Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (6): 1173-1194.doi: 10.3864/j.issn.0578-1752.2025.06.010

• HORTICULTURE • Previous Articles     Next Articles

Effects of Rainy and Low Light Conditions on Coloration and Flavonoid Accumulation in Peach Peel Based on Metabolomic and Transcriptomic Analyses

SUN Ping1(), ZHU WenCan2,3(), LIN XianRui1, WU JiaQi1, CAO YiWen1, CHEN ChenFei1, WANG Yi1, ZHU JianXi1, JIA HuiJuan4, QIAN MinJie2,3(), SHEN JianSheng1()   

  1. 1 Jinhua Academy of Agricultural Sciences (Zhejiang Institute of Agricultural Machinery), Jinhua 321017, Zhejiang
    2 Sanya Nanfan Research Institute of Hainan University, Sanya 572025, Hainan
    3 School of Tropical Agriculture and Forestry, Hainan University/Key Laboratory of Quality Regulation of Tropical Horticultural Crop in Hainan Province, Haikou 570228
    4 College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310013
  • Received:2024-09-07 Accepted:2024-10-20 Online:2025-03-25 Published:2025-03-25
  • Contact: QIAN MinJie, SHEN JianSheng

Abstract:

【Objective】 The color of peach peel is closely related to the appearance quality and economic value of peach fruit, and anthocyanins are the predominant pigment substances for peach peel coloring. This study was based on combined metabolomic and transcriptomic analyses to investigate the effects of low light and rainy conditions during the rainy season on the accumulation of flavonoids (anthocyanins, flavonols, and proanthocyanidins) in peach peel and the transcriptional expression of related biosynthetic genes, identify and excavate key genes and transcriptional factors regulating flavonoids biosynthesis, and to provide application and theoretical basis for improving peach cultivation practices to enhance peach peel coloring during the rainy season, and further enriching the molecular mechanism of peach flavonoid biosynthesis.【Method】 The peach cultivar ‘Zhongjin Pan 7-12’ was used as the material in this study. The imitated rainy condition was regarded as treatment 1 (T1), the imitated low light and rainy conditions were regarded as treatment 2 (T2), and shelter cultivation (imitating normal cultivation environment) was the control (CK) group. Peach fruit peel samples were collected for metabolomic and RNA-Seq analyses at different stages (0D and 24D). Key candidate genes regulating flavonoids biosynthesis were identified through KEGG and weighted gene correlation network analysis (WGCNA).【Result】 The results of metabolomic analysis showed that cyanidin-3-O-glucoside, procyanidin B1, and quercetin-3-O-glucoside were the main components of anthocyanins, procyanidins, and flavonols in peach peel, respectively. Among them, cyanidin-3-O-glucoside was the predominant substance for the red coloration of peach peel. Both T1 and T2 treatments inhibited the anthocyanin accumulation in peach peel, with the more pronounced effect by T2. Through RNA-Seq result analysis, a total of 8 296 differentially expressed genes (DEGs) were identified, among which the highest number of DEGs was obtained through the comparison group of 24D-T1 vs 0D, with 6 879. Through WGCNA, genes from turquoise, red, greenyellow, brown, blue, and magenta modules were identified as candidate genes involved in regulating flavonoid biosynthesis in peach fruit peel. KEGG enrichment analysis showed that metabolic pathways were the most enriched pathway among candidate genes in all modules except for the turquoise module. Based on WGCNA, 15 structural genes related to flavonoid biosynthesis pathway were identified. In addition, transcription factors such as MYB, bHLH, ERF, bZIP, and C2H2 were also identified.【Conclusion】 Rainy and low light conditions significantly inhibit the anthocyanin accumulation and red coloration in peach peel. Shelter cultivation can be used to improve the appearance quality and economic value of peach fruit during the rainy season. In addition, key structural and regulatory genes related to flavonoid biosynthesis were identified, which can provide theoretical guidance for improving peach fruit coloring during the rainy season.

Key words: peach (Prunus persica), peel color, rainy and low light, flavonoid, transcriptome, metabolome

Table 1

Primer sequences"

基因编号Gene ID 正向引物Forward primer (5′-3′) 反向引物Reverse primer (5′-3′)
Prupe.7G168300_v2.0.a1 GGACTGGACACAGAGGCATT GGGGCATTTTGGGTAGAAAT
Prupe.1G376400_v2.0.a1 GGGGTGCTAGACATCCTCAA CTGGTGCTCTTCGACATTCA
Prupe.4G200500_v2.0.a1 TGAAGGGCTGTGATGGTGTA TCCAAGGTTCCTTTGATTGC
Prupe.2G324700_v2.0.a1 TGCCTCTCCCAACACTCTCT CCATCAGCCACATCAAACAC
Prupe.2G212900_v2.0.a1 TCTGGGGAGCAGAAGAAGAA CAGGCATTGCATAGGGTTTT
Prupe.8G125100_v2.0.a1 ACGCCCTATTGACACAGTCC CTTGGGCCCCTTTTTGTTAT
Prupe.7G225600_v2.0.a1 TGTCTCAGCCGTGAAAGATG TGCAGAAGCAGAAGCAGAAA
Prupe.3G240000_v2.0.a1 AAGGGTGGACTCGTTTTGTG TCTTCTCCTCCCCTCTCGAT
β-actin GATTCCGGTGCCCAGAAGT CCAGCAGCTTCCATTCCAA

Fig. 1

Phenotype and metabolomics analysis of peach fruits under different treatments"

Table 2

Quality and yield statistics of RNA-Seq libraries"

样品
Sample
原始数据
Raw reads
过滤后数据
<BOLD>C</BOLD>lean reads
过滤后碱基总数
Clean base (G)
测序错误率
Error rate (%)
碱基质量值
Q20 (%)
碱基质量值
Q30 (%)
GC含量
GC content (%)
0D-1 46947136 45207546 6.78 0.03 97.83 93.78 46.90
0D-2 45181526 43587342 6.54 0.02 98.16 94.61 46.71
0D-3 43048874 41413698 6.21 0.02 98.12 94.44 46.82
24D-T1-1 45453162 43941034 6.59 0.02 98.12 94.49 46.88
24D-T1-2 43462974 42019444 6.30 0.02 98.16 94.56 46.90
24D-T1-3 51322012 49684760 7.45 0.02 98.07 94.34 47.14
24D-T2-1 46961188 45358530 6.80 0.02 98.14 94.50 46.56
24D-T2-2 51255062 49645836 7.45 0.02 98.04 94.26 46.88
24D-T2-3 50412392 48881676 7.33 0.02 98.16 94.57 46.82
24D-CK-1 47734934 46239584 6.94 0.03 97.99 94.12 46.58
24D-CK-2 52248104 50503542 7.58 0.02 98.15 94.52 46.88
24D-CK-3 56671330 54632786 8.19 0.03 98.02 94.22 47.14

Fig. 2

Analysis of RNA-Seq results"

Fig. 3

WGCNA identification The 16 colored modules on the left panel represent genes grouped into different groups, and the correlation of module features and corresponding P values are shown in squares. The color change on the right represents a module-trait correlation from -1 (blue) to 1 (red)"

Fig. 4

The KEGG pathway enrichment analysis"

Fig. 5

The GO enrichment analysis"

Fig. 6

The expression patterns of flavonoid biosynthetic genes obtained based on WGCNA"

Fig. 7

The expression patterns of transcription factor regulating flavonoid biosynthesis obtained based on WGCNA"

Fig. 8

Transcriptome results verified by qPCR"

[1]
刘冠儒. 湖北省孝感市桃产业现状与发展研究[D]. 武汉: 武汉轻工大学, 2023.
LIU G R. Research on the status and development of peach industry in Xiaogan City, Hubei Province[D]. Wuhan: Wuhan Polytechnic University, 2023. (in Chinese)
[2]
李晓颖, 谭洪花, 房经贵, 韩键, 宋长年. 果树果实的风味物质及其研究. 植物生理学报, 2011, 47(10): 943-950.
LI X Y, TAN H H, FANG J G, HAN J, SONG C N. Flavor compounds in fruits and research on them. Plant Physiology Journal, 2011, 47(10): 943-950. (in Chinese)
[3]
HICHRI I, BARRIEU F, BOGS J, KAPPEL C, DELROT S, LAUVERGEAT V. Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. Journal of Experimental Botany, 2011, 62(8): 2465-2483.

doi: 10.1093/jxb/erq442 pmid: 21278228
[4]
WILLIAMS C A, GRAYER R J. Anthocyanins and other flavonoids. Natural Product Reports, 2004, 21(4): 539-573.

doi: 10.1039/b311404j pmid: 15282635
[5]
ONO E, RUIKE M, IWASHITA T, NOMOTO K, FUKUI Y. Co-pigmentation and flavonoid glycosyltransferases in blue Veronica persica flowers. Phytochemistry, 2010, 71(7): 726-735.
[6]
WINKEL-SHIRLEY B. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiology, 2001, 126(2): 485-493.
[7]
LEPINIEC L, DEBEAUJON I, ROUTABOUL J M, BAUDRY A, POURCEL L, NESI N, CABOCHE M. Genetics and biochemistry of seed flavonoids. Annual Review of Plant Biology, 2006, 57: 405-430.

pmid: 16669768
[8]
CHAPPLE C C S, SHIRLEY B W, ZOOK M, HAMMERSCHMIDT R, SOMERVILLE S C. 36 Secondary metabolism in Arabidopsis// Cold Spring Harbor Monograph Archive, 1994, 27: 989-1030.
[9]
DEBEAUJON I, NESI N, PEREZ P, DEVIC M, GRANDJEAN O, CABOCHE M, LEPINIEC L. Proanthocyanidin-accumulating cells in Arabidopsis testa: Regulation of differentiation and role in seed development. The Plant Cell, 2003, 15(11): 2514-2531.
[10]
SARMA A D, SHARMA R. Anthocyanin-DNA copigmentation complex: Mutual protection against oxidative damage. Phytochemistry, 1999, 52(7): 1313-1318.
[11]
QIAN M J, ROSENQVIST E, PRINSEN E, PESCHECK F, FLYGARE A M, KALBINA I, JANSEN M A K, STRID Å. Downsizing in plants—UV light induces pronounced morphological changes in the absence of stress. Plant Physiology, 2021, 187(1): 378-395.
[12]
DIXON R A, XIE D Y, SHARMA S B. Proanthocyanidins - a final frontier in flavonoid research? New Phytologist, 2005, 165(1): 9-28.
[13]
KNEKT P, JÄRVINEN R, SEPPÄNEN R, HELLÖVAARA M, TEPPO L, PUKKALA E, AROMAA A. Dietary flavonoids and the risk of lung cancer and other malignant neoplasms. American Journal of Epidemiology, 1997, 146(3): 223-230.

doi: 10.1093/oxfordjournals.aje.a009257 pmid: 9247006
[14]
MIDDLETON E, KANDASWAMI C, THEOHARIDES T C. The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease, and cancer. Pharmacological Reviews, 2000, 52(4): 673-751.

pmid: 11121513
[15]
HARBORNE J B, WILLIAMS C A. Advances in flavonoid research since 1992. Phytochemistry, 2000, 55(6): 481-504.

doi: 10.1016/s0031-9422(00)00235-1 pmid: 11130659
[16]
JAAKOLA L. New insights into the regulation of anthocyanin biosynthesis in fruits. Trends in Plant Science, 2013, 18(9): 477-483.

doi: 10.1016/j.tplants.2013.06.003 pmid: 23870661
[17]
MATSUI K, UMEMURA Y, OHME-TAKAGI M. AtMYBL2, a protein with a single MYB domain, acts as a negative regulator of anthocyanin biosynthesis in Arabidopsis. The Plant Journal, 2008, 55(6): 954-967.
[18]
TAKOS A M, JAFFÉ F W, JACOB S R, BOGS J, ROBINSON S P, WALKER A R. Light-induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples. Plant Physiology, 2006, 142(3): 1216-1232.
[19]
WANG N, XU H F, JIANG S H, ZHANG Z Y, LU N L, QIU H R, QU C Z, WANG Y C, WU S J, CHEN X S. MYB12 and MYB22 play essential roles in proanthocyanidin and flavonol synthesis in red-fleshed apple (Malus sieversii f. niedzwetzkyana). The Plant Journal, 2017, 90(2): 276-292.
[20]
DIRLEWANGER E, GRAZIANO E, JOOBEUR T, GARRIGA- CALDERÉ F, COSSON P, HOWAD W, ARÚS P. Comparative mapping and marker-assisted selection in Rosaceae fruit crops. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(26): 9891-9896.
[21]
TUAN P A, BAI S, YAEGAKI H, TAMURA T, HIHARA S, MORIGUCHI T, ODA K. The crucial role of PpMYB10.1 in anthocyanin accumulation in peach and relationships between its allelic type and skin color phenotype. BMC Plant Biology, 2015, 15(1): 280.
[22]
SHI B, WU H X, ZHENG B, QIAN M J, GAO A P, ZHOU K B. Analysis of light-independent anthocyanin accumulation in mango (Mangifera indica L.). Horticulturae, 2021, 7(11): 423.
[23]
ZHU W C, WU H X, YANG C K, SHI B, ZHENG B, MA X W, ZHOU K B, QIAN M J. Postharvest light-induced flavonoids accumulation in mango (Mangifera indica L.) peel is associated with the up-regulation of flavonoids-related and light signal pathway genes. Frontiers in Plant Science, 2023, 14: 1136281.
[24]
LI Y Y, MAO K, ZHAO C, ZHAO X Y, ZHANG H L, SHU H R, HAO Y J. MdCOP1 ubiquitin E3 ligases interact with MdMYB1 to regulate light-induced anthocyanin biosynthesis and red fruit coloration in apple. Plant Physiology, 2012, 160(2): 1011-1022.
[25]
孟宪宸, 崔彦志, 李星宇, 张秀玲, 马振伟, 柴菊华. 成熟期降水对碣石山产区‘马瑟兰’果实品质的影响. 中外葡萄与葡萄酒, 2023(3): 24-31.
MENG X C, CUI Y Z, LI X Y, ZHANG X L, MA Z W, CHAI J H. Effect of precipitation during mature period on fruit quality of ‘Marselan’ in Jieshishan area. Sino-Overseas Grapevine & Wine, 2023(3): 24-31. (in Chinese)
[26]
姜琳琳, 王静, 张晓煜, 陈仁伟, 胡宏远. 成熟期降水对贺兰山东麓酿酒葡萄果实品质的影响. 中国农业气象, 2020, 41(3): 156-161.
JIANG L L, WANG J, ZHANG X Y, CHEN R W, HU H Y. Rainfall effect of rainfall on the quality of wine grape during the ripening stage at the east foot of Helan Mountain. Chinese Journal of Agrometeorology, 2020, 41(3): 156-161. (in Chinese)
[27]
沈玉英, 熊彩珍, 贾惠娟. 盖棚对湖景蜜露桃着果及果实品质的影响. 中国南方果树, 2006(5): 67-68.
SHEN Y Y, XIONG C Z, JIA H J. The effect of canopy construction on the fruiting and fruit quality of ‘Hujingmilu’ peach. South China Fruits, 2006(5): 67-68. (in Chinese)
[28]
李玲, 王慧, 张梅, 陈修德, 高东升. 设施栽培桃果实芳香成分的GC-MS分析. 山东农业大学学报(自然科学版), 2011, 42(1): 41-48.
LI L, WANG H, ZHANG M, CHEN X D, GAO D S. GC-MS analysis on fruit aroma components of peach in protected culture. Journal of Shandong Agricultural University (Natural Science Edition), 2011, 42(1): 41-48. (in Chinese)
[29]
JIA H J, ARAKI A, OKAMOTO G. Influence of fruit bagging on aroma volatiles and skin coloration of ‘Hakuho’ peach (Prunus persica Batsch). Postharvest Biology and Technology, 2005, 35(1): 61-68.
[30]
成梦园. 不同避雨膜对鲜食葡萄生长发育和果实品质的影响研究[D]. 太谷: 山西农业大学, 2022.
CHENG M Y. Effects of rainproof film on growth and development and fruit quality of fresh grape[D]. Taigu: Shanxi Agricultural University, 2022. (in Chinese)
[31]
MENG J F, NING P F, XU T F, ZHANG Z W. Effect of rain-shelter cultivation of Vitis vinifera cv. Cabernet Gernischet on the phenolic profile of berry skins and the incidence of grape diseases. Molecules, 2013, 18(1): 381-397.
[32]
CLAIRE D, WATTERS N, GENDRON L, BOILY C, PÉPIN S, CARON J. High productivity of soilless strawberry cultivation under rain shelters. Scientia Horticulturae, 2018, 232: 127-138.
[33]
LIM K H, GU M, SONG J H, CHO Y S, KIM W S, KIM B S, JUNG S K, CHOI H S. Growth, fruit production, and disease occurrence of rain-sheltered Asian pear trees. Scientia Horticulturae, 2014, 177: 37-42.
[34]
熊彩珍, 凌柏芳, 李洁, 景筱荣. 避雨设施栽培对桃果实生长发育及糖分的影响. 浙江林业科技, 2012, 32(3): 46-49.
XIONG C Z, LING B F, LI J, JING X R. Study on fruit growth and sugar degree under rain shelter cultivation of Amygdalus persica. Journal of Zhejiang Forestry Science and Technology, 2012, 32(3): 46-49. (in Chinese)
[35]
VERDE I, JENKINS J, DONDINI L, MICALI S, PAGLIARANI G, VENDRAMIN E, PARIS R, ARAMINI V, GAZZA L, ROSSINI L, et al. The peach v2.0 release: High-resolution linkage mapping and deep resequencing improve chromosome-scale assembly and contiguity. BMC Genomics, 2017, 18(1): 225.
[36]
徐长宝, 陈国强. 江淮梅雨对梨树生长结果及果实品质的影响. 中国南方果树, 2007(6): 74-75.
XU C B, CHEN G Q. The effect of Jianghuai Meiyu on the growth, fruiting and fruit quality of pear trees. South China Fruits, 2007(6): 74-75. (in Chinese)
[37]
马艳儿, 杨丽, 何玉云, 李华, 王华. 降水对葡萄多酚类物质的影响. 江苏农业科学, 2016, 44(5): 221-224.
MA Y E, YANG L, HE Y Y, LI H, WANG H. The effect of precipitation on grape polyphenols. Jiangsu Agricultural Sciences, 2016, 44(5): 221-224. (in Chinese)
[38]
FENG F J, LI M J, MA F W, CHENG L L. Phenylpropanoid metabolites and expression of key genes involved in anthocyanin biosynthesis in the shaded peel of apple fruit in response to sun exposure. Plant Physiology and Biochemistry, 2013, 69: 54-61.
[39]
WEI Y Z, HU F C, HU G B, LI X J, HUANG X M, WANG H C. Differential expression of anthocyanin biosynthetic genes in relation to anthocyanin accumulation in the pericarp of Litchi chinensis Sonn. PLoS ONE, 2011, 6(4): e19455.
[40]
李舒婷, 李小溪, 高媛, 潘秋红. 简易避雨栽培对‘赤霞珠’葡萄果实类黄酮物质表征的影响. 果树学报, 2018, 35(7): 802-816.
LI S T, LI X X, GAO Y, PAN Q H. Effect of simple rain-shelter cultivation on flavonoid profiling in Vitis vinifera ‘Cabernet Sauvignon’ grape berries. Journal of Fruit Science, 2018, 35(7): 802-816. (in Chinese)
[41]
曹锰, 郭景南, 魏志峰, 高登涛, 程大伟, 孙晓文. 避雨栽培对‘金手指’葡萄果实生长及香气物质组分的影响. 果树学报, 2015, 32(5): 894-902.
CAO M, GUO J N, WEI Z F, GAO D T, CHENG D W, SUN X W. Effects of rain-shelter cultivation on development and aromatic component of ‘Gold Finger’ grape. Journal of Fruit Science, 2015, 32(5): 894-902. (in Chinese)
[42]
BLANKE M, BALMER M. Cultivation of sweet cherry under rain covers. Acta Horticulturae, 2008, 795: 479-484.
[43]
杨乐, 李文杨, 赵师成, 孙耀清, 申洁梅. 避雨栽培措施对信阳五月鲜桃果实生长的影响. 经济林研究, 2019, 37(1): 205-210.
YANG L, LI W Y, ZHAO S C, SUN Y Q, SHEN J M. Effects of rain-shelter cultivation measures on fruit growth in Xinyang Wuyuexian peach. Non-Wood Forest Research, 2019, 37(1): 205-210. (in Chinese)
[44]
薄流齐洋. 避雨栽培对刺葡萄生长发育及果实品质的影响[D]. 长沙: 湖南农业大学, 2021.
BO L Q Y. Influence of rain-shielding cultivation on growth and development and fruit quality of Vitis davidii Foex[D]. Changsha: Hunan Agricultural University, 2021. (in Chinese)
[45]
刘亚妮. 避雨栽培对葡萄生长发育及果实品质的影响[D]. 秦皇岛: 河北科技师范学院, 2019.
LIU Y N. Effects of rain-shelter cultivation on grape growth and fruit quality[D]. Qinhuangdao: Hebei Normal University of Science & Technology, 2019. (in Chinese)
[46]
赵云. 两品种桃果皮花青苷积累差异及光照调控机制[D]. 杭州: 浙江大学, 2019.
ZHAO Y. Mechanisms for differences accumulation of anthocyanin in peel of two peach cultivars and the regulation by light[D]. Hangzhou: Zhejiang University, 2019. (in Chinese)
[47]
HWANG K H, MIN B H, SHIN H, AHN B J. Petal color changes in carnation plants transformed with an antisense DFR and a CHI gene. HortScience, 2005, 40(4): 1051.
[48]
JU Z G, LIU C L, YUAN Y B. Activities of chalcone synthase and UDPGal: Flavonoid-3-o-glycosyltransferase in relation to anthocyanin synthesis in apple. Scientia Horticulturae, 1995, 63(3): 175-185.
[49]
BOGS J, DOWNEY M O, HARVEY J S, ASHTON A R, TANNER G J, ROBINSON S P. Proanthocyanidin synthesis and expression of genes encoding leucoanthocyanidin reductase and anthocyanidin reductase in developing grape berries and grapevine leaves. Plant Physiology, 2005, 139(2): 652-663.

doi: 10.1104/pp.105.064238 pmid: 16169968
[50]
LIAO L, VIMOLMANGKANG S, WEI G C, ZHOU H, KORBAN S S, HAN Y P. Molecular characterization of genes encoding leucoanthocyanidin reductase involved in proanthocyanidin biosynthesis in apple. Frontiers in Plant Science, 2015, 6: 243.

doi: 10.3389/fpls.2015.00243 pmid: 25914714
[51]
HAN Y, VIMOLMANGKANG S, SORIA-GUERRA R E, KORBAN S S. Introduction of apple ANR genes into tobacco inhibits expression of both CHI and DFR genes in flowers, leading to loss of anthocyanin. Journal of Experimental Botany, 2012, 63(7): 2437-2447.
[52]
BAUDRY A, HEIM M A, DUBREUCQ B, CABOCHE M, WEISSHAAR B, LEPINIEC L. TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. The Plant Journal, 2004, 39(3): 366-380.
[53]
HEPPEL S C, JAFFÉ F W, TAKOS A M, SCHELLMANN S, RAUSCH T, WALKER A R, BOGS J. Identification of key amino acids for the evolution of promoter target specificity of anthocyanin and proanthocyanidin regulating MYB factors. Plant Molecular Biology, 2013, 82(4): 457-471.
[54]
KARPPINEN K, LAFFERTY D J, ALBERT N W, MIKKOLA N, MCGHIE T, ALLAN A C, AFZAL B M, HÄGGMAN H, ESPLEY R V, JAAKOLA L. MYBA and MYBPA transcription factors co-regulate anthocyanin biosynthesis in blue-coloured berries. New Phytologist, 2021, 232(3): 1350-1367.

doi: 10.1111/nph.17669 pmid: 34351627
[55]
JIANG L Y, YUE M L, LIU Y Q, ZHANG N T, LIN Y X, ZHANG Y T, WANG Y, LI M Y, LUO Y, ZHANG Y, WANG X R, CHEN Q, TANG H R. A novel R2R3-MYB transcription factor FaMYB5 positively regulates anthocyanin and proanthocyanidin biosynthesis in cultivated strawberries (Fragaria × ananassa). Plant Biotechnology Journal, 2023, 21(6): 1140-1158.

doi: 10.1111/pbi.14024 pmid: 36752420
[56]
TAO R Y, YU W J, GAO Y H, NI J B, YIN L, ZHANG X, LI H X, WANG D S, BAI S L, TENG Y W. Light-induced basic/helix- loop-helix64 enhances anthocyanin biosynthesis and undergoes CONSTITUTIVELY PHOTOMORPHOGENIC1-mediated degradation in pear. Plant Physiology, 2020, 184(4): 1684-1701.
[57]
ZHOU H, LIN-WANG K, LIAO L, GU C, LU Z Q, ALLAN A C, HAN Y P. Peach MYB7 activates transcription of the proanthocyanidin pathway gene encoding leucoanthocyanidin reductase, but not anthocyanidin reductase. Frontiers in Plant Science, 2015, 6: 908.

doi: 10.3389/fpls.2015.00908 pmid: 26579158
[58]
YAO G F, MING M L, ALLAN A C, GU C, LI L T, WU X, WANG R Z, CHANG Y J, QI K J, ZHANG S L, WU J. Map-based cloning of the pear gene MYB114identifies an interaction with other transcription factors to coordinately regulate fruit anthocyanin biosynthesis. The Plant Journal, 2017, 92(3): 437-451.
[59]
NI J B, BAI S L, ZHAO Y, QIAN M J, TAO R Y, YIN L, GAO L, TENG Y W. Ethylene response factors Pp4ERF24 and Pp12ERF96 regulate blue light-induced anthocyanin biosynthesis in ‘Red Zaosu’ pear fruits by interacting with MYB114. Plant Molecular Biology, 2019, 99(1/2): 67-78.
[60]
WANG S, ZHANG X H, LI B B, ZHAO X Q, SHEN Y, YUAN Z H. Genome-wide identification and characterization of bZIP gene family and cloning of candidate genes for anthocyanin biosynthesis in pomegranate (Punica granatum). BMC Plant Biology, 2022, 22(1): 170.
[61]
ZHOU P, LI J W, JIANG H Y, JIN Q J, WANG Y J, XU Y C. Analysis of bZIP gene family in lotus (Nelumbo) and functional study of NnbZIP36in regulating anthocyanin synthesis. BMC Plant Biology, 2023, 23(1): 429.
[62]
WANG D R, YANG K, WANG X, LIN X L, RUI L, LIU H F, LIU D D, YOU C X. Overexpression of MdZAT5, an C2H2-type zinc finger protein, regulates anthocyanin accumulation and salt stress response in apple calli and Arabidopsis. International Journal of Molecular Sciences, 2022, 23(3): 1897.
[63]
LIU W J, WANG Y C, YU L, JIANG H Y, GUO Z W, XU H F, JIANG S H, FANG H C, ZHANG J, SU M Y, ZHANG Z Y, CHEN X L, CHEN X S, WANG N. MdWRKY 11 participates in anthocyanin accumulation in red-fleshed apples by affecting MYB transcription factors and the photoresponse factor MdHY5. Journal of Agricultural and Food Chemistry, 2019, 67(32): 8783-8793.
[64]
ZHANG J K, WANG Y C, MAO Z L, LIU W N, DING L C, ZHANG X N, YANG Y W, WU S Q, CHEN X S, WANG Y L. Transcription factor McWRKY71 induced by ozone stress regulates anthocyanin and proanthocyanidin biosynthesis in Malus crabapple. Ecotoxicology and Environmental Safety, 2022, 232: 113274.
[65]
SUN Q G, JIANG S H, ZHANG T L, XU H F, FANG H C, ZHANG J, SU M Y, WANG Y C, ZHANG Z Y, WANG N, CHEN X S. Apple NAC transcription factor MdNAC52 regulates biosynthesis of anthocyanin and proanthocyanidin through MdMYB9 and MdMYB11. Plant Science, 2019, 289: 110286.
[66]
ZHOU H, LIN-WANG K, WANG H L, GU C, DARE A P, ESPLEY R V, HE H P, ALLAN A C, HAN Y P. Molecular genetics of blood-fleshed peach reveals activation of anthocyanin biosynthesis by NAC transcription factors. The Plant Journal, 2015, 82(1): 105-121.

doi: 10.1111/tpj.12792 pmid: 25688923
[1] ZOU XiaoWei, XIA Lei, ZHU XiaoMin, SUN Hui, ZHOU Qi, QI Ji, ZHANG YaFeng, ZHENG Yan, JIANG ZhaoYuan. Analysis of Disease Resistance Induced by Ustilago maydis Strain with Overexpressed UM01240 Based on Transcriptome Sequencing [J]. Scientia Agricultura Sinica, 2025, 58(6): 1116-1130.
[2] XIE LuLu, LI Fu, ZHANG SiYuan, GAO JianChang. Analysis of Conserved Genes in Adventitious Root Formation Based on Cross Species Transcriptomes [J]. Scientia Agricultura Sinica, 2025, 58(6): 1195-1209.
[3] GAO YanHao, WANG TingTing, BAI WeiWei, DU XingJie, LIU Xian, QIN BenYuan, FU Tong, SUN Yu, GAO TengYun, ZHANG TianLiu. The Combination of Lipidome and Transcriptome Revealed the Differential Expression Patterns of Lipid Characteristics in Different Muscle Tissues for Nanyang Cattle [J]. Scientia Agricultura Sinica, 2025, 58(6): 1239-1258.
[4] GUO AoLin, LIN JunXuan, LAI GongTi, HE LiYuan, CHE JianMei, PAN Ruo, YANG FangXue, HUANG YuJi, CHEN GuiXin, LAI ChengChun. Effect of VdF3′5′H2 Overexpression on the Accumulation of Anthocyanin Composition in Spine Grape Cells [J]. Scientia Agricultura Sinica, 2025, 58(4): 802-818.
[5] PAN Yuan, WANG De, LIU Nan, MENG XiangLong, DAI PengBo, LI Bo, HU TongLe, WANG ShuTong, CAO KeQiang, WANG YaNan. Evaluation of the Effectiveness of Two High-Throughput Sequencing Techniques in Identifying Apple Viruses and Identification of Two Novel Viruses [J]. Scientia Agricultura Sinica, 2025, 58(2): 266-280.
[6] CAO YanYong, CHENG ZeQiang, MA Juan, YANG WenBo, ZHU WeiHong, SUN XinYan, LI HuiMin, XIA LaiKun, DUAN CanXing. Integrating Transcriptomic and Metabolomic Analyses Reveals Maize Responses to Stalk Rot Caused by Fusarium proliferatum [J]. Scientia Agricultura Sinica, 2025, 58(1): 75-90.
[7] QI RenJie, NING Yu, LIU Jing, LIU ZhiYang, XU Hai, LUO ZhiDan, CHEN LongZheng. Identification and Analysis of Genes Related to Bitter Gourd Saponin Synthesis Based on Transcriptome Sequencing [J]. Scientia Agricultura Sinica, 2024, 57(9): 1779-1793.
[8] LIN Wei, WU ShuiJin, LI YueSen. Transcriptome and Proteome Association Analysis to Revealthe Molecular Mechanism of Baxi Banana Seedlings in Response to Low Temperature [J]. Scientia Agricultura Sinica, 2024, 57(8): 1575-1591.
[9] GAO ChenXi, HAO LuYang, HU Yue, LI YongXiang, ZHANG DengFeng, LI ChunHui, SONG YanChun, SHI YunSu, WANG TianYu, LI Yu, LIU XuYang. Analysis of Transposable Element Associated Epigenetic Regulation under Drought in Maize [J]. Scientia Agricultura Sinica, 2024, 57(6): 1034-1048.
[10] HAN XuDong, YANG ChuanQi, ZHANG Qing, LI YaWei, YANG XiaXia, HE JiaTian, XUE JiQuan, ZHANG XingHua, XU ShuTu, LIU JianChao. QTL Mapping and Candidate Gene Screening for Nitrogen Use Efficiency in Maize [J]. Scientia Agricultura Sinica, 2024, 57(21): 4175-4191.
[11] MA JingE, XIONG XinWei, ZHOU Min, WU SiQi, HAN Tian, RAO YouSheng, WANG ZhangFeng, XU JiGuo. Full-Length Transcriptomic Analysis of Chicken Pituitary Reveals Candidate Genes for Testicular Trait [J]. Scientia Agricultura Sinica, 2024, 57(20): 4130-4144.
[12] YIN JunLiang, LI JingYi, HAN Shuo, YANG PeiHua, MA JiaWei, LIU YiQing, HU HaiJun, ZHU YongXing. Identification of Ginger (Zingiber officinale Roscoe) NHX Gene Family Members and Characterization of Their Expression Patterns in Silicon Alleviating Salt Stress [J]. Scientia Agricultura Sinica, 2024, 57(19): 3848-3869.
[13] CHEN FeiEr, ZHANG ZhiPeng, JIANG QingXue, MA Lin, WANG XueMin. Cloning and Biological Function Verification of Alfalfa MsSPL17 [J]. Scientia Agricultura Sinica, 2024, 57(17): 3335-3349.
[14] LIU Tong, WANG ZhiRong, LI Wei, LIU Yang, WANG XiangRu, LAI DiLi, HE YuQi, ZHANG KaiXuan, ZHAO ZhenJun, ZHOU MeiLiang. Function Analysis of bHLH93 Transcription Factor in Tartary Buckwheat in Response to Aluminum Stress [J]. Scientia Agricultura Sinica, 2024, 57(16): 3127-3141.
[15] CHEN WenJie, CHEN Yuan, WEI QingYuan, TANG FuYue, GUO XiaoHong, CHEN ShuFang, QIN XiaYan, WEI RongChang, LIANG Jiang. Identification of Candidate Genes Controlling SSCLD by Utilizing High-Generation Segregating Populations RNA-seq [J]. Scientia Agricultura Sinica, 2024, 57(15): 2914-2930.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!