Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (3): 600-616.doi: 10.3864/j.issn.0578-1752.2025.03.014

• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles    

The Potential and Mechanism of Chlorogenic Acid to Alleviate Intestinal Inflammation in Chickens Based on Network Pharmacology and Molecular Docking

YAO Hong1,2(), SHI ShouRong2(), ZHAO RuQian1()   

  1. 1 College of Veterinary Medicine, Nanjing Agricultural University/Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, Nanjing 210095
    2 Jiangsu Institute of Poultry Science, Yangzhou 225125, Jiangsu
  • Received:2024-09-30 Accepted:2024-11-20 Online:2025-02-01 Published:2025-02-11
  • Contact: SHI ShouRong, ZHAO RuQian

Abstract:

【Objective】The study aimed to predict the mechanisms of chlorogenic acid in alleviating intestinal inflammation in chickens by using network pharmacology and molecular docking, so as to provide the reference for the application of chlorogenic acid. 【Method】 Firstly, "caffeoylquinic acid" and "intestinal inflammation" were retrieved from the TCMSP, DisGeNET database, and Gene Cards database, respectively, to obtain targets related to chlorogenic acid and intestinal inflammation. Venn intersection was used to obtain the target set of chlorogenic acid for alleviating intestinal inflammation. CytoNCA program in Cytoscape 3.10 was used to calculate network node centrality and to screen for key chlorogenic acid monomers. A protein-protein interaction (PPI) network targeting intestinal inflammation in chicken was constructed by using the STRING database, and gene ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis on intersecting targets were carried out using the David database. In addition, the molecular complex detection analysis (MCODE) was performed on the above targets to obtain core gene clusters, and a chlorogenic acid target signaling pathway network was constructed. Autodock vina was employed to perform molecular docking between the selected key chlorogenic acid monomers and core targets, and the results were visualized by using the Pymol software. 【Result】 222 chlorogenic acid targets were retrieved from the TCMSP database, 1 453 targets for intestinal inflammation were obtained after quality control in the DisGeNET and Gene Caeds databases, and 78 chlorogenic acid targets in alleviating intestinal inflammation were obtained. The target PPI network for intestinal inflammation in chickens had 53 nodes and 162 edges. The core targets were SRC (Non-receptor tyrosine kinase), CASP3 (Apoptotic protease 3), MMP9 (Matrix metalloprotein-9), EGFR (Epithelial growth factor receptor), ESR1 (Estrogen receptor 1), MMP2 (Matrix metalloprotein- 2), BRAF (Serine/threonine kinase), KDR (Kinase insertion domain protein receptor), and MAPK3 (Mitogen activated protein kinase 3). Molecular docking results showed that the key chlorogenic acid monomers could stably bind to the core targets mentioned above. GO functional enrichment analysis (P<0.05) revealed 87 Biological processes (BP), 20 Cellular components (CC), and 35 Molecular functions (MF). KEGG enriched 26 signaling pathways, while MCODE analysis revealed two major gene clusters. 【Conclusion】Through cross validation and literature support, it was predicted that chlorogenic acid might regulate inflammatory response and alleviate intestinal inflammation in chicken through pathways, such as MAPK, C-type lectin, and Focal adhesion. In addition, two monomers, including neochlorogenic acid and isochlorogenic acid A, might play a crucial role in alleviating intestinal inflammation. This study utilized network pharmacology and molecular docking methods to explore the potential of stevia chlorogenic acid in alleviating intestinal inflammation in chickens, providing theoretical reference for the application of chlorogenic acid and plants rich in chlorogenic acid monomers in production.

Key words: chlorogenic acid, chicken, intestinal inflammation, network pharmacology, molecular docking

Fig. 1

Venn diagram of chlorogenic acid targets in relieving intestinal inflammation"

Table 1

The mediation centrality of chlorogenic acid"

成分名称 Ingredient name 中介中心性 Betweenness 点度中心性 Degree
新绿原酸(3-CQA) 1536.21 46
隐绿原酸(4-CQA) 1249.20 44
绿原酸(5-CQA) 1165.79 43
异绿原酸A(3,5-DICQA) 2155.89 36
异绿原酸B(3,4-DICQA) 1341.03 36
异绿原酸C(4,5-DICQA) 1251.88 31

Fig. 2

Network diagram of stevia chlorogenic acid in intestinal inflammation"

Fig. 3

Screening of core targets for chlorogenic acid in relieving intestinal inflammation"

Table 2

Information on the core targets of stevia chlorogenic acid in relieving intestinal inflammation"

序号 Serial number 基因 Gene 名称 Name
1 SRC 非受体酪氨酸激酶Non-receptor tyrosine kinase
2 CASP3 细胞凋亡蛋白酶3 Caspase-3
3 MMP9 基质金属蛋白酶9 Matrix metalloproteinase 9
4 EGFR 表皮生长因子受体 Epidermal growth factor receptor
5 ESR1 雌激素受体1 Estrogen Receptor 1
6 MMP2 基质金属蛋白酶2 Matrix metalloproteinase 2
7 BRAF 丝氨酸/苏氨酸激酶Serine/threonine kinase
8 KDR 激酶插入域蛋白受体Kinase insert domain receptor
9 MAPK3 丝裂原活化蛋白激酶3 Mitogen-activated protein kinase 3

Fig. 4

GO functional enrichment analysis"

Fig. 5

KEGG enrichment analysis"

Fig. 6

Target protein localizaton rendering in KEGG enriched pathways"

Fig. 7

Top two gene clusters in MCODE analysis"

Table 3

GO functional analysis of the key gene clusters"

基因簇
Gene cluster
GO条目
GO Term
描述
Description
Log10(P)
Cluster 1 GO:0070374 ERK1和ERK2级联正调控Positive regulation of ERK1 and ERK2 cascade -5.24
GO:0007169 跨膜受体蛋白酪氨酸激酶信号通路Transmembrane receptor protein tyrosine kinase signaling pathway -5.15
GO:0006468 蛋白质磷酸化Protein phosphorylation -4.79
Cluster 2 GO:0007596 血液凝结Blood coagulation -3.90
GO:0030194 凝血正调控Positive regulation of blood coagulation -2.96
GO:0048771 组织重塑Tissue remodeling -2.96

Fig. 8

Chlorogenic acid- intestinal inflammation targets-signaling pathway network model"

Table 4

The binding ability of two types of chlorogenic acid monomers to the core targets"

配体
Ligand
受体
Receptor
结合自由能
Binding free energy (kcal·mol-1)
3-CQA SRC -6.5
CASP3 -7.6
MMP9 -6.4
EGFR -8.0
ESR1 -7.1
MMP2 -7.5
BRAF -6.7
KDR -6.0
MAPK3 -8.1
3,5-CQA SRC -8.7
CASP3 -7.9
MMP9 -8.6
EGFR -9.1
ESR1 -7.8
MMP2 -9.1
BRAF -7.9
KDR -6.4
MAPK3 -9.3

Fig. 9

Molecular docking of 3-CQA with core targets"

Fig. 10

Molecular docking of 3,5-CQA with core targets"

[1]
张细权, 詹惠娜, 罗文. 我国肉鸡种业发展现状分析. 中国禽业导刊, 2023, 40(10): 16-19.
ZHANG X Q, ZHAN H N, LUO W. Current development status of domestic broiler breeder industry. Guide to Chinese Poultry, 2023, 40(10): 16-19. (in Chinese)
[2]
中国经济网. 王贵荣:2023年农业经济形势总体良好[EB/OL]. http://www.ce.cn/xwzx/gnsz/gdxw/202401/18/t20240118_38870839.shtml.
China Economic Network. WANG G R: The overall situation of agricultural economy in 2023 is good[EB/OL]. http://www.ce.cn/xwzx/gnsz/gdxw/202401/18/t20240118_38870839.shtml.
[3]
KOGUT M H, GENOVESE K J, SWAGGERTY C L, HE H Q, BROOM L. Inflammatory phenotypes in the intestine of poultry: not all inflammation is created equal. Poultry Science, 2018, 97(7): 2339-2346.

doi: 10.3382/ps/pey087 pmid: 29618086
[4]
TEIRLYNCK E, BJERRUM L, EECKHAUT V, HUYGEBAERT G, PASMANS F, HAESEBROUCK F, DEWULF J, DUCATELLE R, VAN IMMERSEEL F. The cereal type in feed influences gut wall morphology and intestinal immune cell infiltration in broiler chickens. The British Journal of Nutrition, 2009, 102(10): 1453-1461.

doi: 10.1017/S0007114509990407 pmid: 19664304
[5]
TEIRLYNCK E, GUSSEM M D E, DEWULF J, HAESEBROUCK F, DUCATELLE R, VAN IMMERSEEL F. Morphometric evaluation of “dysbacteriosis” in broilers. Avian Pathology, 2011, 40(2): 139-144.
[6]
CHEN J X, TELLEZ G, RICHARDS J D, ESCOBAR J. Identification of potential biomarkers for gut barrier failure in broiler chickens. Frontiers in Veterinary Science, 2015, 2: 14.

doi: 10.3389/fvets.2015.00014 pmid: 26664943
[7]
AWAD W A, HESS C, HESS M. Enteric pathogens and their toxin- induced disruption of the intestinal barrier through alteration of tight junctions in chickens. Toxins, 2017, 9(2): 60.
[8]
SONG J, XIAO K, KE Y L, JIAO L F, HU C H, DIAO Q Y, SHI B, ZOU X T. Effect of a probiotic mixture on intestinal microflora, morphology, and barrier integrity of broilers subjected to heat stress. Poultry Science, 2014, 93(3): 581-588.

doi: 10.3382/ps.2013-03455 pmid: 24604851
[9]
ALI ABBASI M, GHAZANFARI S, SHARIFI S D, AHMADI GAVLIGHI H. Influence of dietary plant fats and antioxidant supplementations on performance, apparent metabolizable energy and protein digestibility, lipid oxidation and fatty acid composition of meat in broiler chicken. Veterinary Medicine and Science, 2020, 6(1): 54-68.

doi: 10.1002/vms3.212 pmid: 31710179
[10]
LIU L L, GONG X Y, ZHANG X Y, ZHANG D W, TANG Y, LIU J T, LI Y J, PAN D S. Resveratrol alleviates heat-stress-induced impairment of the jejunal mucosa through TLR4/MAPK signaling pathway in black-boned chicken. Poultry Science, 2024, 103(1): 103242.
[11]
LI C, XIAO J F, ZHANG J, WEN Q Q. The effect of dietary resveratrol supplementation on growth performance, carcase trait, meat quality and antioxidant status of Chinese indigenous chicken. Journal of Applied Animal Research, 2023, 51(1): 333-341.
[12]
HAFEEZ A, SHAHID ALI S, AKHTAR J, NAZ S, ALREFAEI A F, ALBESHR M F, ISRAR M, KHAN R U. Impact of coriander (Coriandrum sativum), garlic (Allium sativum), fenugreek (Trigonella foenum-graecum) on zootechnical performance, carcass quality, blood metabolites and nutrient digestibility in broilers chickens. The Veterinary Quarterly, 2024, 44(1): 1-7.
[13]
HAKIM A H, ZULKIFLI I, FARJAM A S, AWAD E A, RAMIAH S K. Impact of feeding fermented palm kernel cake and high dietary fat on nutrient digestibility, enzyme activity, intestinal morphology and intestinal nutrient transporters mRNA expression in broiler chickens under hot and humid conditions. Animals, 2022, 12(7): 882.
[14]
GUAN Y L, ZHENG W D, BAI Y, WU B. Yupingfeng polysaccharide promote the growth of chickens via regulating gut microbiota. Frontiers in Veterinary Science, 2024, 11: 1337698.
[15]
CHEN S Y, MEI H Y, XU L, ZHAN L M, YANG Y H, ZHAO D X, BAO G Y, LI X Y, CAO Z H. Impact of fermented feed of soybean hulls and rapeseed cake on immunity, antioxidant capacity, and gut microbiota in Chahua chicken. Poultry Science, 2024, 103(3): 103451.
[16]
JIANG Y Y, ZENG Y J, CHEN K Y, CHENG H R, DAI S J, DENG X X, WANG L, LIAO J Q, YANG R W, ZHANG L. Effects of natural extract from medicinal herbs on broilers experimentally infected with Eimeria tenella. Veterinary Parasitology, 2024, 327: 110107.
[17]
XIONG L N, YANG J J, JIANG Y R, LU B Y, HU Y Z, ZHOU F, MAO S Q, SHEN C X. Phenolic compounds and antioxidant capacities of 10 common edible flowers from China. Journal of Food Science, 2014, 79(4): C517-C525.
[18]
LI L, LIU M H, SHI K, YU Z J, ZHOU Y, FAN R S, SHI Q Q. Dynamic changes in metabolite accumulation and the transcriptome during leaf growth and development in Eucommia ulmoides. International Journal of Molecular Sciences, 2019, 20(16): 4030.
[19]
SCHARLACK N K, ARACAVA K K, RODRIGUES C E. Effect of the type and level of hydration of alcoholic solvents on the simultaneous extraction of oil and chlorogenic acids from sunflower seed press cake. Journal of the Science of Food and Agriculture, 2017, 97(13): 4612-4620.

doi: 10.1002/jsfa.8331 pmid: 28349541
[20]
杨剀舟. 绿原酸抗氧化活性及其自协同抗氧化机理研究[D]. 北京: 中国农业大学, 2016.
YANG K Z. Antioxidant activity of chlorogenic acids and homologous chlorogenic acids for the search for the synergistic antioxidant mechanism[D]. Beijing: China Agricultural University, 2016. (in Chinese)
[21]
卢娟芳, 刘盛雨, 芦旺, 席万鹏. 不同类型桃果肉酚类物质及抗氧化活性分析. 中国农业科学, 2017, 50(16): 3205-3214.

doi: 10.3864/j.issn.0578-1752.2017.16.015
LU J F, LIU S Y, LU W, XI W P. Phenolic profiles and antioxidant activity of fruit pulp from different types of peaches. Scientia Agricultura Sinica, 2017, 50(16): 3205-3214. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2017.16.015
[22]
傅玉凡, 杨春贤, 赵亚特, 赵文婷, 刘小强, 曾令江, 廖志华, 张启堂. 不同叶菜型甘薯品种茎尖绿原酸含量及清除DPPH·能力. 中国农业科学, 2010, 43(23): 4814-4822.
FU Y F, YANG C X, ZHAO Y T, ZHAO W T, LIU X Q, ZENG L J, LIAO Z H, ZHANG Q T. Chlorogenic acid contents in shoot-tips of different vegetable-use sweetpotato varieties and their DPPH- scavenging capacities. Scientia Agricultura Sinica, 2010, 43(23): 4814-4822. (in Chinese)
[23]
SHIN H S, SATSU H, BAE M J, TOTSUKA M, SHIMIZU M. Catechol groups enable reactive oxygen species scavenging- mediated suppression of PKD-NFkappaB-IL-8 signaling pathway by chlorogenic and caffeic acids in human intestinal cells. Nutrients, 2017, 9(2): 165.
[24]
LIANG N J, KITTS D D. Chlorogenic acid (CGA) isomers alleviate interleukin 8 (IL-8) production in caco-2 cells by decreasing phosphorylation of p38 and increasing cell integrity. International Journal of Molecular Sciences, 2018, 19(12): 3873.
[25]
SONG D P, ZHANG S, CHEN A, SONG Z G, SHI S R. Comparison of the effects of chlorogenic acid isomers and their compounds on alleviating oxidative stress injury in broilers. Poultry Science, 2024, 103(6): 103649.
[26]
ZHANG K, MENG H L, DU M M, DU Y F, LI X M, WANG Y, LIU H W. Quantitative phosphoproteomics analysis reveals the protective mechanism of chlorogenic acid on immunologically stressed broiler meat quality. Journal of Agricultural and Food Chemistry, 2024, 72(9): 5062-5072.
[27]
ZHANG X H, ZHAO Q Q, CI X T, CHEN S, XIE Z, LI H X, ZHANG H M, CHEN F, XIE Q M. Evaluation of the efficacy of chlorogenic acid in reducing small intestine injury, oxidative stress, and inflammation in chickens challenged with Clostridium perfringens type A. Poultry Science, 2020, 99(12): 6606-6618.
[28]
LIU H W, MENG H L, DU M M, LV H M, WANG Y, ZHANG K. Chlorogenic acid ameliorates intestinal inflammation by inhibiting NF-κB and endoplasmic reticulum stress in lipopolysaccharide- challenged broilers. Poultry Science, 2024, 103(5): 103586.
[29]
马力, 唐凤敏, 曾天舒, 张玉良, 陈东生, 张玉. 菊花多糖和绿原酸免疫调节作用的研究. 医药导报, 2008, 27(10): 1168-1170.
MA L, TANG F M, ZENG T S, ZHANG Y L, CHEN D S, ZHANG Y. Immune modulatory effects of Dendranthema mrifolium and chlorogenic acid. Herald of Medicine, 2008, 27(10): 1168-1170. (in Chinese)
[30]
TAN H Q, ZHEN W R, BAI D Y, LIU K X, HE X L, ITO K, LIU Y H, LI Y Q, ZHANG Y, ZHANG B K, MA Y B. Effects of dietary chlorogenic acid on intestinal barrier function and the inflammatory response in broilers during lipopolysaccharide-induced immune stress. Poultry Science, 2023, 102(5): 102623.
[31]
CHEN Y P, ZHA P P, XU H R, ZHOU Y M. An evaluation of the protective effects of chlorogenic acid on broiler chickens in a dextran sodium sulfate model: a preliminary investigation. Poultry Science, 2023, 102(1): 102257.
[32]
LI Y Q, ZHANG Y, BAI D Y, LIU Y H, HE X L, ITO K, LIU K X, TAN H Q, ZHEN W R, ZHANG C, ZHANG B K, MA Y B. Effects of dietary chlorogenic acid on ileal intestinal morphology, barrier function, immune factors and gut microbiota of broilers under high stocking density stress. Frontiers in Physiology, 2023, 14: 1169375.
[33]
LIU Y H, ZHANG Y, BAI D Y, LI Y Q, HE X L, ITO K, LIU K X, TAN H Q, ZHEN W R, ZHANG B K, MA Y B. Dietary supplementation with chlorogenic acid enhances antioxidant capacity, which promotes growth, jejunum barrier function, and cecum microbiota in broilers under high stocking density stress. Animals, 2023, 13(2): 303.
[34]
LV H M, CHEN P, WANG Y, XU L B, ZHANG K, ZHAO J S, LIU H W. Chlorogenic acid protects against intestinal inflammation and injury by inactivating the mtDNA-cGAS-STING signaling pathway in broilers under necrotic enteritis challenge. Poultry Science, 2024, 103(2): 103274.
[35]
WEN K M, ZHANG K Y, GAO W, BAI S P, WANG J P, SONG W G, ZENG Q F, PENG H W, LV L, XUAN Y, LI S S, XU M L, DING X M. Effects of Stevia extract on production performance, serum biochemistry, antioxidant capacity, and gut health of laying hens. Poultry Science, 2024, 103(1): 103188.
[36]
ZHA P P, LIU W H, ZHOU Y M, CHEN Y P. Protective effects of chlorogenic acid on the intestinal barrier of broiler chickens: an immunological stress model study. Poultry Science, 2024, 103(8): 103949.
[37]
CHEN F, ZHANG H, ZHAO N, YANG X H, DU E C, HUANG S W, GUO W Z, ZHANG W, WEI J T. Effect of chlorogenic acid on intestinal inflammation, antioxidant status, and microbial community of young hens challenged with acute heat stress. Animal Science Journal, 2021, 92(1): e13619.
[38]
金能智, 齐燕姣, 向春杰, 者建武, 杨博超. 异鼠李素和异鼠李素-3-O-葡萄糖苷的抗氧化活性分析. 生物信息学, 2017, 15(2): 112-119.
JIN N Z, QI Y J, XIANG C J, ZHE J W, YANG B C. Study on antioxidant activity of isorhamnetin and isorhamnetin-3-O-glucoside. Chinese Journal of Bioinformatics, 2017, 15(2): 112-119. (in Chinese)
[39]
刘卓琳, 刘红云. 基于网络药理学和分子对接探究芹菜素缓解奶牛热应激及低氧应激的潜力与机制. 中国农业科学, 2024, 57(5): 1010-1022. doi: 10.3864/j.issn.0578-1752.2024.05.015.
LIU Z L, LIU H Y. The potential and mechanisms of apigenin to relieve heat stress and hypoxia in dairy cows based on network pharmacology and molecular docking. Scientia Agricultura Sinica, 2024, 57(5): 1010-1022. doi: 10.3864/j.issn.0578-1752.2024.05.015. (in Chinese)
[40]
RU J L, LI P, WANG J N, ZHOU W, LI B H, HUANG C, LI P D, GUO Z H, TAO W Y, YANG Y F, et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. Journal of Cheminformatics, 2014, 6: 13.

doi: 10.1186/1758-2946-6-13 pmid: 24735618
[41]
DAINA A, MICHIELIN O, ZOETE V. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Research, 2019, 47(W1): w357-w364.
[42]
GFELLER D, MICHIELIN O, ZOETE V. Shaping the interaction landscape of bioactive molecules. Bioinformatics, 2013, 29(23): 3073-3079.

doi: 10.1093/bioinformatics/btt540 pmid: 24048355
[43]
BARDOU P, MARIETTE J, ESCUDIÉ F, DJEMIEL C, KLOPP C. Jvenn: an interactive Venn diagram viewer. BMC Bioinformatics, 2014, 15(1): 293.
[44]
AGGARWAL N R, NORDWALL J, BRAUN D L, CHUNG L, COSLET J, DER T, ERIOBU N, GINDE A A, HAYANGA A J, HIGHBARGER H, et al. Viral and host factors are associated with mortality in hospitalized patients with COVID-19. Clinical Infectious Diseases, 2024, 78(6): 1490-1503.
[45]
HSIN K Y, GHOSH S, KITANO H. Combining machine learning systems and multiple docking simulation packages to improve docking prediction reliability for network pharmacology. PLoS ONE, 2013, 8(12): e83922.
[46]
FRANCESCONE R, HOU V, GRIVENNIKOV S I. Cytokines, IBD, and colitis-associated cancer. Inflammatory Bowel Diseases, 2015, 21(2): 409-418.

doi: 10.1097/MIB.0000000000000236 pmid: 25563695
[47]
SHIN H S, SATSU H, BAE M J, ZHAO Z H, OGIWARA H, TOTSUKA M, SHIMIZU M. Anti-inflammatory effect of chlorogenic acid on the IL-8 production in Caco-2 cells and the dextran sulphate sodium-induced colitis symptoms in C57BL/6 mice. Food Chemistry, 2015, 168: 167-175.

doi: 10.1016/j.foodchem.2014.06.100 pmid: 25172696
[48]
XUE H H, LI J J, LI S F, GUO J, YAN R P, CHEN T G, SHI X H, WANG J D, ZHANG L W. Phillygenin attenuated colon inflammation and improved intestinal mucosal barrier in DSS-induced colitis mice via TLR4/src mediated MAPK and NF-κB signaling pathways. International Journal of Molecular Sciences, 2023, 24(3): 2238.
[49]
KUO W T, SHEN L, ZUO L, SHASHIKANTH N, ONG M L D M, WU L C, ZHA J M, EDELBLUM K L, WANG Y T, WANG Y M, NILSEN S P, TURNER J R. Inflammation-induced occludin downregulation limits epithelial apoptosis by suppressing caspase-3 expression. Gastroenterology, 2019, 157(5): 1323-1337.
[50]
BRINCKERHOFF C E, MATRISIAN L M. Matrix metalloproteinases: a tail of a frog that became a prince. Nature Reviews Molecular Cell Biology, 2002, 3(3): 207-214.

pmid: 11994741
[51]
EGEBLAD M, WERB Z. New functions for the matrix metalloproteinases in cancer progression. Nature Reviews Cancer, 2002, 2(3): 161-174.

doi: 10.1038/nrc745 pmid: 11990853
[52]
OKAMOTO R, WATANABE M. Cellular and molecular mechanisms of the epithelial repair in IBD. Digestive Diseases and Sciences, 2005, 50(Suppl. 1): S34-S38.
[53]
DE ALMEIDA L G N, THODE H, ESLAMBOLCHI Y, CHOPRA S, YOUNG D, GILL S, DEVEL L, DUFOUR A. Matrix metalloproteinases: from molecular mechanisms to physiology, pathophysiology, and pharmacology. Pharmacological Reviews, 2022, 74(3): 712-768.

doi: 10.1124/pharmrev.121.000349 pmid: 35738680
[54]
BAUGH M D, PERRY M J, HOLLANDER A P, DAVIES D R, CROSS S S, LOBO A J, TAYLOR C J, EVANS G S. Matrix metalloproteinase levels are elevated in inflammatory bowel disease. Gastroenterology, 1999, 117(4): 814-822.

doi: 10.1016/s0016-5085(99)70339-2 pmid: 10500063
[55]
CASTANEDA F E, WALIA B, VIJAY-KUMAR M, PATEL N R, ROSER S, KOLACHALA V L, ROJAS M, WANG L X, OPREA G, GARG P, et al. Targeted deletion of metalloproteinase 9 attenuates experimental colitis in mice: central role of epithelial-derived MMP. Gastroenterology, 2005, 129(6): 1991-2008.

doi: 10.1053/j.gastro.2005.09.017 pmid: 16344067
[56]
倪付勇, 宋亚玲, 刘露, 赵祎武, 黄文哲, 王振中, 萧伟. 异绿原酸A、B和C的制备工艺研究. 中草药, 2015, 46(3): 369-373.
NI F Y, SONG Y L, LIU L, ZHAO Y W, HUANG W Z, WANG Z Z, XIAO W. Preparation technology of isochlorogenic acids A, B, and C. Chinese Traditional and Herbal Drugs, 2015, 46(3): 369-373. (in Chinese)
[57]
赵磊, 张会敏, 徐美利, 鲍玺, 艾欣, 陈艳麟, 王成涛, 连运河. 甜叶菊废渣提取物及其主要成分异绿原酸的抗炎作用. 中国食品学报, 2021, 21(5): 117-124.
ZHAO L, ZHANG H M, XU M L, BAO X, AI X, CHEN Y L, WANG C T, LIAN Y H. Anti-inflammatory effect of Stevia residue extract and its main components isochlorogenic acids. Journal of Chinese Institute of Food Science and Technology, 2021, 21(5): 117-124. (in Chinese)
[58]
ZHAO J S, DENG W, LIU H W. Effects of chlorogenic acid-enriched extract from Eucommia ulmoides leaf on performance, meat quality, oxidative stability, and fatty acid profile of meat in heat-stressed broilers. Poultry Science, 2019, 98(7): 3040-3049.
[59]
ARTHUR J S C, LEY S C. Mitogen-activated protein kinases in innate immunity. Nature Reviews Immunology, 2013, 13(9): 679-692.

doi: 10.1038/nri3495 pmid: 23954936
[60]
NEWTON K, DIXIT V M. Signaling in innate immunity and inflammation. Cold Spring Harbor Perspectives in Biology, 2012, 4(3): a006049.
[61]
KAWAI T, AKIRA S. The role of pattern-recognition receptors in innate immunity: update on toll-like receptors. Nature Immunology, 2010, 11(5): 373-384.

doi: 10.1038/ni.1863 pmid: 20404851
[62]
GAO W Y, WANG C H, YU L, SHENG T J, WU Z L, WANG X Q, ZHANG D Q, LIN Y F, GONG Y. Chlorogenic acid attenuates dextran sodium sulfate-induced ulcerative colitis in mice through MAPK/ ERK/JNK pathway. BioMed Research International, 2019, 2019: 6769789.
[63]
ZHAO Y, WANG C R, YANG T Y, FENG G F, TAN H Y, PIAO X, CHEN D N, ZHANG Y, JIAO W, CHEN Y P, et al. Chlorogenic acid alleviates chronic stress-induced intestinal damage by inhibiting the P38MAPK/NF-κB pathway. Journal of Agricultural and Food Chemistry, 2023, 71(24): 9381-9390.

doi: 10.1021/acs.jafc.3c00953 pmid: 37293923
[64]
BUNDA S, HEIR P, SRIKUMAR T, COOK J D, BURRELL K, KANO Y, LEE J E, ZADEH G, RAUGHT B, OHH M. Src promotes GTPase activity of Ras via tyrosine 32 phosphorylation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(36): E3785-E3794.
[65]
WU W B, SUN Z C, WU J W, PENG X M, GAN H C, ZHANG C Y, JI L L, XIE J H, ZHU H Y, REN S F, et al. Trihydrophobin 1 phosphorylation by c-Src regulates MAPK/ERK signaling and cell migration. PLoS ONE, 2012, 7(1): e29920.
[66]
MARTIN G S. The hunting of the src. Nature Reviews Molecular Cell Biology, 2001, 2(6): 467-475.

doi: 10.1038/35073094 pmid: 11389470
[67]
韦正, 黄秀香, 叶红霞, 邵柳红, 赖红芳. 双水相协同超声法提取枇杷叶中绿原酸的工艺研究. 饲料研究, 2024, 47(1): 67-72.
WEI Z, HUANG X X, YE H X, SHAO L H, LAI H F. Study on extraction of chlorogenic acid from loquat leaves by biphasic synergistic ultrasound-assisted. Feed Research, 2024, 47(1): 67-72. (in Chinese)
[68]
李婉玉, 张家旭, 谢兴文, 石晓峰. 杜仲叶化学成分、药理活性及现代应用研究进展. 天然产物研究与开发, 2024, 36(5): 900-917.
LI W Y, ZHANG J X, XIE X W, SHI X F. Research progress on chemical components, pharmacological activities, and modern applications of Eucommiae Folium. Natural Product Research and Development, 2024, 36(5): 900-917. (in Chinese)
[69]
袁玉雪, 李畅, 代佳和, 门德盈, 赵存朝, 陶亮, 田洋. 金银花废渣中绿原酸提取条件优化及抗氧化活性研究. 中国酿造, 2024, 43(3): 170-176.

doi: 10.11882/j.issn.0254-5071.2024.03.027
YUAN Y X, LI C, DAI J H, MEN D Y, ZHAO C C, TAO L, TIAN Y. Optimization of extraction conditions for chlorogenic acid extraction from honeysuckle waste residue and antioxidant activity. China Brewing, 2024, 43(3): 170-176. (in Chinese)

doi: 10.11882/j.issn.0254-5071.2024.03.027
[70]
何积芬, 黄国健, 符滇海, 谢炯, 吕冠欣. HPLC法同时测定野木瓜片中木通苯乙醇苷B和绿原酸的含量. 中国药品标准, 2024, 25(1): 90-93.
HE J F, HUANG G J, FU D H, XIE J, G X. Simultaneous determination of calceolarioside B and chlorogenic acid in Caulis Stauntoniae Chinensis tablets by HPLC. Drug Standards of China, 2024, 25(1): 90-93. (in Chinese)
[71]
黄永桥, 毛敏霞, 马凯, 左丹, 吴新文, 李占彬. UHPLC-MS/MS法测定水果中6种绿原酸单体的含量. 食品科技, 2019, 44(10): 328-334.
HUANG Y Q, MAO M X, MA K, ZUO D, WU X W, LI Z B. Determination of the content of six types of chlorogenic acid compounds in fruits by UHPLC-MS/MS. Food Science and Technology, 2019, 44(10): 328-334. (in Chinese)
[72]
FARRELL T L, DEW T P, POQUET L, HANSON P, WILLIAMSON G. Absorption and metabolism of chlorogenic acids in cultured gastric epithelial monolayers. Drug Metabolism and Disposition, 2011, 39(12): 2338-2346.

doi: 10.1124/dmd.111.040147 pmid: 21937734
[73]
GUY P A, RENOUF M, BARRON D, CAVIN C, DIONISI F, KOCHHAR S, REZZI S, WILLIAMSON G, STEILING H. Quantitative analysis of plasma caffeic and ferulic acid equivalents by liquid chromatography tandem mass spectrometry. Journal of Chromatography B, 2009, 877(31): 3965-3974.

doi: 10.1016/j.jchromb.2009.10.006 pmid: 19879819
[74]
TANG S S, ZHONG W, LI T T, LI Y Y, SONG G. Isochlorogenic acid A alleviates dextran sulfate sodium-induced ulcerative colitis in mice through STAT3/NF-кB pathway. International Immunopharmacology, 2023, 118: 109989.
[75]
KIM M, CHOI S Y, LEE P, HUR J. Neochlorogenic acid inhibits lipopolysaccharide-induced activation and pro-inflammatory responses in BV2 microglial cells. Neurochemical Research, 2015, 40(9): 1792-1798.

doi: 10.1007/s11064-015-1659-1 pmid: 26152332
[1] LIU ZhuoLin, LIU HongYun. The Potential and Mechanisms of Apigenin to Relieve Heat Stress and Hypoxia in Dairy Cows Based on Network Pharmacology and Molecular Docking [J]. Scientia Agricultura Sinica, 2024, 57(5): 1010-1022.
[2] WANG ChaoHui, ZHANG LiMin, SUN Xi, LI SiJing, YANG XiaoJun, LIU YanLi. The Model Establishment of Lipid Deposition in Primary Chicken Embryo Liver Cells Induced by Oleic Acid [J]. Scientia Agricultura Sinica, 2024, 57(23): 4806-4814.
[3] ZHANG HuiYong, WU HuCong, ZHU GuoQiang, LI GuoHui, YU Yan, YIN JianMei, XUE Qian, ZHOU ChengHao, JIANG YiXiu, SU YiJun, HUANG HuaYun, HAN Wei. Detox Dynamics and Reproductive Performance of Langya Chickens Infected with ALV-J [J]. Scientia Agricultura Sinica, 2024, 57(23): 4815-4824.
[4] MA JingE, XIONG XinWei, ZHOU Min, WU SiQi, HAN Tian, RAO YouSheng, WANG ZhangFeng, XU JiGuo. Full-Length Transcriptomic Analysis of Chicken Pituitary Reveals Candidate Genes for Testicular Trait [J]. Scientia Agricultura Sinica, 2024, 57(20): 4130-4144.
[5] WEI QiHang, FENG Yao, WANG XiaoXing, ZHU HongGang, FANG Zhao, LI ZhaoJun. Screening of Deodorizing Bacteria and Its Application in Composting [J]. Scientia Agricultura Sinica, 2024, 57(13): 2623-2634.
[6] LI Kai, BAI GuoSong, TENG ChunRan, MA Teng, ZHONG RuQing, CHEN Liang, ZHANG HongFu. Prediction Equations of Chicken Metabolizable Energy Values for Grain Ingredients Based on in Vitro Simulated Enzymatic Hydrolysate Gross Energy Values and Chemical Composition [J]. Scientia Agricultura Sinica, 2024, 57(10): 2035-2045.
[7] LUO Na, AN BingXing, WEI LiMin, WEN Jie, ZHAO GuiPing. Identification of Molecular Markers Associated with Body Size Traits Through Genome-Wide Association Analysis in Wenchang Chickens [J]. Scientia Agricultura Sinica, 2024, 57(10): 2046-2060.
[8] JI GaiGe, CHEN ZhiWu, SHAN YanJu, LIU YiFan, TU YunJie, ZOU JianMin, ZHANG Ming, JU XiaoJun, SHU JingTing, ZHANG HaiTao, TANG YanFei, JIANG HuaLian. Study of Key Genes and Signaling Pathways Regulating Dry Feather Traits in Yellow-Feathered Broiler Chickens Based on Transcriptome Analysis [J]. Scientia Agricultura Sinica, 2024, 57(1): 204-215.
[9] JU XiaoJun, ZHANG Ming, SHAN YanJu, JI GaiGe, TU YunJie, LIU YiFan, ZOU JianMin, SHU JingTing. Chicken Quality Analysis and Screening of Key Flavor Substances and Genes [J]. Scientia Agricultura Sinica, 2023, 56(9): 1813-1826.
[10] XIAO Tao, LI Hui, LUO Wei, YE Tao, YU Huan, CHEN YouBo, SHI YuShi, ZHAO DePeng, WU Yun. Screening of Candidate Genes for Green Shell Egg Shell Color Traits in Chishui Black Bone Chicken Based on Transcriptome Sequencing [J]. Scientia Agricultura Sinica, 2023, 56(8): 1594-1605.
[11] GUO YuChen, DONG Ming, ZENG XianMing, TIAN HuiXin, YIN JiaQi, HOU YuKe, BAI Yun, TANG ChangBo, HAN MinYi, XU XingLian. Effects of Pulsed Electric Field on Gelation Properties of PSE-Like Chicken Myosin: A Molecular Dynamics Simulation Analysis [J]. Scientia Agricultura Sinica, 2023, 56(4): 741-753.
[12] XI MengXue, SHEN Dan, SHI YiFan, LI ChunMei. Effects of TBHQ on Pyroptosis, Necroptosis and Inflammatory Damage of Chicken Embryonic Lung Tissues Induced by PM2.5 from Chicken Houses [J]. Scientia Agricultura Sinica, 2023, 56(4): 779-787.
[13] CHEN Qiu, HUANG JingJing, WANG ZhePeng. Establishment of Quantization Method and Genetic Basis Analysis of Brown Eggshell Color in the Lüeyang Black-Boned Chicken [J]. Scientia Agricultura Sinica, 2023, 56(17): 3452-3460.
[14] WU YuCan, ZHANG ZiHan, ZHAO GuiPing, WEI LiMin, HUANG Feng, ZHANG ChunHui. Effect of Boiling Coconut Water on Flavor Formation of Wenchang Chicken [J]. Scientia Agricultura Sinica, 2023, 56(16): 3199-3212.
[15] NIAN HeFen, ZHANG YuXi, LI BoLiao, CHEN XiuLin, LUO Kun, LI GuangWei. Expression and Ligand Binding Characteristics of GfunOBP2 from Grapholita funebrana [J]. Scientia Agricultura Sinica, 2023, 56(12): 2302-2316.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!