Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (20): 4070-4084.doi: 10.3864/j.issn.0578-1752.2025.20.004

• INTELLIGENT MONITORING OF SALINE-ALKALI LAND • Previous Articles     Next Articles

Spatial Prediction of Deep Soil Salinization Based on Layered Modeling Using UAV Imagery

LEI MingKuo1,2,3(), ZHA Yan2,3, WANG Li2, CHENG Gang1, WEN CaiYun2, YIN ZuoTang2, LU Miao2,3()   

  1. 1 School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, Henan
    2 State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China (Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences), Beijing 100081
    3 National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257347, Shandong
  • Received:2025-07-22 Accepted:2025-09-29 Online:2025-10-16 Published:2025-10-14
  • Contact: LU Miao

Abstract:

【Background】Soil salinization severely constrains crop growth and ecological balance, and its accurate monitoring is essential for saline-alkali land reclamation, yield forecasting, and precision farmland management. Driven by natural and anthropogenic factors, salinization is governed by the redistribution of water and salt within the soil profile, exhibiting pronounced vertical migration and strong spatial heterogeneity. Although unmanned aerial vehicle (UAV) remote sensing is now widely used for field-scale salinity mapping, it essentially captures surface information and fails to characterize salt gradients in deeper layers. 【Objective】To develop a UAV-image-based, layer-specific modeling framework that integrates machine learning with Kriging interpolation for high-resolution 3-D mapping of subsurface soil salinity.【Method】Firstly, the UAV was equipped with multispectral sensors to obtain high-resolution images of the test field, and the soil salinity data at different depths were measured synchronously, supplemented by real-time dynamic differential positioning technology to ensure spatial accuracy. Then, a spectral feature set including the red-edge band was constructed, and the feature optimization was carried out based on the random forest algorithm. On this basis, machine learning and Kriging interpolation method were combined to establish a stratified soil salinity prediction model and generate a high-resolution salinity distribution map. Finally, the advantages of the proposed method in the spatial representation of deep salinization were verified by comparing it with the cubic fitting depth function prediction method.【Result】The prediction accuracy R2 of each depth of deep soil salinization spatial prediction by the mixed model hierarchical modeling was 0.68 (0-10 cm), 0.51 (10-20 cm), 0.58 (20-40 cm), 0.56 (40-60 cm) and 0.52 (60-80 cm), respectively, and the prediction effect of 0-10 cm surface layer was the best. The red-edged salinity index was an important predictor at all depths, which verified the applicability and effectiveness of the constructed red-edged index. By comparing the prediction results of the mixed model with the cubic fitting depth function, the spatial prediction accuracy of deep soil salinization in the layered model of the mixed model was higher, and it could more truly reflect the salinization degree at different depths in the experimental area.【Conclusion】UAV remote sensing technology is the best in shallow (0-10 cm) soil salinity prediction, and the prediction accuracy of soil properties decreases with the increase of depth, and the depth accuracy still needs to be improved. From the prediction results, the average soil salinity gradually increases with the increase of depth, indicating that there is an accumulation phenomenon of salt in the soil profile. Compared with the cubic fitting depth function method, the hybrid model based on random forest stratification modeling and Kriging residual correction shows higher spatial prediction accuracy in each soil layer, which is more reasonable and practical, and provides a scientific basis for dynamic monitoring of regional soil salinization and accurate layered soil salinity mapping.

Key words: UAV remote sensing, soil salinization, depth, hybrid model, random forest, Kriging interpolation, salinity prediction

Fig. 1

Schematic diagram of the study area"

Fig. 2

Research technical flow chart"

Table 1

Formulas for calculating index features"

数据Data 特征Feature 简称Abbreviation 计算公式Calculation formula
光谱值
Spectral value
绿波段Green band G
红波段Red band R
红边Red edge REG
近红外Near-infrared NIR
盐度指数
Salinity index
盐度指数Salinity index SI R×NIR)/G[27]
盐度红边指数Salinity red-edged index SIREG REG×NIR)/G
归一化盐度指数Normalized salinity index NDSI R-NIR)/(R+NIR[27]
归一化盐度红边指数 Normalized salinity red-edged index NDSIREG REG-NIR)/(REG+NIR
盐度指数1 Salinity index 1 SI1 $ \sqrt{G \times R}$ [28]
盐度红边指数1 Salinity index red-edged 1 SI1REG $ \sqrt{G \times R E G}$
盐度指数2 Salinity index 2 SI2 $ \sqrt{G^{2}+R^{2}+N I R^{2}}$ [28]
盐度红边指数2 Salinity index red-edged 2 SI2REG $ \sqrt{G^{2}+R E G^{2}+N I R^{2}}$
盐度指数3 Salinity index 3 SI3 $ \sqrt{G^{2}+R^{2}}$ [28]
盐度红边指数3 Salinity index red-edged 3 SI3REG $ \sqrt{G^{2}+R E G^{2}}$
土壤指数T Soil index T SIT 100(R-NIR[29]
红边土壤指数T Red-edged soil index T SITREG 100(REG-NIR
强度指数
Intensity index
强度指数1 Intensity index 1 Int1 G+R)/2[29]
强度红边指数1 Intensity red-edged index 1 Int1REG G+REG)/2
强度指数2 Intensity index 2 Int2 G+R+NIR)/2[29]
强度红边指数2 Intensity red-edged index 2 Int2REG G+REG+NIR)/2
植被指数
Vegetation index
归一化植被指数
Normalized difference vegetation index
NDVI $ \frac{N I R-R}{N I R+R}$ [27]
归一化植被红边指数
Normalized difference vegetation red-edged index
NDVIREG $ \frac{N I R-R E G}{N I R+R E G}$
土壤调节植被指数
Soil adjusted vegetation index
SAVI $ \frac{(1+L) \times(N I R-R)}{N I R+R+L}$[30]
红边土壤调节植被指数
Soil adjusted vegetation red-edged index
SAVIREG $ \frac{(1+L) \times(N I R-R E G)}{N I R+R E G+L}$
亮度指数Brightness index BI $ \sqrt{R^{2}+N I R^{2}}$ [28]
红边高度指数Brightness red-edged index BIREG $ \sqrt{R E G^{2}+N I R^{2}}$
氧化铁指数
Iron oxide index
IFe2O3 $ \frac{R}{N I R}$ [30]
红边氧化铁指数
Iron oxide red-edged index
IFe2O3REG $ \frac{R E G}{N I R}$
差异植被指数Differential vegetation index DVI NIR-R[29]
红边差异植被指数 Differential vegetation red-edged index DVIREG NIR-REG

Fig. 3

Histogram of laboratory sample analysis"

Fig. 4

Screening of important features of each layer"

Fig. 5

Stratified soil salinity prediction (g·kg-1)"

Fig. 6

Predicted mean value of profile"

Table 2

Prediction accuracy of the mixed model"

深度
Depth (cm)
测试集Test set 验证集Validation set
R2 RMSE MAE R2 RMSE MAE
0-10 0.73 0.77 0.51 0.68 0.93 0.69
10-20 0.71 1.74 1.41 0.51 2.25 2.12
20-40 0.78 4.87 3.93 0.58 4.37 3.68
40-60 0.74 4.46 3.32 0.56 4.44 3.56
60-80 0.69 3.05 2.55 0.52 4.81 3.46

Fig. 7

Results of cubic fitting depth function (g·kg-1)"

Table 3

Prediction accuracy of cubic fitting depth function"

深度Depth (cm) 三次拟合公式Cubic fitting formula (y=) R2 F检验(P值)F-test (P value)
10-20 0.7722x3-9.3995x2+33.548x-25.728 0.22 0.12
20-40 0.9934x3-11.766x2+40.284x-25.292 0.26 0.09
40-60 0.1979x3-2.0289x2+6.9204x+9.7859 0.27 0.07
60-80 -0.118x3+2.0183x2-8.4252x+26.231 0.26 0.08
[1]
李红强, 姚荣江, 杨劲松, 王相平, 谢文萍, 张新. 滨海盐渍农田土壤硝化势特征及其影响因素. 应用生态学报, 2022, 33(8): 2205-2212.

doi: 10.13287/j.1001-9332.202208.017
LI H Q, YAO R J, YANG J S, WANG X P, XIE W P, ZHANG X. Characteristics and influencing factors of soil nitrification potential in coastal salinized farmland. Chinese Journal of Applied Ecology, 2022, 33(8): 2205-2212. (in Chinese)
[2]
王辉, 高玉录, 于梦, 杜远鹏, 孙永江, 翟衡. 根灌乙酸及葡萄酒对海水胁迫下葡萄光抑制的影响. 中国农业科学, 2018, 51(21): 4210-4218. doi: 10.3864/j.issn.0578-1752.2018.21.019.
WANG H, GAO Y L, YU M, DU Y P, SUN Y J, ZHAI H. Effect of root irrigation of acetic acid and wine on photoinhibition of grape under seawater stress. Scientia Agricultura Sinica, 2018, 51(21): 4210-4218. doi: 10.3864/j.issn.0578-1752.2018.21.019. (in Chinese)
[3]
GU S M, JIANG S M, LI X W, ZHENG N, XIA X M. Soil salinity simulation based on electromagnetic induction and deep learning. Soil & Tillage Research, 2023, 230: 105706.
[4]
宋岩, 柴明堂, 李王成, 孙利英, 吾连恩·赛尔奴, 杜天择, 基于RGB和纹理特征的土壤表层水盐信息反演方法. 中国农业科学, 2025, 58(6): 1159-1172. doi: 10.3864/j.issn.0578-1752.2025.06.009.
SONG Y, CHAI M T, LI W C, SUN L Y, WULIANEN·SAIERNU, DU T Z. A method for estimating water-salinity information of soil surface using RGB and texture features. Scientia Agricultura Sinica, 2025, 58(6): 1159-1172. doi: 10.3864/j.issn.0578-1752.2025.06.009. (in Chinese)
[5]
张靖康, 宋乃平, 杨霜奇, 王兴, 陈林, 王启学. 荒漠草原土壤盐分空间变异特征研究. 土壤通报, 2025, 56(1): 87-95.
ZHANG J K, SONG N P, YANG S Q, WANG X, CHEN L, WANG Q X. Spatial variation characteristics of soil salinity in desert steppe. Chinese Journal of Soil Science, 2025, 56(1): 87-95. (in Chinese)
[6]
AUKEN E, PELLERIN L, CHRISTENSEN N B, SØRENSEN K. A survey of current trends in near-surface electrical and electromagnetic methods. Geophysics, 2006, 71(5): G249-G260.
[7]
冯春晖, 刘新路, 纪文君, 吴家林, 柳维扬, 彭杰. 基于电磁感应技术的棉田土壤电导率时空异质性研究. 土壤学报, 2022, 59(4): 999-1011.
FENG C H, LIU X L, JI W J, WU J L, LIU W Y, PENG J. Research on spatio-temporal heterogeneity of soil electrical conductivity in cotton field based on electromagnetic induction technology. Acta Pedologica Sinica, 2022, 59(4): 999-1011. (in Chinese)
[8]
罗德芳, 冯春晖, 吴家林, 殷彩云, 柳维扬, 彭杰. 基于电磁感应协同野外原位光谱的土壤盐分反演研究. 中国土壤与肥料, 2020(6): 107-113.
LUO D F, FENG C H, WU J L, YIN C Y, LIU W Y, PENG J. The study about soil salt inversion based on electromagnetic induction and situ spectra in field. Soil and Fertilizer Sciences in China, 2020(6): 107-113. (in Chinese)
[9]
杨劲松, 姚荣江, 王相平, 谢文萍. 河套平原盐碱地生态治理和生态产业发展模式. 生态学报, 2016, 36(22): 7059-7063.
YANG J S, YAO R J, WANG X P, XIE W P. Research on ecological management and ecological industry development model of saline-alkali land in the Hetao Plain, China. Acta Ecologica Sinica, 2016, 36(22): 7059-7063. (in Chinese)
[10]
ZACCARIN A M, PEDDADA N, MACHOLD M, TURNER K T, OLSSON R H. Inductively coupled capacitive soil moisture sensors printed on a biodegradable substrate: Characterization and long-term testing. Smart Agricultural Technology, 2025, 11: 101052.
[11]
朱阿兴, 杨琳, 樊乃卿, 曾灿英, 张甘霖. 数字土壤制图研究综述与展望. 地理科学进展, 2018, 37(1): 66-78.

doi: 10.18306/dlkxjz.2018.01.008
ZHU A X, YANG L, FAN N Q, ZENG C Y, ZHANG G L. The review and outlook of digital soil mapping. Progress in Geography, 2018, 37(1): 66-78. (in Chinese)

doi: 10.18306/dlkxjz.2018.01.008
[12]
张甘霖, 朱阿兴, 史舟, 王秋兵, 刘宝元, 张兴昌, 史志华, 杨金玲, 刘峰, 宋效东, 吴华勇, 曾荣. 土壤地理学的进展与展望. 地理科学进展, 2018, 37(1): 57-65.

doi: 10.18306/dlkxjz.2018.01.007
ZHANG G L, ZHU A X, SHI Z, WANG Q B, LIU B Y, ZHANG X C, SHI Z H, YANG J L, LIU F, SONG X D, WU H Y, ZENG R. Progress and future prospect of soil geography. Progress in Geography, 2018, 37(1): 57-65. (in Chinese)

doi: 10.18306/dlkxjz.2018.01.007
[13]
赵彦锋, 李怡欣, 马盼盼, 陈杰, 李元元, 杨琼, 程道全. 近30年河南省耕地土壤有机碳的三维变化与关键因素研究. 土壤学报, 2023, 60(5): 1409-1420.
ZHAO Y F, LI Y X, MA P P, CHEN J, LI Y Y, YANG Q, CHENG D Q. Three dimensional changes of soil organic carbon content and its key factors in cultivated soils of Henan Province during the recent 30 years. Acta Pedologica Sinica, 2023, 60(5): 1409-1420. (in Chinese)
[14]
LAI Y R, ORTON T G, PRINGLE M J, MENZIES N W, DANG Y P. Increment-averaged kriging: A comparison with depth-harmonized mapping of soil exchangeable sodium percentage in a cropping region of eastern Australia. Geoderma, 2020, 363: 114151.
[15]
ZHANG Y K, JI W J, SAURETTE D D, EASHER T H, LI H Y, SHI Z, ADAMCHUK V I, BISWAS A. Three-dimensional digital soil mapping of multiple soil properties at a field-scale using regression Kriging. Geoderma, 2020, 366: 114253.
[16]
解宪丽, 夏成业, 殷彪, 李安波, 李开丽, 潘贤章. 三维空间土壤推测与土壤模型构建研究进展. 土壤学报, 2025, 62(1): 14-28.
XIE X L, XIA C Y, YIN B, LI A B, LI K L, PAN X Z. A review of soil 3D prediction and modelling techniques. Acta Pedologica Sinica, 2025, 62(1): 14-28. (in Chinese)
[17]
ARROUAYS D, GRUNDY M G, HARTEMINK A E, HEMPEL J W, HEUVELINK G B M, HONG S Y, LAGACHERIE P, LELYK G, MCBRATNEY A B, MCKENZIE N J, et al. GlobalSoilMap: Toward a fine-resolution global grid of soil properties. Advances in Agronomy, 2014, 125: 93-134.

doi: 10.1016/B978-0-12-800137-0.00003-0
[18]
LIU F, WU H, ZHAO Y, LI D, YANG J L, SONG X, SHI Z, ZHU A X, ZHANG G L. Mapping high resolution national soil information grids of China. Science Bulletin, 2022, 67(3): 328-340.

doi: 10.1016/j.scib.2021.10.013 pmid: 36546081
[19]
MA W T, HAN W T, CUI X, ZHANG H H, ZHANG L Y, DONG Y X, ZHAI X D. Soil salinity estimation incorporating environmental covariables using UAV remote sensing for precision field management. Computers and Electronics in Agriculture, 2025, 237: 110532.
[20]
韩文霆, 崔家伟, 崔欣, 马伟童, 李广. 基于特征优选与机器学习的农田土壤含盐量估算研究. 农业机械学报, 2023, 54(3): 328-337.
HAN W T, CUI J W, CUI X, MA W T, LI G. Estimation of farmland soil salinity content based on feature optimization and machine learning algorithms. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(3): 328-337. (in Chinese)
[21]
马增辉, 马钢. 陕西卤泊滩“改排为蓄”条件下深层土壤盐分空间格局研究. 安徽农业科学, 2018, 46(35): 117-119.
MA Z H, MA G. Spatial distribution study on soil salinity after changing drainage to impoundment in Lubotan of Shaanxi Province. Journal of Anhui Agricultural Sciences, 2018, 46(35): 117-119. (in Chinese)
[22]
姜彬, 闫板瑞, 李家鑫, 刘蓉. 黄河中游渭北卤泊滩地区盐碱地土壤肥力综合评价及分析. 西北大学学报(自然科学版), 2022, 52(3): 371-379.
JIANG B, YAN B R, LI J X, LIU R. Comprehensive evaluation and analysis of soil fertility of saline-alkaline land in Weibei Lubotan area in the middle reaches of the Yellow River. Journal of Northwest University (Natural Science Edition), 2022, 52(3): 371-379. (in Chinese)
[23]
ZHOU Z, LI Z, ZHANG Z, YOU L, XU L, HUANG H, WANG X, GAO Y, CUI X. Treatment of the saline-alkali soil with acidic corn stalk biochar and its effect on the sorghum yield in western Songnen Plain. Science of the Total Environment, 2021, 797: 149190.
[24]
闫瑜涛, 胡海飞, 王海涛. 卤泊滩盐碱地如何掀起“金色革命”. 农业科技报, (2025-04-30) [2025-07-22].
YAN Y T, HU H F, WANG H T. How to launch a “Golden Revolution” on the saline-alkali land of Luobotan. Agricultural Science and Technology News, (2025-04-30) [2025-07-22]. (in Chinese)
[25]
WANG Z, ZHANG X L, ZHANG F, CHAN N W, KUNG H T, LIU S H, DENG L F. Estimation of soil salt content using machine learning techniques based on remote-sensing fractional derivatives, a case study in the Ebinur Lake Wetland National Nature Reserve, Northwest China. Ecological Indicators, 2020, 119: 106896.
[26]
罗冰, 陈丹丹. 质量法在土壤水溶性盐总量测定中的应用. 化工设计通讯, 2023, 49(6): 176-178.
LUO B, CHEN D D. Application of quality method in the determination of total water soluble salts in soil. Chemical Engineering Design Communications, 2023, 49(6): 176-178. (in Chinese)
[27]
AIT LAHSSAINE I, KABIRI L, MESSAOUDI B, EL HAFYANI M, ESSAFRAOUI B, KRETZSCHMAR H A, KURZ E C, HELLRIEGEL U, HOINKIS J. Performance assessment of 14 soil salinity spectral indices in a drought oasis environment: Rheris Oasis, Southeastern Morocco. Scientific African, 2025, 29: e02822.
[28]
ZHAO Y, MIAO Q F, SHI H B, LI X Y, YAN J W, YANG S Y, HOU C, YU C C, FENG W Y, HAO J N. Inversion of soil salinization at the branch canal scale in the Hetao Irrigation District based on improved spectral indices. Agricultural Water Management, 2025, 316: 109608.
[29]
XU H Y, SUN H, XU Z H, WANG Y J, ZHANG T, WU D, GAO J H. kNDMI: A kernel normalized difference moisture index for remote sensing of soil and vegetation moisture. Remote Sensing of Environment, 2025, 319: 114621.
[30]
YUE J B, LI T, LIU Y, TIAN J, TIAN Q J, LI S J, FENG H K, GUO W, YANG H, YANG G J, QIAO H B. A novel vegetation-water resistant soil moisture index for remotely assessing soil surface moisture content under the low-moderate wheat cover. Computers and Electronics in Agriculture, 2024, 224: 109223.
[31]
WIELGOCKA N, JÓŻKÓW G, TEODORCZYK D. Classifying surface displacements in mining regions using differential terrain models and InSAR coherence. Journal of Applied Geodesy, 2025, 19(3): 413-420.
[32]
ZHOU J, XU M, LI C. Prediction of dam failure peak outflow using a novel explainable random forest based on metaheuristic algorithms. Journal of Hydrology, 2025, 662: 133767.
[33]
BREIMAN L. Random forests. Machine Learning, 2001, 45(1): 5-32.
[34]
SUN X B, ZHANG P L, WANG Z H, WANG Y J. Potential of multi-seasonal vegetation indices to predict rice yield from UAV multispectral observations. Precision Agriculture, 2024, 25(3): 1235-1261.
[35]
胡丹桂, 舒红. 基于协同克里金空气湿度空间插值研究. 湖北农业科学, 2014, 53(9): 2045-2049.
HU D G, SHU H. Air humidity based on CoKriging interpolation. Hubei Agricultural Sciences, 2014, 53(9): 2045-2049. (in Chinese)
[36]
DI J C, XU J N, FU J, LI B, WU M. Study on the regional ASF prediction method based on the ordinary Kriging interpolation. Physica Scripta, 2024, 99(1): 015026.
[37]
张自豪, 王国强, 薛宝林, 阿膺兰, 张晓婧, 王立波. 基于深度学习方法预测缺资料区域深层土壤水分. 水利水电技术, 2022, 53(11): 25-36.
ZHANG Z H, WANG G Q, XUE B L, A Y L, ZHANG X J, WANG L B. Deep learning method-based prediction of deep soil moisture in data-deficient watershed. Water Resources and Hydropower Engineering, 2022, 53(11): 25-36. (in Chinese)
[38]
CHAI T, DRAXLER R R. Root mean square error (RMSE) or mean absolute error (MAE)? - Arguments against avoiding RMSE in the literature. Geoscientific Model Development, 2014, 7: 1247-1250.
[39]
SMITH T, MARSHALL L, SHARMA A. Modeling residual hydrologic errors with Bayesian inference. Journal of Hydrology, 2015, 528: 29-37.
[40]
WONG A, SHI X. Inference for the normal coefficient of variation: An approximate marginal likelihood approach. Statistical Papers, 2024, 66(1): 12.
[41]
OSCO L P, RAMOS A P, PINHEIRO M M, MORIYA É A, IMAI N N, ESTRABIS N, IANCZYK F, DE ARAÚJO F F, LIESENBERG V, JORGE L A, et al. A machine learning framework to predict nutrient content in Valencia-orange leaf hyperspectral measurements. Remote Sensing, 2020, 12(6): 906.
[42]
HUA P, HUANG H, HE Y, ZHANG J, YING G G. Hydrology- informed machine learning for enhancing surface runoff elucidation. Science of the Total Environment, 2025, 992: 179936.
[43]
ZHANG W, GUO J T, LI Z P, CHENG R F, NING C P, NIU H F, LIU Z. Prediction of loess collapsibility coefficient using Bayesian optimized random forest model. Scientific Reports, 2025, 15(1): 25281.
[44]
AL NOMAN M A, NIJHUM A B, HOSSAIN I, ISLAM M S, SIFAT I M, AZIZ M G, RAHMAN A. Non-destructive adulterants detection in various honey types in Bangladesh using UV-VIS-NIR spectroscopy coupled with machine learning algorithms. LWT, 2025, 228: 118125.
[45]
THOMAS G E, STROBEL B W. Mobility of iron-oxide associated elements in pseudogley soils; influence of parent material age and land use. Geoderma, 2022, 416: 115801.
[46]
CHEN Y W, DU Y Y, YIN H Y, WANG H Y, CHEN H Y, LI X W, ZHANG Z T, CHEN J Y. Radar remote sensing-based inversion model of soil salt content at different depths under vegetation. PeerJ, 2022, 10: e13306.
[47]
CUI J W, CHEN X W, HAN W T, CUI X, MA W T, LI G. Estimation of soil salt content at different depths using UAV multi-spectral remote sensing combined with machine learning algorithms. Remote Sensing, 2023, 15(21): 5254.
[48]
杨菲菲, 张王菲, 赵磊, 赵含, 姬永杰, 王梦金. 基于GF-1数据的二阶段遥感特征优选与森林地上生物量反演模型. 林业科学, 2025, 61(4): 9-19.
YANG F F, ZHANG W F, ZHAO L, ZHAO H, JI Y J, WANG M J. Two-stage remote sensing feature optimization and GF-1 data- supported forest above-ground biomass inversion. Scientia Silvae Sinicae, 2025, 61(4): 9-19. (in Chinese)
[1] WANG BingJie, QIN ShiHan, LI DeCheng, HU WenYou, JIANG Jun, CHI FengQin, ZHANG Chao, ZHANG JiuMing, XU YingDe, WANG JingKuan. Spatial Distribution Pattern and Transfer Function Construction of Soil Bulk Density in Nenjiang City, Heilongjiang Province [J]. Scientia Agricultura Sinica, 2025, 58(9): 1791-1803.
[2] WU XinJia, XUE Wei, YAN YiDan, NIE YingYing, YE LiMing, XU LiJun. Temporal and Spatial Variation Characteristics of Soil Organic Carbon in Hulunbuir and Its Influencing Factors [J]. Scientia Agricultura Sinica, 2025, 58(6): 1145-1158.
[3] GAO QiQi, HAN ZheQun, ZHANG HaiRui, NAN ShanShan, HUANG YanYan, ZHU HengXia, WU XuePing. Impacts of Secondary Salinization on Soil Quality and Cropland Productivity in the Yellow River Irrigation District [J]. Scientia Agricultura Sinica, 2025, 58(20): 4272-4284.
[4] SHAO MingChao, AN JingWei, LIU BoRui, WU JianShuang, ZHANG Qi, YAO Xia, CHENG Tao, JIANG ChongYa, CAO WeiXing, ZHENG HengBiao, ZHU Yan. Comprehensive Assessment of Wheat Seedling Growth Status Based on Multimodal Data [J]. Scientia Agricultura Sinica, 2025, 58(19): 3857-3871.
[5] JIA YuJing, LI ChaoNan, PAN ZhiXiong, YANG DeLong, MAO XinGuo, JING RuiLian. Cloning and Genetic Effect Analysis of TaTIFY11c-4A in Wheat [J]. Scientia Agricultura Sinica, 2025, 58(17): 3357-3371.
[6] LI AiWen, CHENG JinLi, CHEN Dan, CHEN XinYi, MAO YaRuo, LI QiQuan. Characteristics of Spatial and Temporal Changes of Cropland Topsoil Inorganic Carbon in the Sichuan Basin Based on Gap-Filled Data [J]. Scientia Agricultura Sinica, 2025, 58(14): 2838-2853.
[7] FENG XiaoLin, ZHANG ChuTian, XU ChenYang, GENG ZengChao, HU FeiNan, DU Wei. Spatiotemporal Distribution Characteristics and Influencing Factors of Soil Inorganic Carbon in Shaanxi Province [J]. Scientia Agricultura Sinica, 2024, 57(8): 1517-1532.
[8] ZHANG JianLong, XING WenWen, YE ShaoBo, ZHANG Chao, ZHENG DeCong. Oat Plant Height Estimation Based on a Dual Output Regression Convolutional Neural Network [J]. Scientia Agricultura Sinica, 2024, 57(20): 3974-3985.
[9] TONG WanTing, WEI HaoDong, YANG JingYa, JIN WenJie, SONG Qian, HU Qiong, YIN GaoFei, XU BaoDong. Exploring the Impacts of Temporal Composition Window for Integrating Multi-Source Decametric-Resolution Images on Crop Type Identification [J]. Scientia Agricultura Sinica, 2024, 57(2): 250-263.
[10] LI Rong, YAN HuiFang, ZHANG Long, MIAO FangFang, MIAN YouMing, HOU XianQing. Effects of Different Tillage Practices on Soil Physical Properties and Crop Yield in the Region of Southern Ningxia [J]. Scientia Agricultura Sinica, 2023, 56(18): 3543-3555.
[11] WANG JiaYue, CAI ZhiWen, WANG WenJing, WEI HaoDong, WANG Cong, LI ZeXuan, LI XiuNi, HU Qiong. Integrating Multi-Source Gaofen Images and Object-Based Methods for Crop Type Identification in South China [J]. Scientia Agricultura Sinica, 2023, 56(13): 2474-2490.
[12] WU Jun,GUO DaQian,LI Guo,GUO Xi,ZHONG Liang,ZHU Qing,GUO JiaXin,YE YingCong. Prediction of Soil Organic Carbon Content in Jiangxi Province by Vis-NIR Spectroscopy Based on the CARS-BPNN Model [J]. Scientia Agricultura Sinica, 2022, 55(19): 3738-3750.
[13] GUO Can,YUE XiaoFeng,BAI YiZhen,ZHANG LiangXiao,ZHANG Qi,LI PeiWu. Research on the Application of a Balanced Sampling-Random Forest Early Warning Model for Aflatoxin Risk in Peanut [J]. Scientia Agricultura Sinica, 2022, 55(17): 3426-3436.
[14] SHEN Zhe,ZHANG RenLian,LONG HuaiYu,XU AiGuo. Research on Spatial Distribution of Soil Texture in Southern Ningxia Based on Machine Learning [J]. Scientia Agricultura Sinica, 2022, 55(15): 2961-2972.
[15] ZHOU Ke, LIU Le, ZHANG YanNa, MIAO Ru, YANG Yang. Area Extraction and Growth Monitoring of Winter Wheat in Henan Province Supported by Google Earth Engine [J]. Scientia Agricultura Sinica, 2021, 54(11): 2302-2318.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!