Scientia Agricultura Sinica ›› 2026, Vol. 59 ›› Issue (2): 336-353.doi: 10.3864/j.issn.0578-1752.2026.02.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Annual Water and Nitrogen Optimization on Yield and Nitrogen Migration of Wheat-Maize Rotation System in Irrigation Area of Northern Henan

ZHANG ZhiYong1(), TAN ShiChao1, XIONG ShuPing1, MA XinMing1, WEI YiHao1, WANG XiaoChun2()   

  1. 1 College of Agronomy, Henan Agricultural University/Key Laboratory of Regulating and Controlling Crop Growth and Development, Ministry of Education, Zhengzhou 450046
    2 College of Life Sciences, Henan Agricultural University, Zhengzhou 450046
  • Received:2025-03-08 Accepted:2025-07-28 Online:2026-01-16 Published:2026-01-22
  • Contact: WANG XiaoChun

Abstract:

【Objective】 To address the issues of excessive nitrogen application and water scarcity in the irrigation area of northern Henan, the aim of this study was to explore the regulating effect of annual water and nitrogen optimization (reducing water and nitrogen by 25%) on crop growth and nitrogen loss in the wheat-maize rotation system, so as to provide a theoretical basis and technical support for the sustainable agricultural practices in the wheat-maize rotation system of this region. 【Method】 A five-year (2018-2023) field experiment was conducted in Huaxian County, Anyang City of Henan province, and three water and nitrogen management treatments were set up: local traditional water and nitrogen treatment (TP, annual nitrogen application of 552.0 kg·hm-2 combined with irrigation of 270.0 mm), nitrogen factor optimization treatment (OF, annual nitrogen application of 414.0 kg·hm-2 combined with irrigation of 270.0 mm), and water and nitrogen factor optimization treatment (OWF, annual nitrogen application of 414.0 kg·hm-2 combined with irrigation of 202.5 mm). The effects of annual water and nitrogen optimization on the yield, biomass, nitrogen accumulation, nitrogen harvest index (NHI), nitrogen partial factor productivity (NPFP), and nitrogen uptake and physiological efficiency (NUPE), soil moisture and nitrate nitrogen content, nitrogen leaching and runoff, and annual nitrogen balance of the wheat-maize rotation system were studied. 【Result】 Compared with TP and OF treatments, OWF treatment had no significant effect on the annual average yield, aboveground biomass, grain nitrogen accumulation, and aboveground nitrogen accumulation of wheat and maize, but significantly increased NPFP by 31.4% and 0.9%, NUPE by 28.5% and 0.1%, respectively. There was a significant positive correlation among yield, biomass, grain nitrogen accumulation, and aboveground nitrogen accumulation. The annual optimization of water and nitrogen management significantly reduced soil moisture content and NO3--N content at different growth stages. Compared with TP and OF treatments, OWF treatment resulted in a significant reduction in soil moisture content by 6.6% and 9.6%, respectively, and a significant decrease in NO3--N content by 46.1% and 37.9%, respectively. The wheat season and maize season accounted for 2.9% and 97.1% of the annual average nitrogen leaching loss, respectively. The annual average nitrogen leaching losses under TP, OF, and OWF treatments were 52.9, 45.8, and 39.6 kg·hm-2, respectively. Compared with TP and OF treatments, OWF treatment significantly reduced the annual average NO3--N leaching loss by 25.2% and 13.5%, respectively, and decreased NO3--N surface runoff by 32.0% and 18.1%, respectively. The annual average nitrogen surplus in the irrigation area of northern Henan was 60.6 kg·hm-2. Compared with TP treatment, the nitrogen surplus under OWF treatment was reduced by 81.9%, while compared with OF treatment, it was increased by 20.8%. 【Conclusion】 Annual water and nitrogen optimization could maintain stable crop yields in the wheat-maize rotation system while enhancing the efficient utilization of water and nitrogen resources. This approach significantly reduced soil nitrate nitrogen (NO3--N) content across the 0-100 cm soil layers, mitigated NO3--N leaching, promoted soil nitrogen balance, and reduced the risk of non-point source pollution in the irrigation area of northern Henan. These results demonstrated that water and nitrogen optimization served as a green and efficient management measure for the wheat-maize rotation system in this region.

Key words: wheat, maize, rotation, nitrogen migration, annual water-nitrogen optimization, crop yield, nitrogen fertilizer partial productivity, nitrogen leaching, nitrogen balance

Fig. 1

The annual temperature and precipitation 2018-2023"

Table 1

Experimental soil basic fertility"

处理
Treatment
有机质
Organic matter
(g·kg-1)
全氮
Total N (g·kg-1)
全磷
Total P (g·kg-1)
全钾
Total K
(g·kg-1)
速效磷
Available P
(mg·kg-1)
速效钾
Available K
(mg·kg-1)
硝态氮
NO3--N
(mg·kg-1)
铵态氮
NH4+-N
(mg·kg-1)
pH
传统水氮TP 22.07 1.04 1.99 7.02 15.52 340.08 16.17 12.57 6.78
氮肥优化OF 22.37 0.96 1.97 6.76 16.02 342.12 14.72 13.19 6.76
水氮优化OWF 21.88 0.96 2.01 6.58 14.81 343.70 14.36 13.56 6.83

Fig. 2

Schematic diagram of the device for collecting leaching water and surface runoff from the test field"

Table 2

Anniversary fertilization program"

种植季
Crop season
处理
Treatment
化肥 Fertilizer (kg·hm-2)
N P2O5 K2O
小麦
Wheat
TP 246.0 132.0 30.0
OF 184.5 99.0 22.5
OWF 184.5 99.0 22.5
玉米
Maize
TP 306.0 36.0 36.0
OF 229.5 27.0 27.0
OWF 229.5 27.0 27.0
周年
Annual
TP 552.0 168.0 66.0
OF 414.0 126.0 49.5
OWF 414.0 126.0 49.5

Fig. 3

Yield (a), above-ground biomass (b), grain nitrogen uptake (c) and above-ground nitrogen uptake (d) of wheat and maize under different water and nitrogen treatments Each data is the mean ± standard deviation (n=3). Different lowercase letters indicate significant differences between different treatments at the 0.05 level. TP: Local traditional water and nitrogen treatment, annual nitrogen application of 552.0 kg·hm-2 combined with irrigation of 270.0 mm; OF: Nitrogen factor optimization treatment, annual nitrogen application of 414.0 kg·hm-2 combined with irrigation of 270.0 mm; OWF: Water and nitrogen factor optimization treatment, annual nitrogen application of 414.0 kg·hm-2 combined with irrigation of 202.5 mm. The same as below"

Table 3

Variance analysis of wheat, maize and annual yields under different water and nitrogen treatments"

作物产量 Crop yield
小麦 Wheat 玉米 Maize
年份 Year (Y) *** ***
处理 Treatment (T) ns ns
Y×T ns ns

Table 4

Nitrogen harvest index (NHI), nitrogen partial productivity (NPFP) and nitrogen use efficiency (NUPE) of wheat and maize under different water and nitrogen treatments"

年份
Years
处理
Treatment
氮收获指数 NHI (%) 氮肥偏生产力 NPFP (kg·kg-1) 氮素吸收效率 NUPE (kg·kg-1)
小麦
Wheat
玉米
Maize
周年
Annual
小麦
Wheat
玉米
Maize
周年
Annual
小麦
Wheat
玉米
Maize
周年
Annual
2018-2019 TP 74.14±3.18 a 69.34±1.34 a 72.13±1.74 a 36.55±1.24 b 65.25±1.56 b 48.37±0.14 b 0.96±0.03 b 0.96±0.06 b 0.96±0.04 b
OF 73.90±1.70 a 70.98±0.21 a 72.70±0.99 a 48.56±1.97 a 86.47±1.95 a 64.17±1.13 a 1.29±0.044 a 1.24±0.06 a 1.27±0.01 a
OWF 73.42±0.60 a 70.17±1.69 a 72.11±0.52 a 48.11±1.88 a 87.33±2.90 a 64.26±0.93 a 1.27±0.07a 1.25±0.08 a 1.26±0.06 a
2019-2020 TP 73.33±1.39 a 58.05±0.34 a 71.86±0.66 a 40.25±1.40 b 62.35±2.276 b 49.35±0.84 b 1.16±0.11 b 1.35±0.08 b 1.24±0.05 b
OF 74.95±1.64 a 57.62±0.68 a 73.47±1.00 a 53.36±1.26 a 80.79±2.02 a 64.66±1.50a 1.53±0.169 a 1.73±0.11 a 1.61±0.11 a
OWF 74.60±0.73 a 60.67±1.53 a 72.98±0.61 a 52.61±1.34 a 83.41±1.22a 65.29±0.84 a 1.53±0.12 a 1.77±0.04 a 1.63±0.07 a
2020-2021 TP 77.11±0.26 a 75.45±1.17a 76.59±0.25 a 39.18±1.36 b 37.38±1.11 b 38.43±1.17 b 0.90±0.066 b 0.57±0.027 b 0.76±0.04 b
OF 76.55±1.50 a 74.95±1.07 a 76.06±1.23 a 52.97±0.74 a 47.82±2.05 a 50.85±0.67a 1.22±0.043 a 0.73±0.02 a 1.02±0.02 a
OWF 75.68±2.19 a 75.42±1.47 a 75.61±1.70 a 52.83±1.59 a 49.40±0.89 a 51.42±1.21 a 1.21±0.09 a 0.70±0.02 a 1.00±0.06 a
2021-2022 TP 80.76±0.37 a 56.12±1.73 a 68.22±1.03 a 45.58±2.64 b 57.24±3.90 b 50.38±3.15 b 0.88±0.06 b 1.30±0.08 b 1.05±0.06 b
OF 78.92±0.27 a 58.45±1.81 a 68.04±0.68 a 55.98±3.69 a 74.56±4.38 a 63.63±3.76a 1.00±0.04 a 1.65±0.20 a 1.27±1.00 a
OWF 80.54±1.64 a 58.00±1.98 a 68.68±0.76 a 57.87±3.75 a 73.18±1.087 a 64.18±2.6 a 1.03±0.04 a 1.63±0.07 a 1.27±0.04 a
2022-2023 TP 74.90±0.16 a 63.99±3.92 a 69.37±1.93 a 38.33±2.75 b 61.70±0.65 b 47.95±1.40 b 0.75±0.05 b 1.11±0.07 b 0.89±0.05 b
OF 74.22±3.25 a 63.54±0.61 a 68.98±2.08 a 49.01±1.82 a 80.40±2.63 a 61.94±2.08 a 0.97±0.04 a 1.36±0.08 a 1.13±0.02 a
OWF 75.03±1.71 a 65.91±3.42 a 70.42±1.59 a 48.53±1.23 a 83.54±0.67 a 62.95±0.94 a 0.96±0.01 a 1.39±0.04 a 1.14±0.02 a
方差分析 ANOVA
年份 Year (Y) *** *** *** *** *** *** *** *** ***
处理 Treatment (T) ns ns ns *** *** *** *** *** ***
Y×T ns ns ns ns ns ns ns ns ns

Fig. 4

Correlation among crop yield, above-ground biomass, grain and above-ground nitrogen accumulation, NHI, NPFP, and NUPE"

Fig. 5

Dynamics of soil water transport under different water and nitrogen treatments The top-to-bottom color maps represent the dynamic changes OF soil dry base water content in different growth periods of wheat and jade rotation system treated by TP, OF and OWF respectively. The colors from blue to red indicate an increase in soil moisture content. The horizontal letter combination represents the different growth stages of wheat and maize rotation system, W-RS: Wheat greening stage, W-JS: Wheat jointing stage, W-FS: Wheat flowering stage, W-F15: 15 days after wheat flowering, W-MS: Wheat maturity stage, M-GS: Maize filling stage, M-MS: Maize maturity stage. The same as below"

Fig. 6

Dynamics of soil nitrate nitrogen migration under different water and nitrogen treatments"

Fig. 7

N leaching total amount, NO3--N leaching amount, and NH4+-N leaching amount under different water and nitrogen treatments"

Fig. 8

N runoff total amount, NO3--N runoff amount, and NH4+-N runoff amount under different water and nitrogen treatments"

Table 5

Average annual nitrogen leaching, nitrogen runoff and nitrogen loss of wheat and maize seasons under different water and nitrogen treatments"

年份
Year
处理
Treatment
淋溶
N leaching (kg·hm-2)
径流
N runoff (kg·hm-2)
年平均流失量
N annual loss (kg·hm-2)
2018-2019 TP 24.20±0.26 a 0 24.20±0.26 a
OF 18.32±0.75 b 0 18.32±0.75 b
OWF 16.38±1.40 b 0 16.38±1.40 b
2019-2020 TP 0 0 0
OF 0 0 0
OWF 0 0 0
2020-2021 TP 218.13±15.17 a 0.61±0.07 a 218.75±15.24 a
OF 197.26±19.01 ab 0.54±0.02 ab 197.80±19.03 ab
OWF 170.78±17.97 b 0.45±0.07 b 171.23±18.03 b
2021-2022 TP 15.40±2.07 a 0.03±0.01 a 15.43±2.08 a
OF 9.67±1.77 b 0.02±0.00 ab 9.68±1.77 b
OWF 8.08±1.16 b 0.01±0.00 b 8.09±1.17 b
2022-2023 TP 6.79±0.50 a 0.04±0.01 a 6.83±0.51a
OF 3.84±0.64 b 0.01±0.00 b 3.85±0.64 b
OWF 2.84±0.31 b 0.00±0.00 b 2.84±0.31 b
周年平均
Annual average
TP 45.58±3.13 a 0.14±0.02 a 45.71±3.15 a
OF 38.41±3.81 b 0.11±0.01 ab 38.52±3.82 b
OWF 31.84±3.81 c 0.09±0.01 b 31.94±3.82 c
方差分析 ANOVA
年份 Year (Y) *** *** ***
处理 Treatment (T) *** *** ***
Y×T *** *** ***

Table 6

Annual nitrogen balance of different water and nitrogen treatments"

年份
Year
处理
Treatment
氮输入 N input (kg·hm-2 氮输出 N output (kg·hm-2) 氮素表观
盈余量
N balance (kg·hm-2)
氮素表观
盈亏率
N balance (%)
施氮
Nitrogen
种子
Seeds
灌水
Irrigation
降雨
Rainfall
作物吸收氮
Crop absorb
淋溶
Leaching
径流
Runoff
2018-2019 TP 552.00 14.30 8.31 14.69 391.08 24.20 0.00 174.02 41.90
OF 414.00 14.30 8.31 14.69 388.27 18.32 0.00 44.71 11.00
OWF 414.00 14.30 6.24 14.69 386.80 16.38 0.00 46.05 11.42
2019-2020 TP 552.00 14.30 6.22 7.37 505.11 0.00 0.00 74.78 14.80
OF 414.00 14.30 6.22 7.37 493.54 0.00 0.00 -51.65 -10.46
OWF 414.00 14.30 4.66 7.37 498.24 0.00 0.00 -57.91 -11.62
2020-2021 TP 552.00 14.30 5.55 25.79 311.28 218.13 0.61 67.62 12.76
OF 414.00 14.30 5.55 25.79 311.30 197.26 0.54 -49.46 -9.72
OWF 414.00 14.30 4.16 25.79 305.36 170.78 0.45 -18.34 -3.85
2021-2022 TP 552.00 14.30 6.79 15.50 428.22 15.40 0.03 144.94 32.67
OF 414.00 14.30 6.79 15.50 387.25 9.67 0.02 53.66 13.52
OWF 414.00 14.30 5.09 15.50 389.84 8.08 0.01 50.96 12.81
2022-2023 TP 552.00 14.30 3.77 23.00 365.07 6.79 0.04 221.18 59.47
OF 414.00 14.30 3.77 23.00 345.91 3.84 0.01 105.31 30.11
OWF 414.00 14.30 2.83 23.00 348.15 2.84 0.00 103.14 29.38
年平均
Annual
TP 552.00 14.30 6.13 17.27 400.15 52.90 0.14 136.51 30.12
OF 414.00 14.30 6.13 17.27 385.25 45.82 0.11 20.51 4.76
OWF 414.00 14.30 6.13 17.27 385.68 39.62 0.09 24.78 6.19
方差分析 ANOVA
年份 Year (Y) *** *** *** *** ***
处理 Treatment (T) ns *** *** *** ***
Y×T *** *** *** *** ***

Fig. 9

Annual nitrogen input (a) and output (b) of different water and nitrogen treatments"

[1]
河南省统计局. 2024河南统计年鉴. 北京: 中国统计出版社, 2024.
Henan Provincial Bureau of Statistics. Henan Statistical Yearbook 2024. Beijing: China Statistics Press, 2024. (in Chinese)
[2]
ABEDI T, ALEMZADEH A, KAZEMEINI S A. Wheat yield and grain protein response to nitrogen amount and timing. Australian Journal of Crop Science, 2011, 5(3): 330-336.
[3]
李红, 王西娜, 韦广源, 马永鑫, 田海梅, 王月梅, 钱芝瑾, 谭军利. 节水减氮对宁夏引黄灌区春小麦抗倒伏特性及产量的影响. 中国农业科学, 2024, 57(17): 3424-3439. doi: 10.3864/j.issn.0578-1752.2024.17.009.
LI H, WANG X N, WEI G Y, MA Y X, TIAN H M, WANG Y M, QIAN Z J, TAN J L. Effects of water saving and nitrogen reduction on lodging resistance and grain yield of spring wheat in the yellow river irrigation area of Ningxia. Scientia Agricultura Sinica, 2024, 57(17): 3424-3439. doi: 10.3864/j.issn.0578-1752.2024.17.009. (in Chinese)
[4]
GAO B, JU X T, SU F, MENG Q F, OENEMA O, CHRISTIE P, CHEN X P, ZHANG F S. Nitrous oxide and methane emissions from optimized and alternative cereal cropping systems on the North China Plain: A two-year field study. Science of the Total Environment, 2014, 472: 112-124.

doi: 10.1016/j.scitotenv.2013.11.003
[5]
ZHANG L D, GAO L H, ZHANG L X, WANG S Z, SUI X L, ZHANG Z X. Alternate furrow irrigation and nitrogen level effects on migration of water and nitrate-nitrogen in soil and root growth of cucumber in solar-greenhouse. Scientia Horticulturae, 2012, 138: 43-49.

doi: 10.1016/j.scienta.2012.02.003
[6]
ZHANG C, JU X T, POWLSON D, OENEMA O, SMITH P. Nitrogen surplus benchmarks for controlling N pollution in the main cropping systems of China. Environmental Science and Technology, 2019, 53(12): 6678-6687.

doi: 10.1021/acs.est.8b06383 pmid: 31125212
[7]
KANG Y N, LIU M X, SONG Y, HUANG X, YAO H, CAI X H, ZHANG H S, KANG L, LIU X J, YAN X Y, et al. High-resolution ammonia emissions inventories in China from 1980 to 2012. Atmospheric Chemistry and Physics, 2016, 16(4): 2043-2058.
[8]
邓浩亮, 潘小番, 兰雪梅, 王勤礼, 肖让, 滕安国, 雷联. 水氮互作对河西绿洲灌区玉豆带状复合种植玉米产量及水氮利用效率的影响. 玉米科学, 2024, 32(7): 73-82.
DENG H L, PAN X P, LAN X M, WANG Q L, XIAO R, TENG A G, LEI L. Effect of water and nitrogen interaction on maize-soybean strip intercropping planting yields and water-nitrogen use efficiency in Hexi oasis irrigation area. Journal of Maize Sciences, 2024, 32(7): 73-82. (in Chinese)
[9]
FENG S J, WANG M R, HEAL M R, LIU X J, LIU X Y, ZHAO Y H, STROKAL M, KROEZE C, ZHANG F S, XU W. The impact of emissions controls on atmospheric nitrogen inputs to Chinese river basins highlights the urgency of ammonia abatement. Science Advances, 2024, 10(37): eadp2558.
[10]
李若楠, 武雪萍, 张彦才, 王丽英, 陈丽莉, 翟凤芝. 节水减氮对温室土壤硝态氮与氮素平衡的影响. 中国农业科学, 2016, 49(4): 695-704. doi: 10.3864/j.issn.0578-1752.2016.04.009..
LI R N, WU X P, ZHANG Y C, WANG L Y, CHEN L L, ZHAI F Z. Effects of reduced application of nitrogen and irrigation on soil nitrate nitrogen content and nitrogen balance in greenhouse production. Scientia Agricultura Sinica, 2016, 49(4): 695-704. doi: 10.3864/j.issn.0578-1752.2016.04.009. (in Chinese)
[11]
赵政鑫, 王晓云, 李府阳, 王锐, 田雅洁, 蔡焕杰. 秸秆还田配施稳定性氮肥对麦玉轮作水氮利用的影响. 农业机械学报, 2023, 54(6): 350-360.
ZHAO Z X, WANG X Y, LI F Y, WANG R, TIAN Y J, CAI H J. Effects of straw returning and application of stable nitrogen fertilizer on water and nitrogen use efficiencies of wheat maize rotation. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(6): 350-360. (in Chinese)
[12]
张殿凯, 李盼, 范虹, 何蔚, 樊志龙, 胡发龙, 孙亚丽, 谭向念, 殷文, 陈桂平. 西北灌区复种绿肥及减氮条件下春小麦产量及水分利用特征. 中国农业科学, 2024, 57(11): 2189-2201. doi: 10.3864/j.issn.0578-1752.2024.11.011.
ZHANG D K, LI P, FAN H, HE W, FAN Z L, HU F L, SUN Y L, TAN X N, YIN W, CHEN G P. Soil water use characteristics of spring wheat with multiple-cropping green manure and nitrogen reduction in northwest irrigated areas. Scientia Agricultura Sinica, 2024, 57(11): 2189-2201. doi: 10.3864/j.issn.0578-1752.2024.11.011. (in Chinese)
[13]
杨楠, 段琳博, 马静, 蔡焕杰, 彭雄标, 王晓云, 李亮, 张蓬妍, 徐家屯. 基于Hydrus-1D模型的灌区农田土壤水分渗漏和硝态氮淋失特征研究. 干旱地区农业研究, 2023, 41(5): 32-42.
YANG N, DUAN L B, MA J, CAI H J, PENG X B, WANG X Y, LI L, ZHANG P Y, XU J. Characteristics of soil water leakage and nitrate leaching in irrigated farmland based on the Hydrus-1D model. Agricultural Research in the Arid Areas, 2023, 41(5): 32-42. (in Chinese)
[14]
XU X X, ZHANG M, LI J P, LIU Z Q, ZHAO Z G, ZHANG Y H, ZHOU S L, WANG Z M. Improving water use efficiency and grain yield of winter wheat by optimizing irrigations in the North China Plain. Field Crops Research, 2018, 221: 219-227.

doi: 10.1016/j.fcr.2018.02.011
[15]
王晓英, 贺明荣, 刘永环, 张洪华, 李飞, 华芳霞, 孟淑华. 水氮耦合对冬小麦氮肥吸收及土壤硝态氮残留淋溶的影响. 生态学报, 2008, 28(2): 685-694.
WANG X Y, HE M R, LIU Y H, ZHANG H H, LI F, HUA F X, MENG S H. Interactive effects of irrigation and nitrogen fertilizer on nitrogen fertilizer recovery and nitrate-N movement across soil profile in a winter wheat field. Acta Ecologica Sinica, 2008, 28(2): 685-694. (in Chinese)
[16]
张皖玉, 张志勇, 张潇斌, 韦一昊, 熊淑萍, 王小纯, 马新明. 不同施氮量对小麦-玉米轮作体系氮素利用的影响. 河南农业大学学报, 2024, 58(4): 562-572.
ZHANG W Y, ZHANG Z Y, ZHANG X B, WEI Y H, XIONG S P, WANG X C, MA X M. Effects of different nitrogen application rates on nitrogen use in wheat-maize rotation system. Journal of Henan Agricultural University, 2024, 58(4): 562-572. (in Chinese)
[17]
雒文鹤, 师祖姣, 王旭敏, 李军, 王瑞. 节水减氮对土壤硝态氮分布和冬小麦水氮利用效率的影响. 作物学报, 2020, 46(6): 924-936.

doi: 10.3724/SP.J.1006.2020.91060
LUO W H, SHI Z J, WANG X M, LI J, WANG R. Effects of water saving and nitrogen reduction on soil nitrate nitrogen distribution, water and nitrogen use efficiencies of winter wheat. Acta Agronomica Sinica, 2020, 46(6): 924-936. (in Chinese)

doi: 10.3724/SP.J.1006.2020.91060
[18]
杜文婷, 雷肖肖, 卢慧宇, 王云凤, 徐佳星, 罗彩霞, 张树兰. 氮肥减量施用对我国三大粮食作物产量的影响. 中国农业科学, 2022, 55(24): 4863-4878. doi: 10.3864/j.issn.0578-1752.2022.24.007.
DU W T, LEI X X, LU H Y, WANG Y F, XU J X, LUO C X, ZHANG S L. Effects of reducing nitrogen application rate on the yields of three major cereals in China. Scientia Agricultura Sinica, 2022, 55(24): 4863-4878. doi: 10.3864/j.issn.0578-1752.2022.24.007. (in Chinese)
[19]
马伯威, 王红光, 李东晓, 李瑞奇, 李雁鸣. 水氮运筹模式对冬小麦产量和水氮生产效率的影响. 麦类作物学报, 2015, 35(8): 1141-1147.
MA B W, WANG H G, LI D X, LI R Q, LI Y M. Influence of water-nitrogen patterns on yield and productive efficiency of water and nitrogen of winter wheat. Journal of Triticeae Crops, 2015, 35(8): 1141-1147. (in Chinese)
[20]
LIU Q, WU K, SONG W Z, ZHONG N, WU Y Z, FU X D. Improving crop nitrogen use efficiency toward sustainable green revolution. Annual Review of Plant Biology, 2022, 73: 523-551.

doi: 10.1146/annurev-arplant-070121-015752 pmid: 35595292
[21]
吕凤莲, 侯苗苗, 张弘弢, 强久次仁, 周应田, 路国艳, 赵秉强, 杨学云, 张树兰. 塿土冬小麦-夏玉米轮作体系有机肥替代化肥比例研究. 植物营养与肥料学报, 2018, 24(1): 22-32.
F L, HOU M M, ZHANG H T, QIANG J, ZHOU Y T, LU G Y, ZHAO B Q, YANG X Y, ZHANG S L. Replacement ratio of chemical fertilizer nitrogen with manure under the winter wheat-summer maize rotation system in Lou soil. Journal of Plant Nutrition and Fertilizers, 2018, 24(1): 22-32. (in Chinese)
[22]
张敏, 刘添, 李亚静, 李翠平, 郭振清, 贾秀领, 杨敏, 秦保平, 安浩军, 蔡瑞国. 减少灌水次数对强筋小麦氮素积累转运和籽粒蛋白质含量的影响. 麦类作物学报, 2019, 39(7): 802-809.
ZHANG M, LIU T, LI Y J, LI C P, GUO Z Q, JIA X L, YANG M, QIN B P, AN H J, CAI R G. Effect of irrigation times on nitrogen accumulation, transportation and grain protein content of strong gluten wheat. Journal of Triticeae Crops, 2019, 39(7): 802-809. (in Chinese)
[23]
姜春霞, 刘化涛, 张伟, 杨柯, 张冬梅, 翟广谦, 王娟玲, 刘恩科. 减量施氮对鲜食玉米产量、氮素利用及土壤硝态氮含量的影响. 中国土壤与肥料, 2022, 59(12): 61-67.
JIANG C X, LIU H T, ZHANG W, YANG K, ZHANG D M, ZHAI G Q, WANG J L, LIU E K. Effect of reduced nitrogen application on yield, nitrogen utilization of fresh waxy maize and soil nitrate nitrogen content in Shanxi dryland. Soil and Fertilizer Sciences in China, 2022, 59(12): 61-67. (in Chinese)
[24]
WANG J J, QIAN R, LI J X, WEI F N, MA Z M, GAO S S, SUN X, ZHANG P, CAI T, ZHAO X N, CHEN X L, REN X L. Nitrogen reduction enhances crop productivity, decreases soil nitrogen loss and optimize its balance in wheat-maize cropping area of the Loess Plateau, China. European Journal of Agronomy, 2024, 161: 127352.

doi: 10.1016/j.eja.2024.127352
[25]
HONDEBRINK M A, CAMMERAAT L H, CERDÀ A. The impact of agricultural management on selected soil properties in citrus orchards in Eastern Spain: A comparison between conventional and organic citrus orchards with drip and flood irrigation. Science of the Total Environment, 2017, 581: 153-160.
[26]
FANG Q X, YU Q, WANG E L, CHEN Y H, ZHANG G L, WANG J, LI L H. Soil nitrate accumulation, leaching and crop nitrogen use as influenced by fertilization and irrigation in an intensive wheat-maize double cropping system in the North China Plain. Plant and Soil, 2006, 284(1): 335-350.

doi: 10.1007/s11104-006-0055-7
[27]
ZHENG W B, WANG S Q, SUN H P, SHEN Y J, CAO J S. Rainfall driven nitrate transport in runoff of hilly area by combining time-series monitoring of hydrochemistry and stable isotopes. Journal of Hydrology, 2025, 654: 132830.

doi: 10.1016/j.jhydrol.2025.132830
[28]
LOU H C, LI S J, SHI Z H, ZOU Y P, ZHANG Y Q, HUANG X Z, YANG D D, YANG Y F, LI Z Y, XU C. Engineering source-sink relations by prime editing confers heat-stress resilience in tomato and rice. Cell, 2025, 188(2): 530-549.

doi: 10.1016/j.cell.2024.11.005 pmid: 39674177
[29]
谭德水, 江丽华, 谭淑樱, 徐钰, 郑福丽, 李国生, 刘兆辉. 湖区小麦-玉米轮作模式下不同施肥措施调控氮磷养分流失研究. 土壤学报, 2015, 52(1): 128-137.
TAN D S, JIANG L H, TAN S Y, XU Y, ZHENG F L, LI G S, LIU Z H. Effects of fertilization controlling nitrogen and phosphorus loss from farmland under wheat-maize rotation in Nansi lake region. Acta Pedologica Sinica, 2015, 52(1): 128-137. (in Chinese)
[30]
刘瀚文, 栾好安, 张亦涛, 习斌, 董奎军, 王伟军. 旱地农田氮磷淋溶发生特征研究进展. 中国生态农业学报(中英文), 2024, 32(9): 1520-1533.
LIU H W, LUAN H A, ZHANG Y T, XI B, DONG K J, WANG W J. Research progress on the occurrence characteristics of nitrogen and phosphorus leaching in dryland farmland. Chinese Journal of Eco-Agriculture, 2024, 32(9): 1520-1533. (in Chinese)
[31]
王宇豪, 王敬宽, 杜海岩, 季晓辉, 柳新伟. 冬闲盐碱地绿肥种植对淡水淋盐土壤及淋溶液碳氮影响. 华北农学报, 2024, 39(1): 143-149.

doi: 10.7668/hbnxb.20194507
WANG Y H, WANG J K, DU H Y, JI X H, LIU X W. The impact of green manure planting on carbon and nitrogen content of freshwater salinized soil and leaching solution in saline-alkali winter fallow farmland. Acta Agriculturae Boreali-Sinica, 2024, 39(1): 143-149. (in Chinese)

doi: 10.7668/hbnxb.20194507
[32]
MURPHY D J, DILLON P, O’ DONOVAN M, SHALLOO L, RUELLE E. Nitrate leaching on Irish grassland dairy farms: A review. European Journal of Agronomy, 2024, 153: 127042.

doi: 10.1016/j.eja.2023.127042
[33]
HUANG T, JU X T, YANG H. Nitrate leaching in a winter wheat- summer maize rotation on a calcareous soil as affected by nitrogen and straw management. Scientific Reports, 2017, 7: 42247.

doi: 10.1038/srep42247
[34]
HARTMANN T E, YUE S C, SCHULZ R, CHEN X P, ZHANG F S, MÜLLER T. Nitrogen dynamics, apparent mineralization and balance calculations in a maize-wheat double cropping system of the North China Plain. Field Crops Research, 2014, 160: 22-30.

doi: 10.1016/j.fcr.2014.02.014
[1] CHEN GuiPing, WEI JinGui, GUO Yao, LI Pan, WANG FeiEr, QIU HaiLong, FENG FuXue, YIN Wen. Synergistic Effects of Wide-Narrow Row and Density Enhancement on the Photosynthetic Characteristics and Resource Utilization of Maize in Oasis Irrigation Areas [J]. Scientia Agricultura Sinica, 2026, 59(2): 278-291.
[2] LÜ XuDong, SUN ShiYuan, LI YaNan, LIU YuLong, WANG YanQun, FU Xin, ZHANG JiaYing, NING Peng, PENG ZhengPing. Effects of Intelligent Mechanized Layered Fertilization on Root-Soil Nutrient Distribution and Yield in Wheat Fields [J]. Scientia Agricultura Sinica, 2026, 59(1): 129-146.
[3] LU Hao, ZHANG MingLong, HAN Mei, YAN QingBiao, LI ZhengPeng, YIN Wen, FAN ZhiLong, HU FaLong, CHAI Qiang. Green Manure Returning via Sheep Digest with Nitrogen Fertilizer Reduction are Beneficial to Improve Wheat Yield and Soil Quality at Qinghai-Tibet Plateau [J]. Scientia Agricultura Sinica, 2026, 59(1): 147-160.
[4] YE MeiJin, CHEN JiaTing, ZHOU JieGuang, YIN Li, HU XinRong, LAN YuXin, CHEN Bin, SU LongXing, LIU JiaJun, LIU TianChao, LI XiaoYu, MA Jian. Identification, Validation and Genetic Effect Analysis of Major QTL for Spike Density in Wheat [J]. Scientia Agricultura Sinica, 2026, 59(1): 17-28.
[5] PU LiXia, ZHANG JiaRui, YE JianPing, HUANG XiuLan, FAN GaoQiong, YANG HongKun. The Combined Effects of 16, 17-Dihydro Gibberellin A5 and Straw Mulching on Tillering and Grain Yield of Dryland Wheat [J]. Scientia Agricultura Sinica, 2025, 58(9): 1735-1748.
[6] LI YunLi, DIAO DengChao, LIU YaRui, SUN YuChen, MENG XiangYu, WU ChenFang, WANG Yu, WU JianHui, LI ChunLian, ZENG QingDong, HAN DeJun, ZHENG WeiJun. Genome-Wide Association Study of Heat Tolerance at Seedling Stage in A Wheat Natural Population [J]. Scientia Agricultura Sinica, 2025, 58(9): 1663-1683.
[7] WEI WenHua, LI Pan, SHAO GuanGui, FAN ZhiLong, HU FaLong, FAN Hong, HE Wei, CHAI Qiang, YIN Wen, ZHAO LianHao. Response of Silage Maize Yield and Quality to Reduced Irrigation and Combined Organic-Inorganic Fertilizer in Northwest Irrigation Areas [J]. Scientia Agricultura Sinica, 2025, 58(8): 1521-1534.
[8] XUE YuQi, ZHAO JiYu, SUN WangSheng, REN BaiZhao, ZHAO Bin, LIU Peng, ZHANG JiWang. Effects of Different Nitrogen Forms on Yield and Quality of Summer Maize [J]. Scientia Agricultura Sinica, 2025, 58(8): 1535-1549.
[9] WU Yu, QU XiangRu, YANG Dan, WU Qin, CHEN GuoYue, JIANG QianTao, WEI YuMing, XU Qiang. Widespread Non-Targeted Metabolomics Reveals Metabolites of Chloroplasts in Wheat Responses to Stripe Rust [J]. Scientia Agricultura Sinica, 2025, 58(7): 1333-1343.
[10] WANG Bin, WU PengHao, LU JianWei, REN Tao, CONG RiHuan, LU ZhiFeng, LI XiaoKun. Water Demand Characteristics of Rice-Oilseed Rape Rotation System in the Middle Reaches of the Yangtze River [J]. Scientia Agricultura Sinica, 2025, 58(7): 1355-1365.
[11] YIN Bo, YU AiZhong, WANG PengFei, YANG XueHui, WANG YuLong, SHANG YongPan, ZHANG DongLing, LIU YaLong, LI Yue, WANG Feng. Effects of Green Manure Returning Combined with Nitrogen Fertilizer Reduction on Hydrothermal Characteristics of Wheat Field and Grain Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2025, 58(7): 1366-1380.
[12] CHEN GuiPing, LI Pan, SHAO GuanGui, WU XiaYu, YIN Wen, ZHAO LianHao, FAN ZhiLong, HU FaLong. The Regulatory Effect of Reduced Irrigation and Combined Organic- Inorganic Fertilizer Application on Stay-Green Characteristics in Silage Maize Leaves After Tasseling Stage [J]. Scientia Agricultura Sinica, 2025, 58(7): 1381-1396.
[13] YUE RunQing, LI WenLan, DING ZhaoHua, MENG ZhaoDong. Molecular Characteristics and Resistance Evaluation of Transgenic Maize LD05 with Stacked Insect and Herbicide Resistance Traits [J]. Scientia Agricultura Sinica, 2025, 58(7): 1269-1283.
[14] ZHAO Yao, CHENG Qian, XU TianJun, LIU Zheng, WANG RongHuan, ZHAO JiuRan, LU DaLei, LI CongFeng. Effects of Plant Type Improvement on Root-Canopy Characteristics and Grain Yield of Spring Maize Under High Density Condition [J]. Scientia Agricultura Sinica, 2025, 58(7): 1296-1310.
[15] PAN LiYuan, WANG YongJun, LI HaiJun, HOU Fu, LI Jing, LI LiLi, SUN SuYang. Screening Regulatory Genes Related to Wheat Grain Protein Accumulation Based on Transcriptome and WGCNA Analysis [J]. Scientia Agricultura Sinica, 2025, 58(6): 1065-1082.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!