Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (8): 1550-1563.doi: 10.3864/j.issn.0578-1752.2025.08.007

• PLANT PROTECTION • Previous Articles     Next Articles

The Role of miR-6497-x in Regulating the Reaction of Plutella xylostella to Fungal Infection

LI Lin(), ZHANG YuanZhen, YAN WenYing, ZENG Lu, PANG Rui, XU XiaoXia(), JIN FengLiang()   

  1. College of Plant Protection, South China Agricultural University/State Key Laboratory of Green Pesticide, Guangzhou 510642
  • Received:2025-01-15 Accepted:2025-02-23 Online:2025-04-16 Published:2025-04-21
  • Contact: XU XiaoXia, JIN FengLiang

Abstract:

【Background】 The phenoloxidase (PO) activation system is essential for insect innate immunity, particularly in pathogen defense, with prophenoloxidase-activating protease (PAP) being a key component that directly activates prophenoloxidase (proPO). However, research on these components in the insect PO activation system remains limited.【Objective】 The objectives of this study are to explore the regulatory role of microRNA (miRNA) in the phenoloxidase activation system of Plutella xylostella infected by Metarhizium anisopliae, and to provide new targets and approaches for pest control.【Method】 Bioinformatics was used to identify miRNAs targeting specific mRNAs. Real-time quantitative PCR (qRT-PCR) was employed to assess the transcription levels of miRNAs, PAP2, and PAP3 of P. xylostella at different time points post-infection with M. anisopliae (1×106 CFU/mL). The regulatory effects of miRNAs on PAP2 and PAP3 were evaluated using a dual-luciferase system. Moths were injected with miRNA mimics or inhibitors and infected with M. anisopliae 12 h later. The expression levels of PAP2 and PAP3 were measured by qRT-PCR, while mortality and PO activity were also assessed.【Result】 miR-6497-x, miR-8545-x, novel-m0313-3p, and novel-m0592-5p target PAP3, while novel-m0042-5p, pxy-miR-2756-3p, and miR-9215-x target PAP2. A negative regulatory relationship between miRNAs and their target genes was observed at 24 and 48 h post-infection with M. anisopliae. In vitro experiments confirmed that miR-6497-x, novel-m0313-3p, and novel-m0592-5p negatively regulated PAP3, while miR-9215-x significantly downregulated PAP2. In vivo injection of miR-6497-x mimic led to decreased PAP3 expression, increased larval mortality, and reduced PO activity within 12 to 48 h post-infection. Conversely, injection of miR-6497-x inhibitor resulted in upregulated PAP3 expression, decreased larval mortality, and increased PO activity. However, overexpression or inhibition of miR-9215-x did not significantly affect PAP2 expression, larval mortality, or PO activity compared to the control group during the same period post-infection.【Conclusion】 The miR-6497-x targeting PAP3 was screened and identified. Both in vitro and in vivo experiments confirm that miR-6497-x negatively regulates PAP3, thereby affecting the PO cascade. miR-6497-x plays a crucial role in modulating the immune defense of P. xylostella against M. anisopliae infection, which will provide a theoretical basis for biological control strategies targeting pest immune systems.

Key words: diamondback moth (Plutella xylostella), non-coding RNA, phenoloxidase (PO), insect immunity, Metarhizium anisopliae

Table 1

Primers used in this study"

目的Purpose 引物名称Primer name 引物序列Primer sequence (5′-3′)
载体构建
Vector construction
PAP3-F ccgctcgagcggATGACTCCGTTAATCTTAATATCTGC
PAP3-R aaggaaaaaagcggccgcaaaaggaaaaGCCGACCGGGCCCGCA
PAP2-F ccgctcgagcggCCATCTATCCGAGTTCAACACGT
PAP2-R aaggaaaaaagcggccgcaaaaggaaaaCAGCGGTCCCCCCGA
psi-check2-F GCAACTACAACGCCTACCTTCGG
psi-check2-R CGAAAAGGTCACACTCTGGGGCG
实时荧光定量PCR
qRT-PCR
U6-F CGCAAGGATGACACGCAA
U6-R GAATCGAGCACCAGTTACGC
RPS13-F TCAGGCTTATTCTCGTCG
RPS13-R GCTGTGCTGGATTCGTAC
qPAP2-F GAAGCCTGACCTCATCCAAGA
qPAP2-R ACGACACCGACCACAATCC
qPAP3-F GGACTGCTGAGGTTGAAGGA
qPAP3-R TTGGCGGTGATGTCTGATGA
novel-m0042-5p-F TCCGAGTCTTCAAGGAACTGTGA
pxy-mir-2756-3p-F CCCCCGAGTGCCTACAGCGACT
miR-9215-x-F GAGGACGTGTGGCAGCCA
miR-6497-x-F GGGTTTGGAGGGGAAGCG
miR-8545-x-F GCCGGGCCTGGTCGATGT
novel-m0313-3p-F CTCCGTGGTGGAGAGGATGGTG
novel-m0592-5p-F TAGAAGCTGTCAGCATCGATGGGC
miRNA universal primers-R TAACGAGACGACGACAGAC
mimic和inhibitor合成
mimic and inhibitor synthesis
miR-6497-x mimics sense GGGUUUGGAGGGGAAGCG
miR-6497-x mimics antisense CUUCCCCUCCAAACCCUU
miR-6497-x inhibitor CGCUUCCCCUCCAAACCC
miR-8545-x mimics sense GCCGGGCCUGGUCGAUGU
miR-8545-x mimics antisense AUCGACCAGGCCCGGCUU
novel-m0313-3p mimics sense UAGAAGCUGUCAGCAUCGAUGGGC
novel-m0313-3p mimics antisense CCAUCGAUGCUGACAGCUUCUAUU
novel-m0592-5p mimics sense AACGCAGAGUGGGAUAGACU
novel-m0592-5p mimics antisense UCUAUCCCACUCUGCGUUUU
novel-m0042-5p mimics sense UCCGAGUCUUCAAGGAACUGUGA
novel-m0042-5p mimics antisense ACAGUUCCUUGAAGACUCGGAUU
pxy-miR-2756-3p mimics sense CCCCCGAGUGCCUACAGCGACU
pxy-miR-2756-3p mimics antisense UCGCUGUAGGCACUCGGGGGUU
miR-9215-x mimics sense GAGGACGUGUGGCAGCCA
miR-9215-x mimics antisense GCUGCCACACGUCCUCUU
miR-9215-x inhibitor UGGCUGCCACACGUCCUC
miRNA inhibitor NC CAGUACUUUUGUGUAGUACAA
miRNA mimics NC sense UUCUCCGAACGUGUCACGUTT
miRNA mimics NC antisense ACGUGACACGUUCGGAGAATT

Fig. 1

The changes in P. xylostella both in vivo and in vitro following infection with M. anisopliae"

Table 2

Prediction for the miRNA targeting PAP2"

miRNA名称
miRNA name
miRNA序列
miRNA sequence (5′-3′)
novel-m0042-5p UCCGAGUCUUCAAGGAACUGUGA
pxy-miR-2756-3p CCCCCGAGUGCCUACAGCGACU
miR-9215-x GAGGACGUGUGGCAGCCA

Fig. 2

Target sites of miRNAs on PAPs"

Table 3

Prediction for the miRNA targeting PAP3"

miRNA名称
miRNA name
miRNA序列
miRNA sequence (5′-3′)
miR-6497-x GGGUUUGGAGGGGAAGCG
miR-8545-x GCCGGGCCUGGUCGAUGU
novel-m0313-3p UAGAAGCUGUCAGCAUCGAUGGGC
novel-m0592-5p AACGCAGAGUGGGAUAGACU

Fig. 3

The expression levels of miRNA and their targeted PAPs at various time points after P. xylostella was infected by M. anisopliae"

Fig. 4

Validation of miRNAs and their targeted PAPs"

Fig. 5

Change of PAPs expression after treatment with different miRNAs"

Fig. 6

Phenoloxidase activity of P. xylostella after different treatments"

Fig. 7

Survival rate of P. xylostella after different treatments"

[1]
ZALUCKI M P, SHABBIR A, SILVA R, ADAMSON D, LIU S S, FURLONG M J. Estimating the economic cost of one of the world’s major insect pests, Plutella xylostella (Lepidoptera: Plutellidae): Just how long is a piece of string? Journal of Economic Entomology, 2012, 105(4): 1115-1129.
[2]
赵建周, 吴世昌, 顾言真, 朱国仁, 剧正理. 小菜蛾抗药性治理对策研究. 中国农业科学, 1996, 29(1): 8-14.
ZHAO J Z, WU S C, GU Y Z, ZHU G R, JU Z L. Strategy of insecticide resistance management in the diamondback moth. Scientia Agricultura Sinica, 1996, 29(1): 8-14. (in Chinese)
[3]
FURLONG M J, WRIGHT D J, DOSDALL L M. Diamondback moth ecology and management: Problems, progress, and prospects. Annual Review of Entomology, 2013, 58: 517-541.
[4]
VARGHESE J, COHEN S M. MicroRNA miR-14 acts to modulate a positive autoregulatory loop controlling steroid hormone signaling in Drosophila. Genes & Development, 2007, 21(18): 2277-2282.
[5]
WANG C S, WANG S B. Insect pathogenic fungi: Genomics, molecular interactions, and genetic improvements. Annual Review of Entomology, 2017, 62: 73-90.

doi: 10.1146/annurev-ento-031616-035509 pmid: 27860524
[6]
戚海迪, 张定海, 单立山, 陈国鹏, 张勃. 昆虫病原真菌感染昆虫宿主的机制和宿主昆虫的防御策略研究进展. 生物多样性, 2023, 31(11): 23273.

doi: 10.17520/biods.2023273
QI H D, ZHANG D H, SHAN L S, CHEN G P, ZHANG B. Advances in the mechanisms of entomopathogenic fungi infecting insect hosts and the defense strategies of insects. Biodiversity Science, 2023, 31(11): 23273. (in Chinese)

doi: 10.17520/biods.2023273
[7]
ZHANG R N, KANG Z H, DONG S Z, SHANGGUAN D W, SHOUKAT R F, ZHANG J, ZAFAR J, WU H X, YU X Q, XU X X, JIN F L. Boosting the efficacy of fungal biocontrol: miRNA339-5p-mediated mosquito immunity regulation. Pest Management Science, 2024, doi: 10.1002/ps.8572.
[8]
NGUYEN N T H, BORGEMEISTER C, POEHLING H M, ZIMMERMANN G. Laboratory investigations on the potential of entomopathogenic fungi for biocontrol of Helicoverpa armigera (Lepidoptera: Noctuidae) larvae and pupae. Biocontrol Science and Technology, 2007, 17(8): 853-864.
[9]
HAN J H, JIN B R, KIM J J, LEE S Y. Virulence of entomopathogenic fungi Metarhizium anisopliae and Paecilomyces fumosoroseus for the microbial control of Spodoptera exigua. Mycobiology, 2014, 42(4): 385-390.
[10]
王海川, 尤民生. 绿僵菌对昆虫的入侵机理. 微生物学通报, 1999, 26(1): 71-73.
WANG H C, YOU M S. Invasion mechanism of Metarhizium anisopliae on insects. Microbiology China, 1999, 26(1): 71-73. (in Chinese)
[11]
ZAFAR J, ZHANG Y X, HUANG J L, FREED S, SHOUKAT R F, XU X X, JIN F L. Spatio-temporal profiling of Metarhizium anisopliae—responsive microRNAs involved in modulation of Plutella xylostella immunity and development. Journal of Fungi, 2021, 7(11): 942.
[12]
曾路. 小菜蛾PAPs基因及靶向miRNAs的特性分析[D]. 广州: 华南农业大学, 2020.
ZENG L. Characterization analysis of PAPs genes and miRNAs targeting in Plutella xylostella[D]. Guangzhou: South China Agricultural University, 2020. (in Chinese)
[13]
徐亚玲, 李文楚. 昆虫酚氧化酶作用机制的研究进展. 安徽农业科学, 2010, 38(27): 14844-14846.
XU Y L, LI W C. Research progress in activation mechanisms of phenoloxidse in insects. Journal of Anhui Agricultural Sciences, 2010, 38(27): 14844-14846. (in Chinese)
[14]
GORMAN M J, WANG Y, JIANG H B, KANOST M R. Manduca sexta hemolymph proteinase 21 activates prophenoloxidase-activating proteinase 3 in an insect innate immune response proteinase cascade. Journal of Biological Chemistry, 2007, 282(16): 11742-11749.
[15]
AN C J, ISHIBASHI J, RAGAN E J, JIANG H B, KANOST M R. Functions of Manduca sexta hemolymph proteinases HP6 and HP8 in two innate immune pathways. Journal of Biological Chemistry, 2009, 284(29): 19716-19726.
[16]
WANG Y, LU Z Q, JIANG H B. Manduca sexta proprophenoloxidase activating proteinase-3 (PAP3) stimulates melanization by activating proPAP3, proSPHs, and proPOs. Insect Biochemistry and Molecular Biology, 2014, 50: 82-91.
[17]
DONG Y, HOU Q, YE M, LI Z Y, LI J G, YOU M S, YUCHI Z G, LIN J H, YOU S J. Clip-SP1 cleavage activates downstream prophenoloxidase activating protease (PAP) in Plutella xylostella. Developmental & Comparative Immunology, 2023, 146: 104737.
[18]
ZHANG Z T, ZHU S J, DE MANDAL S, GAO Y F, YU J, ZENG L, HUANG J L, ZAFAR J, JIN F L, XU X X. Combined transcriptomic and proteomic analysis of developmental features in the immune system of Plutella xylostella during larva-to-adult metamorphosis. Genomics, 2022, 114(4): 110381.
[19]
ZHANG Z T, JIN F L, HUANG J L, DE MANDAL S, ZENG L, ZAFAR J, XU X X. MicroRNA targets PAP1 to mediate melanization in Plutella xylostella (Linnaeus) infected by Metarhizium anisopliae. International Journal of Molecular Sciences, 2024, 25(2): 1140.
[20]
BHATTACHARYA A, CUI Y. Systematic prediction of the impacts of mutations in microRNA seed sequences. Journal of Integrative Bioinformatics, 2017, 14(1): 20170001.
[21]
LI S Z, XU X X, ZHENG Z H, ZHENG J L, SHAKEEL M, JIN F L. MicroRNA expression profiling of Plutella xylostella after challenge with B. thuringiensis. Developmental and Comparative Immunology, 2019, 93: 115-124.
[22]
LIU Z L, LING L, XU J, ZENG B S, HUANG Y P, SHANG P, TAN A J. MicroRNA-14 regulates larval development time in Bombyx mori. Insect Biochemistry and Molecular Biology, 2018, 93: 57-65.
[23]
NOSKOV Y A, POLENOGOVA O V, YAROSLAVTSEVA O N, BELEVICH O E, YURCHENKO Y A, CHERTKOVA E A, KRYUKOVA N A, KRYUKOV V Y, GLUPOV V V. Combined effect of the entomopathogenic fungus Metarhizium robertsii and avermectins on the survival and immune response of Aedes aegypti larvae. PeerJ, 2019, 7: e7931.
[24]
APIRAJKAMOL N B, MAINALI B, TAYLOR P W, WALSH T K, TAY W T. Characterisation of the pathogenicity of Beauveria sp. and Metarhizium sp. fungi against the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). Agriculture, 2025, 15(2): 170.
[25]
SCHIRLE N T, SHEU-GRUTTADAURIA J, MACRAE I J. Structural basis for microRNA targeting. Science, 2014, 346(6209): 608-613.

doi: 10.1126/science.1258040 pmid: 25359968
[26]
BARTEL D P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell, 2004, 116(2): 281-297.

doi: 10.1016/s0092-8674(04)00045-5 pmid: 14744438
[27]
OBERNOSTERER G, LEUSCHNER P J F, ALENIUS M, MARTINEZ J. Post-transcriptional regulation of microRNA expression. RNA, 2006, 12(7): 1161-1167.

pmid: 16738409
[28]
YANG M L, WANG Y L, JIANG F, SONG T Q, WANG H M, LIU Q, ZHANG J, ZHANG J Z, KANG L. miR-71 and miR-263 jointly regulate target genes chitin synthase and chitinase to control locust molting. PLoS Genetics, 2016, 12(8): e1006257.
[29]
FULLAONDO A, GARCIA-SANCHEZ S, SANZ-PARRA A, RECIO E, LEE S Y, GUBB D. Spn1 regulates the GNBP3-dependent Toll signaling pathway in Drosophila melanogaster. Molecular and Cellular Biology, 2011, 31(14): 2960-2972.
[30]
ZHANG J, LIU M Y, WEN L, HUA Y Y, ZHANG R N, LI S Z, ZAFAR J, PANG R, XU H H, XU X X, JIN F L. MiR-2b-3p downregulated PxTrypsin-9 expression in the larval midgut to decrease cry1ac susceptibility of the diamondback moth, Plutella xylostella (L.). Journal of Agricultural and Food Chemistry, 2024, 72(4): 2263-2276.
[31]
王思琪, 周春雪, 李玉琦, 杜星, 潘增祥, 李齐发. miR-34a通过激活lncRNA NORHA转录诱导猪卵巢颗粒细胞早期凋亡. 中国农业科学, 2024, 57(5): 1000-1009. doi: 10.3864/j.issn.0578-1752.2024. 05.014.
WANG S Q, ZHOU C X, LI Y Q, DU X, PAN Z X, LI Q F. miR-34a induces early apoptosis of porcine ovarian granulosa cells by activating lncRNA NORHA transcription. Scientia Agricultura Sinica, 2024, 57(5): 1000-1009. doi: 10.3864/j.issn.0578-1752.2024.05.014. (in Chinese)
[32]
XU Y T, ZAFAR J, LIN L J, WU H X, KANG Z H, ZHANG J, SHOUKAT R F, LU Y Y, PANG R, JIN F L, XU X X. MicroRNA- mediated modulation of immune genes facilitates Metarhizium anisopliae infection in the red imported fire ant, Solenopsis invicta. Journal of Integrative Agriculture, 2025, doi: 10.1016/j.jia.2025.02.009.
[33]
LEI Z T, LV Y, WANG W J, GUO Q, ZOU F F, HU S L, FANG F J, TIAN M M, LIU B Q, LIU X M, et al. miR-278-3p regulates pyrethroid resistance in Culex pipiens pallens. Parasitology Research, 2015, 114(2): 699-706.
[34]
SUN X H, XU N, XU Y, ZHOU D, SUN Y, WANG W J, MA L, ZHU C L, SHEN B. A novel miRNA, miR-13664, targets CpCYP314A1 to regulate deltamethrin resistance in Culex pipiens pallens. Parasitology, 2019, 146(2): 197-205.
[35]
MEKI I K, INCE I A, KARIITHI H M, BOUCIAS D G, OZCAN O, PARKER A G, VLAK J M, VAN OERS M M, ABD-ALLA A M M. Expression profile of Glossina pallidipes microRNAs during symptomatic and asymptomatic infection with Glossina pallidipes salivary gland hypertrophy virus (Hytrosavirus). Frontiers in Microbiology, 2018, 9: 2037.
[36]
GUO Q, HUANG Y, ZOU F F, LIU B Q, TIAN M M, YE W Y, GUO J X, SUN X L, ZHOU D, SUN Y, MA L, SHEN B, ZHU C L. The role of miR-2-13-71 cluster in resistance to deltamethrin in Culex pipiens pallens. Insect Biochemistry and Molecular Biology, 2017, 84: 15-22.
[37]
LIU L L, ZHANG P, GAO Q, FENG X G, HAN L, ZHANG F B, BAI Y M, HAN M J, HU H, DAI F Y, ZHANG G J, TONG X L. Comparative transcriptome analysis reveals bmo-miR-6497-3p regulate circadian clock genes during the embryonic diapause induction process in bivoltine silkworm. Insects, 2021, 12(8): 739.
[38]
DUAN T F, LI L, TAN Y, LI Y Y, PANG B P. Identification and functional analysis of microRNAs in the regulation of summer diapause in Galeruca daurica. Comparative Biochemistry and Physiology Part D, Genomics and Proteomics, 2021, 37: 100786.
[39]
CERENIUS L, SODERHALL K. The prophenoloxidase-activating system in invertebrates. Immunological Reviews, 2004, 198: 116-126.

pmid: 15199959
[40]
CARTON Y, POIRIÉ M, NAPPI A J. Insect immune resistance to parasitoids. Insect Science, 2008, 15(1): 67-87.
[41]
LU Z Q, JIANG H B. Expression of Manduca sexta serine proteinase homolog precursors in insect cells and their proteolytic activation. Insect Biochemistry and Molecular Biology, 2008, 38(1): 89-98.
[42]
SHI M, CHEN X Y, ZHU N, CHEN X X. Molecular identification of two prophenoloxidase-activating proteases from the hemocytes of Plutella xylostella (Lepidoptera: Plutellidae) and their transcript abundance changes in response to microbial challenges. Journal of Insect Science, 2014, 14: 179.
[43]
GU Q J, ZHOU S M, ZHOU Y N, HUANG J H, SHI M, CHEN X X. A trypsin inhibitor-like protein secreted by Cotesia vestalis teratocytes inhibits hemolymph prophenoloxidase activation of Plutella xylostella. Journal of Insect Physiology, 2019, 116: 41-48.
[44]
RIGOUTSOS I. New tricks for animal microRNAS: targeting of amino acid coding regions at conserved and nonconserved sites. Cancer Research, 2009, 69(8): 3245-3248.

doi: 10.1158/0008-5472.CAN-09-0352 pmid: 19351814
[1] WANG XiaoYang, PENG Zhen, XING AiShuang, ZHAO YingRui, MA XinLi, LIU Fang, DU XiongMing, HE ShouPu. Identification and Expression Analysis of Fuzz Fiber Development Related Long Noncoding RNAs in Gossypium arboreum [J]. Scientia Agricultura Sinica, 2023, 56(23): 4565-4584.
[2] WU Wei,XU HuiLi,WANG ZhengLiang,YU XiaoPing. Cloning and Function Analysis of a Serine Protease Inhibitor Gene Nlserpin2 in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2022, 55(12): 2338-2346.
[3] YAN DuoZi,CAI Ni,WANG Feng,NONG XiangQun,WANG GuangJun,TU XiongBing,ZHANG ZeHua. Expression in vitro of Metarhizium anisopliae Adhesin MAD1 and Its Effect on Inducing Response in Peanut [J]. Scientia Agricultura Sinica, 2021, 54(4): 744-753.
[4] CAI Ni,YAN DuoZi,NONG XiangQun,WANG GuangJun,TU XiongBing,ZHANG ZeHua. Adhesin Gene mad2 Knockout and Functional Effects on Biological Characteristics and Inducing Plant Responses in Metarhizium anisopliae [J]. Scientia Agricultura Sinica, 2021, 54(22): 4800-4812.
[5] CHEN HuaZhi,WANG Jie,ZHU ZhiWei,JIANG HaiBin,FAN YuanChan,FAN XiaoXue,WAN JieQi,LU JiaXuan,ZHENG YanZhen,FU ZhongMin,XU GuoJun,CHEN DaFu,GUO Rui. Comparison and Potential Functional Analysis of Long Non-Coding RNAs Between Ascosphaera apis Mycelium and Spore [J]. Scientia Agricultura Sinica, 2021, 54(2): 435-448.
[6] WANG JiQing,HAO ZhiYun,SHEN JiYuan,KE Na,HUANG ZhaoChun,LIANG WeiWei,LUO YuZhu,HU Jiang,LIU Xiu,LI ShaoBin. Screening, Identification and Functional Analysis of Important LncRNAs for Lactation Traits in Small-Tailed Han Sheep [J]. Scientia Agricultura Sinica, 2021, 54(14): 3113-3123.
[7] ZHOU DingDing, FAN YuanChan, WANG Jie, JIANG HaiBin, ZHU ZhiWei, FAN XiaoXue, CHEN HuaZhi, DU Yu, ZHOU ZiYu, XIONG CuiLing, ZHENG YanZhen, FU ZhongMin, CHEN DaFu, GUO Rui. Regulatory Function of Long Non-Coding RNAs in Ascosphaera apis [J]. Scientia Agricultura Sinica, 2021, 54(1): 224-238.
[8] HaiYan JIA,LiYun SONG,Xiang XU,Yi XIE,ChaoQun ZHANG,TianBo LIU,CunXiao ZHAO,LiLi SHEN,Jie WANG,Ying LI,FengLong WANG,JinGuang YANG. Differential Expression of LncRNAs in Nicotiana tabacum var. Samsun NN Infected by TMV at Different Temperatures [J]. Scientia Agricultura Sinica, 2020, 53(7): 1381-1396.
[9] DU Yu,FAN XiaoXue,JIANG HaiBin,WANG Jie,FAN YuanChan,ZHU ZhiWei,ZHOU DingDing,WAN JieQi,LU JiaXuan,XIONG CuiLing,ZHENG YanZhen,CHEN DaFu,GUO Rui. The Potential Role of MicroRNAs and MicroRNA-Mediated Competing Endogenous Networks During the Developmental Process of Apis mellifera ligustica Worker’s Midgut [J]. Scientia Agricultura Sinica, 2020, 53(12): 2512-2526.
[10] ZHOU DingDing,SHI XiaoYu,WANG Jie,FAN YuanChan,ZHU ZhiWei,JIANG HaiBin,FAN XiaoXue,XIONG CuiLing,ZHENG YanZhen,FU ZhongMin,XU GuoJun,CHEN DaFu,GUO Rui. Investigation of Competing Endogenous RNA Regulatory Network and Putative Function of Long Non-Coding RNAs in Nosema ceranae Spore [J]. Scientia Agricultura Sinica, 2020, 53(10): 2122-2136.
[11] Rui GUO, SiHai GENG, CuiLing XIONG, YanZhen ZHENG, ZhongMin FU, HaiPeng WANG, Yu DU, XinYu TONG, HongXia ZHAO, DaFu CHEN. Differential Expression Analysis of Long Non-Coding RNAs During the Developmental Process of Apis mellifera ligustica Worker’s Midgut [J]. Scientia Agricultura Sinica, 2018, 51(18): 3600-3613.
[12] QIU Xiu-cui,LIU Yong-jie,JIAO Yan-yan,LIU Hui
. Inhibitory Effects of Tebufenozide on Phenoloxidase from 5th Instar Larvae of Spodoptera exigua
[J]. Scientia Agricultura Sinica, 2010, 43(10): 2064-2071 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!