Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (8): 1535-1549.doi: 10.3864/j.issn.0578-1752.2025.08.006

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effects of Different Nitrogen Forms on Yield and Quality of Summer Maize

XUE YuQi(), ZHAO JiYu, SUN WangSheng, REN BaiZhao, ZHAO Bin, LIU Peng, ZHANG JiWang()   

  1. College of Agronomy, Shandong Agricultural University, Taian 271018, Shandong
  • Received:2024-09-11 Accepted:2024-12-10 Online:2025-04-16 Published:2025-04-21
  • Contact: ZHANG JiWang

Abstract:

【Objective】 The effects of different nitrogen forms on filling characteristics, grain quality and yield of summer maize were studied, so as to provide the scientific basis for selecting suitable nitrogen fertilizer types and improving the yield and grain quality of summer maize. 【Method】 The experiment was conducted in Taian, Shandong Province from 2022 to 2023. Denghai 605 (DH605) was selected as the experimental material, with a nitrogen application rate of 210 kg N·hm-2. The experiment included five treatments: amide nitrogen (Urea, UREA), nitrate nitrogen (Calcium nitrate, NN), ammonium nitrogen (Ammonium chloride, AN), co-application of nitrate and ammonium nitrogen (1:1, HH), and urea ammonium nitrate solution with a blend of amide nitrogen, nitrate nitrogen, and ammonium nitrogen (2:1:1, UAN). The effects of different nitrogen forms on the yield and quality of summer maize were investigated by determining the grain filling characteristics, grain quality characteristics and grain capacity of summer maize. 【Result】Compared with the conventional application of amide nitrogen in UREA, both the maize yield and grain quality under NN decreased. The maize yield under AN increased, but the grain quality decreased. HH significantly increased maize yield without affecting grain quality. UAN significantly increased maize yield and improved grain quality. Over the two years, the highest maize yield achieved with the co-application of the three nitrogen forms, significantly increasing by 13.7% to 16.3% compared with UREA. The Next the highest maize yield were from AN and HH, which significantly increased maize yield by 5.2% to 6.8% and 7.3% to 10.6%, respectively, compared with UREA. The maize yield under NN decreased by 5.4% to 5.8% compared with UREA. Compared with UREA, the growth amount at the maximum filling rate (Wmax) under UAN was enhanced by 6.3% to 9.7%, and the active filling period (D) was extended by 7.7% to 10.9%. Both AN and HH increased Wmax and prolonged D, thereby promoting the accumulation of grain weight and increasing yield. The Wmax, D, grain filling rate, and dehydration rate of NN were significantly lower than those in the other treatments. The crude protein content was lower with NN and AN, decreasing by 20.6% to 22.0% and 15.2% to 17.4% than that under UREA, respectively. The rude fat content with NN was significantly higher than that of other treatments, increasing by 23.6% to 30.9% than that under UREA. Compared with UREA, UAN improved grain quality, with total starch and amylopectin content increasing by 4.9% to 5.2% and 11.7% to 14.4%, respectively, compared with UREA, and the ratio of amylopectin to amylose increased by 31.0% to 39.1%. The amylose content decreased by 14.1% to 16.8%. The crude protein content of UAN increased by 11.7% to 24.1%. The grain bulk weight under UAN was significantly higher than that under other treatments. 【Conclusion】Compared with the conventional application of amide nitrogen, the treatment with nitrate nitrogen inhibited grain filling, reduced grain weight, and decreased yield. In contrast, ammonium nitrogen or the co-application of multiple nitrogen forms enhanced the grain filling process, increased grain weight, and thereby improved yield. Furthermore, compared with the application of a single nitrogen form, the co-application of three nitrogen forms could achieve a synergistic improvement in both yield and grain quality.

Key words: summer maize, nitrogen forms, yield, grain filling characteristics, grain quality

Table 1

Effects of different nitrogen forms on summer maize yield and its composition"

年份
Year
处理
Treatment
产量
Yield (kg·hm-2)
穗数
Ears number (ears/hm2)
穗粒数
Grains per ear
千粒重
1000-grain weight (g)
2022 UREA 11752d 65033 517cd 350c
NN 11074e 66700 507d 327d
AN 12359c 65033 524bc 363b
HH 12909b 65033 538ab 369a
UAN 13360a 65033 552a 372a
2023 UREA 12470c 67003 504c 371c
NN 11791d 67226 503c 349d
AN 13315b 67781 523bc 376b
HH 13789b 66670 547ab 378b
UAN 14497a 67226 556a 388a
ANOVA 年份Year (Y) ** ** ns **
处理Treatment (T) ** ns ** **
年份×处理Y×T ns ns ns **

Table 2

Effects of different nitrogen forms on grain filling parameters in summer maize"

年份
Year
处理
Treatment
生长曲线方程
Growth curve parametric equation
相关系数
Correlation
coefficient
Tmax
(d)
Wmax
(g)
Gmax
(g·d-1)
Vmean
(g·d-1)
D
(d)
Ro
2022 UREA y=30.68/(1+76.31e-0.15x) 0.99998 29.18 15.34 1.14 0.51 40.39 0.15
NN y=29.29/(1+108.11e-0.16x) 0.99867 29.75 14.65 1.15 0.50 38.11 0.16
AN y=31.16/(1+71.42e-0.15x) 0.99867 28.55 15.58 1.16 0.53 40.13 0.15
HH y=31.36/(1+70.51e-0.15x) 0.99996 28.88 15.68 1.16 0.52 40.72 0.15
UAN y=33.65/(1+58.60e-0.13x) 0.99997 30.38 16.82 1.13 0.52 44.77 0.13
2023 UREA y=33.06/(1+55.90e-0.14x) 0.99721 28.80 16.53 1.15 0.54 42.95 0.14
NN y=30.62/(1+75.00e-0.15x) 0.99847 28.70 15.31 1.15 0.52 39.89 0.15
AN y=33.22/(1+55.74e-0.14x) 0.99873 29.41 16.61 1.14 0.53 43.88 0.14
HH y=33.49/(1+62.07e-0.14x) 0.99799 29.57 16.74 1.17 0.54 42.97 0.14
UAN y=35.13/(1+47.33e-0.13x) 0.99794 29.74 17.57 1.14 0.54 46.26 0.13

Fig. 1

Effects of different nitrogen forms on 100-grain fresh weight of summer maize"

Fig. 2

Effects of different nitrogen forms on 100-grain dry weight of summer maize"

Fig. 3

Effects of different nitrogen forms on the grain moisture content of summer maize"

Table 3

Effects of different nitrogen forms on the grain filling rate of summer maize (g·d-1)"

年份
Year
处理
Treatment
吐丝后天数 Days after silking 平均灌浆速率
Average filling rate
15—30 d 30—45 d 45—60 d
2022 UREA 0.94a 0.77b 0.23b 0.60b
NN 0.74b 0.87a 0.12c 0.56c
AN 0.94a 0.74b 0.30a 0.62b
HH 0.92a 0.76b 0.31a 0.61b
UAN 0.93a 0.78b 0.30a 0.65a
2023 UREA 0.93a 0.87a 0.13bc 0.63b
NN 0.75b 0.76a 0.09c 0.59c
AN 0.94a 0.79a 0.24a 0.64b
HH 0.97a 0.77a 0.24a 0.64b
UAN 0.97a 0.79a 0.26a 0.67a

Table 4

Effects of different nitrogen forms on the grain dehydration rate of summer maize (%·d-1)"

年份
Year
处理
Treatment
吐丝后天数 Days after silking 平均脱水速率
Average dehydration rate
15—30 d 30—45 d 45—60 d
2022 UREA 1.64a 1.04a 0.86a 1.18a
NN 1.51b 0.79b 1.02a 1.09b
AN 1.63a 1.02a 0.85a 1.17a
HH 1.68a 1.01a 0.89a 1.19a
UAN 1.67a 1.00a 0.92a 1.20a
2023 UREA 1.70a 1.03a 0.74a 1.29a
NN 1.50b 0.71b 0.78a 1.20b
AN 1.71a 0.99a 0.71a 1.30a
HH 1.73a 0.92a 0.74a 1.31a
UAN 1.72a 0.95a 0.70a 1.28a

Fig. 4

Correlation analysis of yield, 1000-grain weight, grain water content, active filling period and average filling rate he grain water content was measured 60 days after silking"

Table 5

Effect of different nitrogen forms on grain starch content of summer maize"

年份
Year
处理
Treatment
总淀粉
Total starch (%)
支链淀粉
Amylopectin (%)
直链淀粉
Amylose (%)
支链/直链淀粉
Amylopectin/Amylose
2022 UREA 69.0b 51.4b 17.7a 2.9
NN 68.7b 51.5b 17.1a 3.0
AN 69.4b 52.6b 17.8a 2.9
HH 70.6b 52.7b 17.8a 2.9
UAN 72.6a 57.4a 15.2b 3.8
2023 UREA 65.6b 45.9c 19.6a 2.3
NN 65.3b 45.5c 19.9a 2.3
AN 65.9b 45.7c 20.1a 2.3
HH 66.4b 48.1b 18.6a 2.6
UAN 68.8a 52.5a 16.3b 3.2

Fig. 5

Effects of different nitrogen forms on crude protein and crude fat contents of summer maize"

Fig. 6

Effects of different nitrogen forms on total soluble sugar, sucrose and fructose contents of summer maize"

Fig. 7

Effects of different nitrogen forms on grain capacity of summer maize (2023)"

Fig. 8

Correlation analysis of grain moisture content and grain quality In the figure, grain moisture content, total starch content, crude protein content, ether extract content, total soluble sugar content and sucrose content were measured in the grain 60 days after silking"

[1]
中华人民共和国国家统计局. 中国统计年鉴(第21期). 北京: 中国统计出版社, 2002: 385-392.
National Bureau of Statistics of the People's Republic of China. China statistical yearbook (No.21). Beijing: China Statistics Press, 2002: 385-392. (in Chinese)
[2]
LADHA J K, TIROL-PADRE A, REDDY C K, CASSMAN K G, VERMA S, POWLSON D S, VAN KESSEL C, DE B RICHTER D, CHAKRABORTY D, PATHAK H. Global nitrogen budgets in cereals: A 50-year assessment for maize, rice, and wheat production systems. Scientific Reports, 2016, 6: 19355.

doi: 10.1038/srep19355 pmid: 26778035
[3]
SIMIĆ M, DRAGIČEVIĆ V, MLADENOVIĆ DRINIĆ S, VUKADINOVIĆ J, KRESOVIĆ B, TABAKOVIĆ M, BRANKOV M. The contribution of soil tillage and nitrogen rate to the quality of maize grain. Agronomy, 2020, 10(7): 976.
[4]
张振博, 屈馨月, 于宁宁, 任佰朝, 刘鹏, 赵斌, 张吉旺. 施氮量对夏玉米籽粒灌浆特性和内源激素作用的影响. 作物学报, 2022, 48(9): 2366-2376.

doi: 10.3724/SP.J.1006.2022.13056
ZHANG Z B, QU X Y, YU N N, REN B Z, LIU P, ZHAO B, ZHANG J W. Effects of nitrogen application rate on grain filling characteristics and endogenous hormones in summer maize. Acta Agronomica Sinica, 2022, 48(9): 2366-2376. (in Chinese)
[5]
张洪芳. 不同氮肥类型对玉米养分吸收、分配和土壤性质的影响[D]. 郑州: 河南农业大学, 2024.
ZHANG H F. Effects of different nitrogen fertilizer types on nutrient uptake, distribution and soil properties of maize[D]. Zhengzhou: Henan Agricultural University, 2024. (in Chinese)
[6]
李成阳, 柴沙沙, 刘意, 王连军, 雷剑, 杨新笋, 张文英. 不同氮素形态配比对甘薯前期氮代谢的影响及其生理机制. 植物科学学报, 2021, 39(4): 433-445.
LI C Y, CHAI S S, LIU Y, WANG L J, LEI J, YANG X S, ZHANG W Y. Effects of different nitrogen forms and ratios on nitrogen metabolism in Ipomoea batatas (L.) Lam. and their physiological mechanisms. Plant Science Journal, 2021, 39(4): 433-445. (in Chinese)
[7]
李玉静, 冯雨晴, 赵园园, 史宏志. 不同形态氮素吸收利用及其对植物生理代谢影响的综述. 中国农业科技导报, 2023, 25 (2): 128-139.

doi: 10.13304/j.nykjdb.2021.0909
LI Y J, FENG Y Q, ZHAO Y Y, SHI H Z. Review of absorption and utilization of different nitrogen forms and their effects on plant physiological metabolism. Journal of Agricultural Science and Technology, 2023, 25 (2): 128-139. (in Chinese)

doi: 10.13304/j.nykjdb.2021.0909
[8]
张宸, 梁悦, 殷昊, 张应榕, 陈波浪. 氮肥形态和品种对棉花根系形态与氮素积累的影响. 新疆农业科学, 2023, 60(4): 823-831.

doi: 10.6048/j.issn.1001-4330.2023.04.005
ZHANG C, LIANG Y, YIN H, ZHANG Y R, CHEN B L. Effects of nitrogen forms and varieties on root morphology and nitrogen accumulation of cotton. Xinjiang Agricultural Sciences, 2023, 60(4): 823-831. (in Chinese)

doi: 10.6048/j.issn.1001-4330.2023.04.005
[9]
李精华, 陈嘉涛, 李冉, 李伟芳, 樊帆, 阮云泽, 李婷玉. 氮素养分形态配合对水稻生长发育和品质影响的整合分析. 中国土壤与肥料, 2023, (10): 193-200.
LI J H, CHEN J T, LI R, LI W F, FAN F, RUAN Y Z, LI T Y. Integrative analysis of effects of nitrogen nutrient form coordination on rice growth and quality. Soils and Fertilizers Sciences in China, 2023, (10): 193-200. (in Chinese)
[10]
BLOOM A J, FRENSCH J, TAYLOR A R. Influence of inorganic nitrogen and pH on the elongation of maize seminal roots. Annals of Botany, 2006, 97(5): 867-873.

doi: 10.1093/aob/mcj605 pmid: 16373369
[11]
王正瑞, 芮玉奎, 申建波, 张福锁. 氮肥施用量和形态对玉米苗期叶绿素含量的影响. 光谱学与光谱分析, 2009, 29(2): 410-412.
WANG Z R, RUI Y K, SHEN J B, ZHANG F S. Effects of forms and level of nitrogen fertilizer on the content of chlorophyll in leaves of maize seedling. Spectroscopy and Spectral Analysis, 2009, 29(2): 410-412. (in Chinese)
[12]
王娜, 陈国祥, 邵志广, 吕川根. 不同形态氮素配比对水稻光合特性的影响. 江苏农业学报, 2002, 18(1): 18-22.
WANG N, CHEN G X, SHAO Z G, C G. Effects of nitrogen nutrition forms and ratios on the photosynthetic characteristics of rice. Jiangsu Journal of Agricultural Sciences, 2002, 18(1): 18-22. (in Chinese)
[13]
李学俊, 文建雷, 韩书成, 曹翠玲, 李生秀. 氮素形态对玉米幼苗生物机制及生物量的影响. 西北农林科技大学学报(自然科学版), 2008, (3): 192-196.
LI X J, WEN J L, HAN S C, CAO C L, LI S X. Effect of N form on physiological mechanism and biomass in corn seedlings. Journal of Northwest A&F University (Natural Science Edition), 2008, (3): 192-196. (in Chinese)
[14]
唐兴旺, 石玉, 于振文, 张永丽. 小麦开花期适量灌溉提高水氮利用效率减少土壤硝态氮淋洗的机理. 植物营养与肥料学报, 2021, 27(9): 1523-1533.
TANG X W, SHI Y, YU Z W, ZHANG Y L. Mechanism of improving water and nitrogen use efficiency and reducing soil nitrate leaching by suitable irrigation during the anthesis stage of wheat. Plant Nutrition and Fertilizer Science, 2021, 27(9): 1523-1533. (in Chinese)
[15]
LIU G Y, DU Q J, LI J M. Interactive effects of nitrate-ammonium ratios and temperatures on growth, photosynthesis, and nitrogen metabolism of tomato seedlings. Scientia Horticulturae, 2017, 214: 41-50.
[16]
GAO Z, LIANG X G, ZHANG L, LIN S, ZHAO X, ZHOU L L, SHEN S, ZHOU S L. Spraying exogenous 6-benzyladenine and brassinolide at tasseling increases maize yield by enhancing source and sink capacity. Field Crops Research, 2017, 211: 1-9.
[17]
LI Q, DU L J, FENG D J, REN Y, LI Z X, KONG F L, YUAN J C. Grain-filling characteristics and yield differences of maize cultivars with contrasting nitrogen efficiencies. The Crop Journal, 2020, 8(6): 990-1001.
[18]
徐彤, 吕艳杰, 邵玺文, 耿艳秋, 王永军. 不同时期化控对密植玉米冠层结构及籽粒灌浆特性的影响. 作物学报, 2023, 49 (2): 472-484.

doi: 10.3724/SP.J.1006.2023.23028
XU T, Y J, SHAO X W, GENG Y Q, WANG Y J. Effect of different times of spraying chemical regulator on the canopy structure and grain filling characteristics of high planting densities. Acta Agronomica Sinica, 2023, 49 (2): 472-484. (in Chinese)

doi: 10.3724/SP.J.1006.2023.23028
[19]
何照范. 粮油籽粒品质及其分析技术. 北京: 中国农业出版社, 1985: 290-294.
HE Z F. Analysis technique for grain of cereals and oils. Beijing: China Agriculture Press, 1985: 290-294. (in Chinese)
[20]
张志良, 瞿伟菁. 植物生理学实验指导. 北京: 高等教育出版社, 2003: 127-132.
ZHANG Z L, QU W J. Experimental Manual on Plant Physiology. Beijing: Higher Education Press, 2003: 127-132. (in Chinese)
[21]
林美娟, 宋江峰, 李大靖, 刘春泉. 用双波长分光光度法测定鲜食玉米中直链淀粉和支链淀粉含量. 江西农业学报, 2010, 22(12): 117-119.
LIN M J, SONG J F, LI D J, LIU C Q. Determination of amylose and amylopectin content in fresh corn by dual-wavelength spectrophometry. Acta Agriculture Jiangxi, 2010, 22(12): 117-119. (in Chinese)
[22]
李晓旭, 李家政. 优化蒽酮比色法测定甜玉米中可溶性糖的含量. 保鲜与加工, 2013, 13(4): 24-27.
LI X Y, LI J Z. Determination of the content of soluble sugar in sweet corn with optimized anthrone colorimetric method. Storage and Process, 2013, 13(4): 24-27. (in Chinese)
[23]
郭利伟. 尿素施用方式与保水剂耦合对玉米碳氮代谢及水分利用的影响[D]. 泰安: 山东农业大学, 2014.
GUO L W. Coupled effects of urea fertilization techniques and water retention agent on carbon and nitrogen metabolism and water use of maize[D]. Taian: Shandong Agricultural University, 2014. (in Chinese)
[24]
卢珍华, 倪辉, 杨远帆, 蔡慧农. 间苯二酚法测定蜂蜜中果糖的研究. 集美大学学报(自然科学版), 2006, 11(3): 223-226.
LU Z H, NI H, YANG Y F, CAI H N. Study on determination fructose in honey by resorcinol method. Journal of Jimei University (Natural Science), 2006, 11(3): 223-226. (in Chinese)
[25]
王乐, 康建宏, 梁熠, 冯朋博, 徐灿. 控释/普通尿素配施对春玉米籽粒灌浆特性及产量的影响. 核农学报, 2018, 32(10): 2054-2061.

doi: 10.11869/j.issn.100-8551.2018.10.2054
WANG L, KANG J H, LIANG Y, FENG P B, XU C. Effect of controlled release and conventional urea fertilizer application on grain filling characteristics and yield of spring maize. Journal of Nuclear Agricultural Sciences, 2018, 32(10): 2054-2061. (in Chinese)

doi: 10.11869/j.issn.100-8551.2018.10.2054
[26]
张萍, 陈冠英, 耿鹏, 高雅, 郑雷, 张沙沙, 王璞. 籽粒灌浆期高温对不同耐热型玉米品种强弱势粒发育的影响. 中国农业科学, 2017, 50(11): 2061-2070. doi: 10.3864/j.issn.0578-1752.2017.11.012.
ZHANG P, CHEN G Y, GENG P, GAO Y, ZHENG L, ZHANG S S, WANG P. Effects of high temperature during grain filling period on superior and inferior kernels' development of different heat sensitive maize varieties. Scientia Agricultura Sinica, 2017, 50(11): 2061-2070. doi: 10.3864/j.issn.0578-1752.2017.11.012. (in Chinese)
[27]
GASURA E, SETIMELA P, EDEMA R, GIBSON P T, OKORI P, TAREKEGNE A. Exploiting grain-filling rate and effective grain- filling duration to improve grain yield of early-maturing maize. Crop Science, 2013, 53(6): 2295-2303.
[28]
王钰涵, 唐璐. 农田硝态氮淋溶损失影响因素及防治对策研究进展. 华北水利水电大学学报(自然科学版), 2020, 41(1): 58-64.
WANG Y H, TANG L. Research progress on the influencing factors and countermeasures of nitrate nitrogen leaching loss in farmland. Journal of North China University of Water Resources and Electric Power (Natural Science Edition), 2020, 41(1): 58-64. (in Chinese)
[29]
SHRESTHA D, MASARIK K, KUCHARIK C J. Nitrate losses from Midwest US agroecosystems: Impacts of varied management and precipitation. Journal of Soil and Water Conservation, 2023, 78(2): 141-153.
[30]
韩洪宝. 黄淮海平原夏玉米生育期干湿变化特征及成因分析[D]. 郑州: 郑州大学, 2022.
HAN H B. Characteristics of dry and wet changes during the growth period of summer maize on the Huang-Huai-Hai Plain and climate influence factors[D]. Zhengzhou: Zhengzhou University, 2022. (in Chinese)
[31]
路海东, 薛吉全, 马国胜, 张仁和, 张兴华. 低氮胁迫对不同基因型夏玉米源库性状和灌浆特性的影响. 应用生态学报, 2010, 21(5): 1277-1282.
LU H D, XUE J Q, MA G S, ZHANG R H, ZHANG X H. Effects of low nitrogen stress on source-sink characters and grain-filling traits of different genotypes summer maize. Chinese Journal of Applied Ecology, 2010, 21(5): 1277-1282. (in Chinese)
[32]
PAUL M J, OSZVALD M, JESUS C, RAJULU C, GRIFFITHS C A. Increasing crop yield and resilience with trehalose 6-phosphate: Targeting a feast-famine mechanism in cereals for better source- sink optimization. Journal of Experimental Botany, 2017, 68(16): 4455-4462.
[33]
WANG P, WANG Z K, PAN Q C, SUN X C, CHEN H, CHEN F J, YUAN L X, MI G H. Increased biomass accumulation in maize grown in mixed nitrogen supply is mediated by auxin synthesis. Journal of Experimental Botany, 2019, 70(6): 1859-1873.

doi: 10.1093/jxb/erz047 pmid: 30759246
[34]
段永康. 黑莓氮素形态偏好性及其相关机理研究[D]. 南京: 南京林业大学, 2023.
DUAN Y K. Nitrogen form preference and related mechanism of blackberry[D]. Nanjing: Nanjing Forestry University, 2023. (in Chinese)
[35]
郭增辉. 玉米淀粉品质的遗传改良与种质创制[D]. 大庆: 黑龙江八一农垦大学, 2023.
GUO Z H. Genetic improvement and germplasm development for starch quality of maize[D]. Daqing: Heilongjiang Bayi Agricultural, 2023. (in Chinese)
[36]
廖学圆, 李永梅, 陈佳钰, 范茂攀, 赵吉霞. 缓释氮肥对饲用玉米氮素吸收及产量品质的影响. 广东农业科学, 2022, 49(5): 53-64.
LIAO X Y, LI Y M, CHEN J Y, FAN M P, ZHAO J X. Effects of slow-release nitrogen fertilizers on nitrogen uptake, yield and quality of forage maize. Guangdong Agricultural Sciences, 2022, 49(5): 53-64. (in Chinese)
[37]
CUI H X, LUO Y L, LI C H, CHANG Y L, JIN M, LI Y, WANG Z L. Effects of nitrogen forms on nitrogen utilization, yield, and quality of two wheat varieties with different gluten characteristics. European Journal of Agronomy, 2023, 149: 126919.
[38]
张丽. 玉米容重差异的形成机理及措施调控[D]. 泰安: 山东农业大学, 2008.
ZHANG L. Studies on formation mechanism and control measures of differences in test weight of maize (Zea mays L.)[D]. Taian: Shandong Agricultural University, 2008. (in Chinese)
[39]
刘世昌. 储藏温度对不同水分玉米霉变发生及品质变化的影响研究[D]. 郑州: 河南工业大学, 2024.
LIU S C. Effect of storage temperature on mildew occurrence and quality change of maize with different moisture[D]. Zhengzhou: Henan University Technology, 2024. (in Chinese)
[40]
赵继玉, 任佰朝, 赵斌, 刘鹏, 张吉旺. 喷施脱水剂对不同熟期夏玉米脱水特性和籽粒品质的影响. 应用生态学报, 2020, 31(8): 2613-2620.

doi: 10.13287/j.1001-9332.202008.030
ZHAO J Y, REN B Z, ZHAO B, LIU P, ZHANG J W. Effects of spraying desiccant on dehydration characteristics and grain quality of summer maize hybrids differing in maturity. Chinese Journal of Applied Ecology, 2020, 31(8): 2613-2620. (in Chinese)
[41]
乔江方, 何佳雯, 侯传伟, 张美微, 杨铭波, 韩琳琳, 张盼盼, 李川, 牛军, 郭涵潇, 穆蔚林. 施氮量对不同夏玉米品种籽粒灌浆特性、产量和品质的影响. 河南农业科学, 2024, 53(3): 33-42.
QIAO J F, HE J W, HOU Z W, ZAHNG M W, YANG M B, HAN L L, ZHANG P P, LI C, NIU J, GUO H X, MU W L. Effects of nitrogen application rate on grain filling characteristics, yield and quality of different summer maize varieties. Journal of Henan Agricultural Sciences, 2024, 53(3): 33-42. (in Chinese)
[42]
张立国, 张林, 管春云, 金益, 王振华, 任晓亮, 宫纪娟. 玉米生理成熟后籽粒脱水速率与品质性状的相关分析. 东北农业大学学报, 2007, 38(5): 582-585.
ZHANG L G, ZHANG L, GUAN C Y, JIN Y, WANG Z H, REN X L, GONG J J. Correlation analysis on dry-down rate and quality traits in corn after physiological maturity. Journal of Northeast Agricultural University, 2007, 38(5): 582-585. (in Chinese)
[43]
李颖. 干旱胁迫对不同土壤类型中南天竹 (Nandina domestica)渗透调节物质的影响[D]. 重庆: 西南大学, 2006.
LI Y. Effect of drought stress on the osmotic adjustment materials of heavenly bamboo (Nandina domestica) in different soil types[D]. Chongqing: Southwest University, 2006. (in Chinese)
[44]
MA Z T, REN B Z, ZHAO B, LIU P, ZHANG J W. Increasing grain yield, nitrogen use efficiency of summer maize and reducing greenhouse gas emissions by applying urea ammonium nitrate solution. Agronomy Journal, 2022, 114(2): 948-960.
[1] LIU JinSong, WU LongMei, BAO XiaoZhe, LIU ZhiXia, ZHANG Bin, YANG TaoTao. Effects of a Short-Term Reduction in Nitrogen Fertilizer Application Rates on the Grain Yield and Rice Quality of Early and Late-Season Dual-Use Rice in South China [J]. Scientia Agricultura Sinica, 2025, 58(8): 1508-1520.
[2] WEI WenHua, LI Pan, SHAO GuanGui, FAN ZhiLong, HU FaLong, FAN Hong, HE Wei, CHAI Qiang, YIN Wen, ZHAO LianHao. Response of Silage Maize Yield and Quality to Reduced Irrigation and Combined Organic-Inorganic Fertilizer in Northwest Irrigation Areas [J]. Scientia Agricultura Sinica, 2025, 58(8): 1521-1534.
[3] LI ShaoXing, SONG WenFeng, WEI ZeYu, ZHOU YuLing, SONG LiXia, REN Ke, MA Qun, WANG LongChang. Effects of Straw and Milk Vetch Mulching on Soil Fertility and Sweet Potato Yield [J]. Scientia Agricultura Sinica, 2025, 58(8): 1591-1603.
[4] YIN Bo, YU AiZhong, WANG PengFei, YANG XueHui, WANG YuLong, SHANG YongPan, ZHANG DongLing, LIU YaLong, LI Yue, WANG Feng. Effects of Green Manure Returning Combined with Nitrogen Fertilizer Reduction on Hydrothermal Characteristics of Wheat Field and Grain Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2025, 58(7): 1366-1380.
[5] CHEN GuiPing, LI Pan, SHAO GuanGui, WU XiaYu, YIN Wen, ZHAO LianHao, FAN ZhiLong, HU FaLong. The Regulatory Effect of Reduced Irrigation and Combined Organic- Inorganic Fertilizer Application on Stay-Green Characteristics in Silage Maize Leaves After Tasseling Stage [J]. Scientia Agricultura Sinica, 2025, 58(7): 1381-1396.
[6] TIAN LiWen, LOU ShanWei, ZHANG PengZhong, DU MingWei, LUO HongHai, LI Jie, PAHATI MaiMaiTi, MA TengFei, ZHANG LiZhen. Analysis of Problems and Pathways for Increasing Cotton Yield per Unit Area in Xinjiang Under Green and Efficient Production Mode [J]. Scientia Agricultura Sinica, 2025, 58(6): 1102-1115.
[7] ZHANG HongCheng, XING ZhiPeng, ZHANG RuiHong, SHAN Xiang, XI XiaoBo, CHENG Shuang, WENG WenAn, HU Qun, CUI PeiYuan, WEI HaiYan. Characteristics and Technical Approaches of Integrated Unmanned High-Yield Cultivation of Wheat [J]. Scientia Agricultura Sinica, 2025, 58(5): 864-876.
[8] ZHANG Han, ZHANG YuQi, LI JingLai, XU Hong, LI WeiHuan, LI Tao. Effects of LED Supplementary Lighting on Production and Leaf Physiological Properties of Substrate-Cultivated Strawberry in Chinese Solar Greenhouse [J]. Scientia Agricultura Sinica, 2025, 58(5): 975-990.
[9] CHEN Ge, GU Yu, WEN Jiong, FU YueFeng, HE Xi, LI Wei, ZHOU JunYu, LIU QiongFeng, WU HaiYong. Effects of Fallow Weeds Returning to the Field on Photosynthetic Matter Production and Yield of Rice [J]. Scientia Agricultura Sinica, 2025, 58(4): 647-659.
[10] SU Ming, LI FanGuo, HONG ZiQiang, ZHOU Tian, LIU QiangJuan, BAN WenHui, WU HongLiang, KANG JianHong. Antioxidant Characterization of Nitrogen Application for Mitigating Potato Senescence Post-Flowering Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2025, 58(4): 660-675.
[11] SHI Fan, LI WenGuang, YI ShuSheng, YANG Na, CHEN YuMeng, ZHENG Wei, ZHANG XueChen, LI ZiYan, ZHAI BingNian. The Variation Characteristics of Soil Organic Carbon Fractions Under the Combined Application of Organic and Inorganic Fertilizers [J]. Scientia Agricultura Sinica, 2025, 58(4): 719-732.
[12] LUO YiNuo, LI YanFei, LI WenHu, ZHANG SiQi, MU WenYan, HUANG Ning, SUN RuiQing, DING YuLan, SHE WenTing, SONG WenBin, LI XiaoHan, SHI Mei, WANG ZhaoHui. Iron Concentrations in Grain and Its Different Parts of Newly Developed Wheat Varieties (Lines) in China and Influencing Factors [J]. Scientia Agricultura Sinica, 2025, 58(3): 416-430.
[13] QIU HaiLong, LI Pan, ZHANG DianKai, FAN ZhiLong, HU FaLong, CHEN GuiPing, FAN Hong, HE Wei, YIN Wen, ZHAO LianHao. Compensatory Effects of Multiple Cropping Green Manure on Growth and Yield Loss of Nitrogen-Reduced Spring Wheat in Oasis Irrigation Areas of Northwest China [J]. Scientia Agricultura Sinica, 2025, 58(3): 443-459.
[14] WANG JiaXin, HU JingYi, ZHANG Wei, WEI Qian, WANG Tao, WANG XiaoLin, ZHANG Xiong, ZHANG PanPan. Effects of Different Mulching Methods on the Production of Photosynthetic Substances and Water Use Efficiency of Intercropped Maize [J]. Scientia Agricultura Sinica, 2025, 58(3): 460-477.
[15] ZHANG FangFang, SONG QiLong, GAO Na, BAI Ju, LI Yang, YUE ShanChao, LI ShiQing. Effects of Long-Term Mulching Practices on Maize Yield, Soil Organic Carbon and Nitrogen Fractions and Indexes Related to Carbon and Nitrogen Pool on the Loess Plateau [J]. Scientia Agricultura Sinica, 2025, 58(3): 507-519.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!