土壤氮素淋溶规律研究[D]. 北京: 北京林业大学, 2010.
LIU J. Study on nitrogen leaching regulations on three textures of soil[D]. Beijing: Beijing Forestry University, 2010. (in Chinese)
[21]
王洪媛, 李俊改, 樊秉乾, 骆晓声, 彭畅, 翟丽梅, 李虎, 马林, 刘宏斌. 中国北方主要农区农田氮磷淋溶特征与时空规律. 中国生态农业学报(中英文), 2021, 29(1): 11-18.
WANG H Y, LI J G, FAN B Q, LUO X S, PENG C, ZHAI L M, LI H, MA L, LIU H B. Nitrogen and phosphorus leaching characteristics and temporal and spatial distribution patterns in northern China farmlands. Chinese Journal of Eco-Agriculture, 2021, 29(1): 11-18. (in Chinese)
[22]
YANG X L, LU Y L, DING Y, YIN X F, RAZA S, TONG Y A. Optimising nitrogen fertilisation: a key to improving nitrogen-use efficiency and minimising nitrate leaching losses in an intensive wheat/maize rotation (2008-2014). Field Crops Research, 2017, 206: 1-10.

doi: 10.1016/j.fcr.2017.02.016
[23]
GUO R Y, NENDEL C, RAHN C, JIANG C G, CHEN Q. Tracking nitrogen losses in a greenhouse crop rotation experiment in North China using the EU-Rotate_N simulation model. Environmental Pollution, 2010, 158(6): 2218-2229.

doi: 10.1016/j.envpol.2010.02.014 pmid: 20227804
[24]
DRURY C F, REYNOLDS W D, YANG X M, MCLAUGHLIN N B, WELACKY T W, CALDER W, GRANT C A. Nitrogen source, application time, and tillage effects on soil nitrous oxide emissions and corn grain yields. Soil Science Society of America Journal, 2012, 76(4): 1268-1279.

doi: 10.2136/sssaj2011.0249
[25]
KANTHLE A K, LENKA N K, LENKA S, TEDIA K. Biochar impact on nitrate leaching as influenced by native soil organic carbon in an Inceptisol of central India. Soil and Tillage Research, 2016, 157: 65-72.

doi: 10.1016/j.still.2015.11.009
[26]
刘岑薇, 叶菁, 李艳春, 林怡, 王义祥. 生物炭对茶园酸性红壤氮素养分淋溶的影响. 中国农业科技导报, 2020, 22(5): 181-186.

doi: 10.13304/j.nykjdb.2019.0182
LIU C W, YE J, LI Y C, LIN Y, WANG Y X. Effects of biochar on soil nitrogen leaching in acid red loam of tea garden. Journal of Agricultural Science and Technology, 2020, 22(5): 181-186. (in Chinese)

doi: 10.13304/j.nykjdb.2019.0182
[27]
MANEVSKI K, BØRGESEN C D, LI X X, ANDERSEN M N, ZHANG X Y, ABRAHAMSEN P, HU C S, HANSEN S. Optimising crop production and nitrate leaching in China: Measured and simulated effects of straw incorporation and nitrogen fertilisation. European Journal of Agronomy, 2016, 80: 32-44.

doi: 10.1016/j.eja.2016.06.009
[28]
盖霞普, 刘宏斌, 翟丽梅, 王洪媛. 玉米秸秆生物炭对土壤无机氮素淋失风险的影响研究. 农业环境科学学报, 2015, 34(2): 310-318.
GAI X P, LIU H B, ZHAI L M, WANG H Y. Effects of corn-stalk biochar on inorganic nitrogen leaching from soil. Journal of Agro-Environment Science, 2015, 34(2): 310-318. (in Chinese)
[29]
周旋, 吴良欢, 董春华, 贾磊. 氮肥配施生化抑制剂组合对黄泥田土壤氮素淋溶特征的影响. 生态学报, 2019, 39(5): 1804-1814.
ZHOU X, WU L H, DONG C H, JIA L. Effects of nitrogen fertilization combined with biochemical inhibitors on leaching characteristics of soil nitrogen in yellow clayey soil. Acta Ecologica Sinica, 2019, 39(5): 1804-1814. (in Chinese)
[30]
王宇, 韩兴, 赵占军, 李明欢, 房含, 赵兰坡. 垄沟秸秆覆盖对黑土顺坡耕地氮、磷养分阻控效果. 水土保持学报, 2016, 30(1): 137-140.
WANG Y, HAN X, ZHAO Z J, LI M H, FANG H, ZHAO L P. Controlling effects of furrow straw mulching on N and P nutrient loss on black soil slope farmland. Journal of Soil and Water Conservation, 2016, 30(1): 137-140. (in Chinese)
[31]
盖霞普, 刘宏斌, 翟丽梅, 杨波, 任天志, 王洪媛, 武淑霞, 雷秋良. 长期增施有机肥/秸秆还田对土壤氮素淋失风险的影响. 中国农业科学, 2018, 51(12): 2336-2347. doi: 10.3864/j.issn.0578-1752.2018.12.010.
GAI X P, LIU H B, ZHAI L M, YANG B, REN T Z, WANG H Y, WU S X, LEI Q L. Effects of long-term additional application of organic manure or straw incorporation on soil nitrogen leaching risk. Scientia Agricultura Sinica, 2018, 51(12): 2336-2347. doi: 10.3864/j.issn.0578-1752.2018.12.010. (in Chinese)
[32]
江丽华, 李妮, 徐钰, 石璟, 杨岩, 王梅, 陈永智, 张立联, 郭洪军, 宋东涛, 张洪启, 姜新, 刘延生. 山东省设施蔬菜施肥现状调查研究. 山东农业科学, 2020, 52(2): 90-96.
JIANG L H, LI N, XU Y, SHI J, YANG Y, WANG M, CHEN Y Z, ZHANG L L, GUO H J, SONG D T, ZHANG H Q, JIANG X, LIU Y S. Investigation and research on current status of fertilization for facility vegetable of Shandong Province. Shandong Agricultural Sciences, 2020, 52(2): 90-96. (in Chinese)
[33]
FAN B Q, ZHANG Y T, FENTON O, DALY K, LI J G, WANG H Y, ZHAI L M, LUO X S, LEI Q L, WU S X, LIU H B. Irrigation and nitrogen fertiliser optimisation in protected vegetable fields of northern China: Achieving environmental and agronomic sustainability. Journal of Integrative Agriculture, 2024, 23(3): 1022-1033.

doi: 10.1016/j.jia.2023.12.019
[34]
YANG X S, XIE Z J, HU Z Y, WEN G Q, LI S Y, KE X L, SUN X L, TAO M M, JIANG X. Effects of 3-year biochar application on carbon sequestration, nitrogen retention and nitrate leaching of fluvo-aquic soil profiles in vegetable rotation fields. Agriculture, Ecosystems & Environment, 2024, 367: 108989.

doi: 10.1016/j.agee.2024.108989
[35]
ZOTARELLI L, DUKES M D, SCHOLBERG J M S, MUÑOZ- CARPENA R, ICERMAN J. Tomato nitrogen accumulation and fertilizer use efficiency on a sandy soil, as affected by nitrogen rate and irrigation scheduling. Agricultural Water Management, 2009, 96(8): 1247-1258.

doi: 10.1016/j.agwat.2009.03.019
[36]
杨丽娟, 张玉龙, 须晖, 李军. 灌溉方法对保护地土壤耗水量与番茄水分利用效率的影响. 灌溉排水学报, 2004, 23(3): 49-51.
YANG L J, ZHANG Y L, XU H, LI J. Effect of irrigation methods on soil water loss and water use efficiency of tomato in greenhouse. Journal of Irrigation and Drainage, 2004, 23(3): 49-51. (in Chinese)
[37]
韦彦, 孙丽萍, 王树忠, 王永泉, 张振贤, 陈青云, 任华中, 高丽红. 灌溉方式对温室黄瓜灌溉水分配及硝态氮运移的影响. 农业工程学报, 2010, 26(8): 67-72.
WEI Y, SUN L P, WANG S Z, WANG Y Q, ZHANG Z X, CHEN Q Y, REN H Z, GAO L H. Effects of different irrigation methods on water distribution and nitrate nitrogen transport of cucumber in greenhouse. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(8): 67-72. (in Chinese)
[38]
NOACK S R, MCBEATH T M, MCLAUGHLIN M J. Potential for foliar phosphorus fertilisation of dryland cereal crops: A review. Crop and Pasture Science, 2010, 61(8): 659.

doi: 10.1071/CP10080
[39]
刘虎成, 徐坤, 张永征, 孙敬强. 滴灌施肥技术对生姜产量及水肥利用率的影响. 农业工程学报, 2012, 28(S1): 106-111.
LIU H C, XU K, ZHANG Y Z, SUN J Q. Effect of drip fertigation on yield, water and fertilizer utilization in ginger. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(S1): 106-111. (in Chinese)
[1] ZHOU DaoMing, SUN Tao, ZHAO YuHong, JIA YuanJie, YANG MingFei, QU Feng, HU XiaoHui. Optimization of Water and Fertilizer Management of Substrate Cultivated Peppers Based on Quality, Yield, and Water and Fertilizer Use Efficiency [J]. Scientia Agricultura Sinica, 2023, 56(12): 2354-2366.
[2] SONG BoYing, GUO YanJie, WANG WenZan, LÜ ZeNan, ZHAO YuQing, LIU Lu, ZHANG LiJuan. Effects of Biochar Combined with Dicyandiamide on Greenhouse Gases Emissions from Facility Vegetable Soil [J]. Scientia Agricultura Sinica, 2023, 56(10): 1935-1948.
[3] LEI HaoJie,LI GuiChun,KE HuaDong,WEI Lai,DING WuHan,XU Chi,LI Hu. Analysis of Impacts and Regulation Differences on Soil N2O Emissions from Two Typical Crop Systems Under Drip Irrigation and Fertilization [J]. Scientia Agricultura Sinica, 2021, 54(4): 768-779.
[4] YunPeng HOU,LiLi KONG,HongGuang CAI,HuiTao LIU,YuShan GAO,YongJun WANG,LiChun WANG. The Accumulation and Distribution Characteristics on Dry Matter and Nutrients of High-Yielding Maize Under Drip Irrigation and Fertilization Conditions in Semi-Arid Region of Northeastern China [J]. Scientia Agricultura Sinica, 2019, 52(20): 3559-3572.
[5] WANG HuBing, CAO HongXia, HAO ShuXue, PAN XiaoYan. Responses of Plant Nutrient and Photosynthesis in Greenhouse Tomato to Water-Fertilizer Coupling and Their Relationship with Yield [J]. Scientia Agricultura Sinica, 2019, 52(10): 1761-1771.
[6] ,,. Coordinated Variation Law of Yield and Grain Protein Content in Winter Wheat and Strategies of Irriagation and Fertilization [J]. Scientia Agricultura Sinica, 2006, 39(12): 2449-2458 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!