Scientia Agricultura Sinica ›› 2026, Vol. 59 ›› Issue (1): 17-28.doi: 10.3864/j.issn.0578-1752.2026.01.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Identification, Validation and Genetic Effect Analysis of Major QTL for Spike Density in Wheat

YE MeiJin1(), CHEN JiaTing2(), ZHOU JieGuang2, YIN Li2, HU XinRong2, LAN YuXin2, CHEN Bin2, SU LongXing2, LIU JiaJun3, LIU TianChao1, LI XiaoYu4,*(), MA Jian2,*()   

  1. 1 College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu 611130
    2 Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130
    3 Sichuan University of Arts and Science/Dazhou Key Laboratory of Agricultural Resources Development and Ecological Conservation in Daba Mountain, Dazhou 635000, Sichuan
    4 Nanchong Academy of Agricultural Sciences, Nanchong 637000, Sichuan
  • Received:2025-07-22 Accepted:2025-09-01 Online:2026-01-01 Published:2026-01-07
  • Contact: LI XiaoYu, MA Jian

Abstract:

【Objective】Spike density (SD) is an important agronomic trait in wheat, and elucidating its genetic regulatory mechanisms is crucial for constructing ideal spike architecture and achieving yield breakthroughs. This study aimed to identify and genetically characterize key genetic loci controlling SD, providing a theoretical basis for molecular design breeding of wheat spike morphology. 【Method】A recombinant inbred line (RIL) population consisting of 198 F6 lines derived from a cross between the natural mutant msf and cultivar Chuannong16 was used. Combined with a genetic linkage map based on the wheat 16K SNP array, quantitative trait loci (QTL) associated with SD were systematically identified using phenotypic data from four environments. Furthermore, two populations with different genetic backgrounds were employed to validate the major and stably expressed QTL. The genetic effects of the stable QTL on yield-related traits were analyzed, and their potential for yield improvement was evaluated. 【Result】The SD of the RIL population ranged from 0.62 to 2.35, with a heritability of 0.71. SD showed a significant positive correlation with productive tiller number and spikelet number, while exhibiting a highly significant negative correlation with grains per spike, grain weight per spike, and spike length. Nine QTLs controlling SD were identified, distributed on chromosomes 1A, 1D, 5A (2 QTLs), 5B, 7A (3 QTLs), and 7B. Among them, QSd.sicau-MC-1A was mapped between flanking markers 1A_1208254 and 1A_3911208 on chromosome 1A and detected in two environments and in the best linear unbiased prediction (BLUP) dataset, explaining 9.05%-15.84% of the phenotypic variation. This QTL, with its positive allele derived from Chuannong 16, was considered a major and stably expressed locus, and its effect was further validated in two independent genetic backgrounds. QSd.sicau-MC-7A.1 was located between markers 7A_671413788 and 7A_672390144 on chromosome 7A and also detected in two environments and BLUP. Although stably expressed, this QTL had a relatively minor effect (7.06%-10.39% phenotypic variation), with its positive allele originating from msf. The remaining seven QTLs were minor-effect loci. Genetic effect analysis revealed that the positive allele of QSd.sicau-MC-1A had negative effects on major yield-related traits, whereas QSd.sicau-MC-7A.1 exhibited positive effects. Additive effect analysis demonstrated that lines carrying both QSd.sicau-MC-1A and QSd.sicau-MC-7A.1 positive alleles had significantly higher SD (9.01% increase) compared to those carrying only one or no positive alleles. Lines with only QSd.sicau-MC-1A or QSd.sicau-MC-7A.1 showed 5.03% and 4.19% increases in SD, respectively, over lines without any positive alleles. Comparative analysis with previously reported SD QTLs suggested that QSd.sicau-MC-1A might be a novel locus. 【Conclusion】Two stably expressed QTLs for SD, QSd.sicau-MC-1A and QSd.sicau-MC-7A.1, were identified in wheat. The latter shows greater potential for breeding applications.

Key words: wheat, QTL, spike density, genetic effect, yield

Fig. 1

Spike phenotype of the parents"

Table 1

Phenotypic distribution of spike density for parents and RIL in MC population"

环境
Environment
亲本Parents 重组自交系RIL
msf 川农16 CN16 范围Range (SNS/cm) 平均值Mean 标准差SD 变异系数Variance 遗传力H2
2021WJ 1.98(14.33) 1.99(10.24**) 1.89-1.95 1.92 0.21 0.05 0.71
2021CZ N(9.84) N(8.90**) 2.28-2.35 2.32 0.26 0.07
2022WJ 1.68(14.36) 1.87*(9.74**) 0.62-1.87 0.82 0.24 0.03
2022CZ 1.81(13.08) 1.78(10.68**) 1.80-1.87 1.84 0.22 0.05

Fig. 2

Frequency distribution of spike density for MC population in various environments"

Table 2

Correlations between spike density and other yield related traits in MC population"

性状 Trait 穗密度 Spike density
株高Plant height 0.067
有效分蘖数Effective tiller number 0.402**
小穗数Spikelet number per spike 0.215**
每穗籽粒数Kernel number per spike -0.316**
每穗粒重Kernel weight per spike -0.311**
千粒重Thousand kernel weight -0.122
旗叶长Flag leaf length 0.006
旗叶宽Flag leaf width 0.001
穗长Spike length -0.666**

Table 3

QTL related to spike density in MC population"

数量性状位点
QTL
环境
Environment
遗传位置
Genetic position (cM)
区间
Interval
阈值
LOD
表型变异率
PVE (%)
加性效应
Add
QSd.sicau-MC-1A 2022WJ 0 1A_1208254-1A_3911208 6.82 13.09 -0.07
2022CZ 2 1A_3911208-1A_10060497 8.30 15.84 -0.09
BLUP 0 1A_1208254-1A_3911208 6.61 9.05 -0.05
QSd.sicau-MC-7A.1 2021CZ 106 7A_671413788-7A_672390144 4.54 10.39 0.08
2021WJ 113 7A_675589691-7A_677881538 3.44 8.05 0.06
BLUP 105 7A_671413788-7A_672390144 5.18 7.06 0.04
QSd.sicau-MC-5A.1 2022WJ 43 5A_688174533-5A_691403852 2.99 6.45 -0.05
BLUP 41 5A_688174533-5A_691403852 3.16 4.44 -0.03
QSd.sicau-MC-7A.2 2022WJ 54 7A_78127897-7A_80137450 3.18 5.86 0.05
QSd.sicau-MC-7A.3 2022CZ 74 7A_540052478-7A_544573026 3.01 5.17 0.05
QSd.sicau-MC-1D 2021WJ 47 1D_279525304-1D_252822346 3.00 6.09 -0.10
QSd.sicau-MC-5A.2 BLUP 74 5A_512433953-5A_523864082 2.61 3.42 -0.03
QSd.sicau-MC-5D 2021WJ 24 5D_544232381-5D_520844905 3.08 10.16 -0.12
QSd.sicau-MC-7B BLUP 57 7B_113156591-7B_122267814 3.20 4.23 0.03

Fig. 3

Genetic effect analysis of QSd.sicau-MC-1A THE P-VALUES OBTAINED FROM THE T-TEST ARE INDICATED BELOW THE ENVIRONMENT NAMES, WHERE P<0.05 REPRESENTS SIGNIFICANCE; THE PERCENTAGE DIFFERENCE BETWEEN LINES CARRYING THE TWO ALLELES IN EACH ENVIRONMENT IS LABELED ABOVE THE HORIZONTAL LINE. THE SAME AS BELOW"

Fig. 4

Genetic effect analysis of QSd.sicau-MC-7A.1"

Fig. 5

Additive effect (a) and genetic analyses (b) of QSd.sicau-MC-1A and QSd.sicau-MC-7A.1"

Fig. 6

Effect of QSd.sicau-MC-1A on other yield related traits THE NUMBER BELOW THE ASTERISK REPRESENTS THE PERCENTAGE DIFFERENCE BETWEEN LINES CARRYING THE TWO ALLELES. THE SAME AS BELOW"

Fig. 7

Effect of QSd.sicau-MC-7A.1 on other yield related traits"

Fig. 8

Validation of QSd.sicau-MC-1A in two populations"

[1]
KHALID A, HAMEED A, TAHIR M F. Wheat quality: A review on chemical composition, nutritional attributes, grain anatomy, types, classification, and function of seed storage proteins in bread making quality. Frontiers in Nutrition, 2023, 10: 1053196.

doi: 10.3389/fnut.2023.1053196
[2]
JIAO C Z, XIE X M, HAO C Y, CHEN L Y, XIE Y X, GARG V, ZHAO L, WANG Z H, ZHANG Y Q, LI T, et al. Pan-genome bridges wheat structural variations with habitat and breeding. Nature, 2025, 637(8045): 384-393.

doi: 10.1038/s41586-024-08277-0
[3]
CHENG P, ZHANG Y, LIU K, KONG X S, WU S M, YAN H F, JIANG P. Continuing the continuous harvests of food production: From the perspective of the interrelationships among cultivated land quantity, quality, and grain yield. Humanities and Social Sciences Communications, 2025, 12: 46.

doi: 10.1057/s41599-024-04342-1
[4]
LIU H, MA J, TU Y, ZHU J, DING P Y, LIU J J, LI T, ZOU Y Y, HABIB A, MU Y, et al. Several stably expressed QTL for spike density of common wheat (Triticum aestivum) in multiple environments. Plant Breeding, 2020, 139(2): 284-294.

doi: 10.1111/pbr.v139.2
[5]
YOU J N, LIU H, WANG S R, LUO W, GOU L L, TANG H P, MU Y, DENG M, JIANG Q T, CHEN G Y, et al. Spike density quantitative trait loci detection and analysis in tetraploid and hexaploid wheat recombinant inbred line populations. Frontiers in Plant Science, 2021, 12: 796397.

doi: 10.3389/fpls.2021.796397
[6]
FARIS J D, FELLERS J P, BROOKS S A, GILL B S. A bacterial artificial chromosome contig spanning the major domestication locus Q in wheat and identification of a candidate gene. Genetics, 2003, 164(1): 311-321.

doi: 10.1093/genetics/164.1.311
[7]
FARIS J D, GILL B S. Genomic targeting and high-resolution mapping of the domestication gene Q in wheat. Genome, 2002, 45(4): 706-718.

doi: 10.1139/g02-036 pmid: 12175074
[8]
SIMONS K J, FELLERS J P, TRICK H N, ZHANG Z C, TAI Y S, GILL B S, FARIS J D. Molecular characterization of the major wheat domestication gene Q. Genetics, 2006, 172(1): 547-555.

doi: 10.1534/genetics.105.044727
[9]
XU B J, CHEN Q, ZHENG T, JIANG Y F, QIAO Y Y, GUO Z R, CAO Y L, WANG Y, ZHANG Y Z, ZONG L J, et al. An overexpressed Q allele leads to increased spike density and improved processing quality in common wheat (Triticum aestivum). G3, 2018, 8(3): 771-778.

doi: 10.1534/g3.117.300562
[10]
JOHNSON E B, NALAM V J, ZEMETRA R S, RIERA-LIZARAZU O. Mapping the compactum locus in wheat (Triticum aestivum L.) and its relationship to other spike morphology genes of the Triticeae. Euphytica, 2008, 163(2): 193-201.

doi: 10.1007/s10681-007-9628-7
[11]
RAO M V P. Mapping of the sphaerococcum gene ‘S’ on chromosome 3D of wheat. Cereal Research Communications, 1977, 5(1): 15-17.
[12]
ELLIS M H, REBETZKE G J, AZANZA F, RICHARDS R A, SPIELMEYER W. Molecular mapping of gibberellin-responsive dwarfing genes in bread wheat. Theoretical and Applied Genetics, 2005, 111(3): 423-430.

doi: 10.1007/s00122-005-2008-6 pmid: 15968526
[13]
KORZUN V, RÖDER M S, GANAL M W, WORLAND A J, LAW C N. Genetic analysis of the dwarfing gene (Rht8) in wheat: Part I. Molecular mapping of Rht8 on the short arm of chromosome 2D of bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 1998, 96(8): 1104-1109.

doi: 10.1007/s001220050845
[14]
HEIDARI B, SAYED-TABATABAEI B E, SAEIDI G, KEARSEY M, SUENAGA K. Mapping QTL for grain yield, yield components, and spike features in a doubled haploid population of bread wheat. Genome, 2011, 54(6): 517-527.

doi: 10.1139/g11-017 pmid: 21635161
[15]
ZHAO C H, CUI F, FAN Z Q, LI J, DING A M, WANG H G. Genetic analysis of important loci in the winter wheat backbone parent Aimengniu-V. Australian Journal of Crop Science, 2013, 7(2): 182-188.
[16]
ALVAREZ M A, TRANQUILLI G, LEWIS S, KIPPES N, DUBCOVSKY J. Genetic and physical mapping of the earliness per se locus Eps-Am1 in Triticum monococcum identifies EARLY FLOWERING 3 (ELF3) as a candidate gene. Functional & Integrative Genomics, 2016, 16(4): 365-382.
[17]
GUEDIRA M, XIONG M, HAO Y F, JOHNSON J, HARRISON S, MARSHALL D, BROWN-GUEDIRA G. Heading date QTL in winter wheat (Triticum aestivum L.) coincide with major developmental genes VERNALIZATION1 and PHOTOPERIOD1. PLoS ONE, 2016, 11(5): e0154242.

doi: 10.1371/journal.pone.0154242
[18]
YU Q, FENG B, XU Z B, FAN X L, ZHOU Q, JI G S, LIAO S M, GAO P, WANG T. Genetic dissection of three major quantitative trait loci for spike compactness and length in bread wheat (Triticum aestivum L.). Frontiers in Plant Science, 2022, 13: 882655.

doi: 10.3389/fpls.2022.882655
[19]
LI T, DENG G B, SU Y, YANG Z, TANG Y Y, WANG J H, QIU X, PU X, LI J, LIU Z H, et al. Identification and validation of two major QTLs for spike compactness and length in bread wheat (Triticum aestivum L.) showing pleiotropic effects on yield- related traits. Theoretical and Applied Genetics, 2021, 134(11): 3625-3641.

doi: 10.1007/s00122-021-03918-8
[20]
ZHU J, HUANG F, ZHAI H J, ZHENG Y, YU J Z, CHEN Z Y, FAN Y J, ZHAO H H, SUN Q X, LIANG R Q, et al. The Tetratricopeptide repeat protein TaTPR-B 1 regulates spike compactness in bread wheat. Plant Physiology, 2024, 197(1): kiae546.
[21]
ZHANG L, ZHOU H D, FU X, ZHOU N N, LIU M J, BAI S L, ZHAO X P, CHENG R R, LI S P, ZHANG D L. Identification and map-based cloning of an EMS-induced mutation in wheat gene TaSP1 related to spike architecture. Theoretical and Applied Genetics, 2024, 137(6): 119.

doi: 10.1007/s00122-024-04621-0 pmid: 38709271
[22]
张智源, 周界光, 刘家君, 王素容, 王同著, 赵聪豪, 尤佳宁, 丁浦洋, 唐华苹, 刘燕林, 等. 基于遗传解析新模式的小麦寡分蘖QTL的鉴定和验证. 作物学报, 2024, 50(6): 1373-1383.
ZHANG Z Y, ZHOU J G, LIU J J, WANG S R, WANG T Z, ZHAO C H, YOU J N, DING P Y, TANG H P, LIU Y L, et al. Identification and verification of low-tillering QTL based on a new model of genetic analysis in wheat. Acta Agronomica Sinica, 2024, 50(6): 1373-1383. (in Chinese)

doi: 10.3724/SP.J.1006.2024.31051
[23]
ZHOU J G, LI W, YANG Y Y, XIE X L, LIU J J, LIU Y L, TANG H P, DENG M, XU Q, JIANG Q T, et al. A promising QTL QSns.sau-MC-3D.1 likely superior to WAPO 1 for the number of spikelets per spike of wheat shows no adverse effects on yield-related traits. Theoretical and Applied Genetics, 2023, 136(9): 181.

doi: 10.1007/s00122-023-04429-4
[24]
ZHOU J G, HE Y J, LI W, CHEN B, SU L X, LAN Y X, YAN L, WANG Y, LOHANI M N, LIU Y L, et al. Identification and characterization of QSFS.sau-MC-5A for sterile florets genetically independent of fertile ones per spike in wheat. Theoretical and Applied Genetics, 2024, 137(10): 232.

doi: 10.1007/s00122-024-04745-3
[25]
ZHOU J G, LIU Q, TIAN R, CHEN H X, WANG J, YANG Y Y, ZHAO C H, LIU Y L, TANG H P, DENG M, et al. A co-located QTL for seven spike architecture-related traits shows promising breeding use potential in common wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2024, 137(1): 31.

doi: 10.1007/s00122-023-04536-2
[26]
姚琦馥, 陈黄鑫, 周界光, 马瑞莹, 邓亮, 谭陈芯雨, 宋靖涵, 吕季娟, 马建. 基于16K SNP芯片的小麦株高QTL鉴定及其遗传分析. 中国农业科学, 2023, 56(12): 2237-2248. doi: 10.3864/j.issn.0578-1752.2023.12.001.
YAO Q F, CHEN H X, ZHOU J G, MA R Y, DENG L, TAN C X Y, SONG J H, J J, MA J. QTL identification and genetic analysis of plant height in wheat based on 16K SNP array. Scientia Agricultura Sinica, 2023, 56(12): 2237-2248. doi: 10.3864/j.issn.0578-1752.2023.12.001. (in Chinese)
[27]
姚琦馥, 周界光, 王健, 陈黄鑫, 杨瑶瑶, 刘倩, 闫磊, 王瑛, 周景忠, 崔凤娟, 等. 小麦穗长QTL鉴定及其遗传分析. 中国农业科学, 2023, 56(24): 4814-4825. doi: 10.3864/j.issn.0578-1752.2023.24.002.
YAO Q F, ZHOU J G, WANG J, CHEN H X, YANG Y Y, LIU Q, YAN L, WANG Y, ZHOU J Z, CUI F J, et al. Identification and genetic analysis of QTL for spike length in wheat. Scientia Agricultura Sinica, 2023, 56(24): 4814-4825. doi: 10.3864/j.issn.0578-1752.2023.24.002. (in Chinese)
[28]
LIU J J, LUO W, QIN N N, DING P Y, ZHANG H, YANG C C, MU Y, TANG H P, LIU Y X, LI W, et al. A 55K SNP array-based genetic map and its utilization in QTL mapping for productive tiller number in common wheat. Theoretical and Applied Genetics, 2018, 131(11): 2439-2450.

doi: 10.1007/s00122-018-3164-9
[29]
LIU J J, WANG T Z, LAN Y X, ZHANG Z Y, YOU J N, WU L, HU X R, YIN L, LIU Y L, TANG H P, et al. Fine-mapping and candidate gene identification for QPtn.sau-4B showing potential in increasing productive tiller number and yield in wheat. The Crop Journal, 2025, 13(2): 480-489.

doi: 10.1016/j.cj.2025.01.014
[30]
MA J, DING P Y, LIU J J, LI T, ZOU Y Y, HABIB A, MU Y, TANG H P, JIANG Q T, LIU Y X, et al. Identification and validation of a major and stably expressed QTL for spikelet number per spike in bread wheat. Theoretical and Applied Genetics, 2019, 132(11): 3155-3167.

doi: 10.1007/s00122-019-03415-z pmid: 31435704
[31]
MA J, QIN N N, CAI B, CHEN G Y, DING P Y, ZHANG H, YANG C C, HUANG L, MU Y, TANG H P, et al. Identification and validation of a novel major QTL for all-stage stripe rust resistance on 1BL in the winter wheat line 20828. Theoretical and Applied Genetics, 2019, 132(5): 1363-1373.

doi: 10.1007/s00122-019-03283-7 pmid: 30680420
[32]
马文洁, 张传量, 宋晓朋, 冯洁, 崔紫霞, 孙道杰. 不同麦区小麦品种穗发芽抗性及其与穗部性状的相关性. 麦类作物学报, 2016, 36(10): 1269-1274.
MA W J, ZHANG C L, SONG X P, FENG J, CUI Z X, SUN D J. Pre-harvest sprouting resistance in wheat from different wheat regions and its correlation with ear characteristics. Journal of Triticeae Crops, 2016, 36(10): 1269-1274. (in Chinese)
[33]
HUANG Y D, HAAS M, HEINEN S, STEFFENSON B J, SMITH K P, MUEHLBAUER G J. QTL mapping of Fusarium Head blight and correlated agromorphological traits in an elite barley cultivar rasmusson. Frontiers in Plant Science, 2018, 9: 1260.

doi: 10.3389/fpls.2018.01260
[34]
MESTERHÁZY A. Types and components of resistance to Fusarium head blight of wheat. Plant Breeding, 1995, 114(5): 377-386.

doi: 10.1111/pbr.1995.114.issue-5
[35]
陆成彬, 范金平, 印娟, 王朝顺, 褚正虎. 小麦主要农艺性状对赤霉病抗性的影响. 安徽农业科学, 2013, 41(3): 1091-1092, 1095.
LU C B, FAN J P, YIN J, WANG C S, CHU Z H. Effects of main agronomic traits of wheat on the resistance of Fusarium head blight. Journal of Anhui Agricultural Sciences, 2013, 41(3): 1091-1092, 1095. (in Chinese)
[1] LÜ XuDong, SUN ShiYuan, LI YaNan, LIU YuLong, WANG YanQun, FU Xin, ZHANG JiaYing, NING Peng, PENG ZhengPing. Effects of Intelligent Mechanized Layered Fertilization on Root-Soil Nutrient Distribution and Yield in Wheat Fields [J]. Scientia Agricultura Sinica, 2026, 59(1): 129-146.
[2] LU Hao, ZHANG MingLong, HAN Mei, YAN QingBiao, LI ZhengPeng, YIN Wen, FAN ZhiLong, HU FaLong, CHAI Qiang. Green Manure Returning via Sheep Digest with Nitrogen Fertilizer Reduction are Beneficial to Improve Wheat Yield and Soil Quality at Qinghai-Tibet Plateau [J]. Scientia Agricultura Sinica, 2026, 59(1): 147-160.
[3] DONG GuiChun, WANG ZiHan, WANG ShuShen, LI Jie, HUO XiaoQing, YANG Rui, ZHOU Juan, SHU XiaoWei, LI Yan, CAO LiangJing, WANG ZiRui, YAO YouLi, HUANG JianYe. Technical Approaches for Enhancing Rice Yield and Nitrogen Use Efficiency with Sulfur-Coated Controlled-Release Fertilizers [J]. Scientia Agricultura Sinica, 2026, 59(1): 57-77.
[4] PU LiXia, ZHANG JiaRui, YE JianPing, HUANG XiuLan, FAN GaoQiong, YANG HongKun. The Combined Effects of 16, 17-Dihydro Gibberellin A5 and Straw Mulching on Tillering and Grain Yield of Dryland Wheat [J]. Scientia Agricultura Sinica, 2025, 58(9): 1735-1748.
[5] GUO ChenLi, LIU Yang, CHEN Yan, HU Wei, WANG YouHua, ZHOU ZhiGuo, ZHAO WenQing. Effects of Phosphorus Fertilizer Postpone Under Nitrogen Reduction Condition on Yield, Phosphorus Fertilizer Utilization Efficiency of Drip-Irrigated Cotton [J]. Scientia Agricultura Sinica, 2025, 58(9): 1749-1766.
[6] ZHANG Min, LI Xin, ZHANG Yong, ZHONG DePing, LU XiaoXiao, HE ShuMin, CHEN DongHong, LI Ye, LI RongXia, HUANG ZeJun, WANG XiaoXuan, GUO YanMei, DU YongChen, LIU HongHai, LI JunMing, LIU Lei. Genetic and Interaction Analysis of High Soluble Solid Content Loci in Processing Tomato [J]. Scientia Agricultura Sinica, 2025, 58(9): 1816-1829.
[7] LI YunLi, DIAO DengChao, LIU YaRui, SUN YuChen, MENG XiangYu, WU ChenFang, WANG Yu, WU JianHui, LI ChunLian, ZENG QingDong, HAN DeJun, ZHENG WeiJun. Genome-Wide Association Study of Heat Tolerance at Seedling Stage in A Wheat Natural Population [J]. Scientia Agricultura Sinica, 2025, 58(9): 1663-1683.
[8] CHEN BingRu, TANG YuJie, ZHANG LiXia, ZHOU YuFei, YU Miao, SHI GuiShan, WANG XinDing, LI Yang, GAO ShiJie, LU XiaoChun, WANG Nai, DIAO XianMin. The Green Revolution of Chinese Grain Hybrid Sorghum [J]. Scientia Agricultura Sinica, 2025, 58(8): 1494-1507.
[9] LIU JinSong, WU LongMei, BAO XiaoZhe, LIU ZhiXia, ZHANG Bin, YANG TaoTao. Effects of a Short-Term Reduction in Nitrogen Fertilizer Application Rates on the Grain Yield and Rice Quality of Early and Late-Season Dual-Use Rice in South China [J]. Scientia Agricultura Sinica, 2025, 58(8): 1508-1520.
[10] WEI WenHua, LI Pan, SHAO GuanGui, FAN ZhiLong, HU FaLong, FAN Hong, HE Wei, CHAI Qiang, YIN Wen, ZHAO LianHao. Response of Silage Maize Yield and Quality to Reduced Irrigation and Combined Organic-Inorganic Fertilizer in Northwest Irrigation Areas [J]. Scientia Agricultura Sinica, 2025, 58(8): 1521-1534.
[11] XUE YuQi, ZHAO JiYu, SUN WangSheng, REN BaiZhao, ZHAO Bin, LIU Peng, ZHANG JiWang. Effects of Different Nitrogen Forms on Yield and Quality of Summer Maize [J]. Scientia Agricultura Sinica, 2025, 58(8): 1535-1549.
[12] LI ShaoXing, SONG WenFeng, WEI ZeYu, ZHOU YuLing, SONG LiXia, REN Ke, MA Qun, WANG LongChang. Effects of Straw and Milk Vetch Mulching on Soil Fertility and Sweet Potato Yield [J]. Scientia Agricultura Sinica, 2025, 58(8): 1591-1603.
[13] WU Yu, QU XiangRu, YANG Dan, WU Qin, CHEN GuoYue, JIANG QianTao, WEI YuMing, XU Qiang. Widespread Non-Targeted Metabolomics Reveals Metabolites of Chloroplasts in Wheat Responses to Stripe Rust [J]. Scientia Agricultura Sinica, 2025, 58(7): 1333-1343.
[14] YIN Bo, YU AiZhong, WANG PengFei, YANG XueHui, WANG YuLong, SHANG YongPan, ZHANG DongLing, LIU YaLong, LI Yue, WANG Feng. Effects of Green Manure Returning Combined with Nitrogen Fertilizer Reduction on Hydrothermal Characteristics of Wheat Field and Grain Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2025, 58(7): 1366-1380.
[15] CHEN GuiPing, LI Pan, SHAO GuanGui, WU XiaYu, YIN Wen, ZHAO LianHao, FAN ZhiLong, HU FaLong. The Regulatory Effect of Reduced Irrigation and Combined Organic- Inorganic Fertilizer Application on Stay-Green Characteristics in Silage Maize Leaves After Tasseling Stage [J]. Scientia Agricultura Sinica, 2025, 58(7): 1381-1396.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!