Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (18): 3744-3765.doi: 10.3864/j.issn.0578-1752.2025.18.012

• HORTICULTURE • Previous Articles     Next Articles

Based on Transcriptomics and Proteomics to Provide Insights into the Molecular Mechanisms of Calyx Abscission in Korla Xiangli

LIN Yan(), ZHENG LingLing, TIAN Jia, WEN Yue(), CHEN Chen, WANG Lei   

  1. Institute of Horticulture, Xinjiang Agricultural University/Xinjiang Forestry and Fruit Efficient Cultivation and High Value Utilization Engineering Technology Research Center, Urumqi 830052
  • Received:2025-05-05 Accepted:2025-06-24 Online:2025-09-18 Published:2025-09-18
  • Contact: WEN Yue

Abstract:

【Objective】Calyx abscission in Korla Xiangli contributes to the improvement of fruit quality. Through multi-omics integrated analysis, the molecular mechanism of calyx abscission in Korla Xiangli was explored. The differentially expressed genes and proteins during the abscission process, as well as the involved metabolic pathways and signal transduction pathways were identified. This enriched the understanding of the abscission mechanism of calyx and provided a theoretical basis for further research on the abscission mechanism of calyx in Korla Xiangli. It also laid the foundation for the application of physiological and molecular techniques in regulating calyx abscission in Korla Xiangli in production. 【Method】Using Korla Xiangli pear as the research material, the clayx abscission zone of decalyx fruits and the corresponding parts of the abscission zone of persistent calyx fruits at the critical period of abscission zone formation were selected as research objects. Transcriptome and proteome sequencing, along with integrated analysis were performed. Multiple bioinformatics tools were employed to screen differentially expressed genes and proteins. The genes and proteins related to abscission were analyzed in detail, and the metabolic pathways and signal transduction pathways they participated in were identified. Finally, the differentially expressed genes were verified by quantitative real-time PCR (qRT-PCR). 【Result】A total of 393 differentially expressed genes were obtained through transcriptome analysis. These genes were mainly enriched in cell wall biosynthesis, plant-type cell wall organization or biogenesis, plant-type cell wall biosynthesis, plant-type secondary cell wall biosynthesis, phenylpropanoid metabolic processes, etc., as well as metabolic pathways, biosynthesis of secondary metabolites, and mutual Pentose and glucuronate interconversions, which indicated that most differentially expressed genes were involved in cell wall metabolism. A total of 256 differentially expressed proteins were obtained through proteome analysis. The integrated analysis showed that the differentially expressed genes and proteins were mainly enriched in pathways of plant hormone signal transduction, pentose and glucuronate interconversions, zeatin biosynthesis, and phenylpropanoid biosynthesis. Plant hormone-related genes (e.g., ethylene-responsive transcription factors, indole-3-acetic O-methyltransferase gene) and genes/proteins involved in cell wall degradation (e.g., pectin lyase gene, pectin esterase gene, polygalacturonase gene, peroxidase gene) were screened out, playing critical roles in calyx abscission of Korla Xiangli. In addition, the expression trends of 10 differentially expressed genes verified by qRT-PCR were consistent with the sequencing results. 【Conclusion】The regulation mechanism of calyx abscission in Korla Xiangli was determined from the levels of gene transcription and protein expression. Genes and proteins related to plant hormones and cell wall degrading enzymes were screened out, and clarified that the calyx abscission process of Korla Xiangli mainly involved in pathways such as phenylpropanoid biosynthesis, plant hormone signal transduction, pentose and glucuronate interconversions.

Key words: Korla Xiangli, calyx, abscission zone, transcriptome, proteome

Fig. 1

The external morphological changes of the abscission zone of decalyx fruit and the corresponding parts of the abscission zone of the persistent calyx in the fruits during the calyx abscission of Korla Xiangli A1: The early stage of the formation of the calyx abscission zone of the decalyx fruit; A2: The critical period of the formation of the calyx abscission zone of the decalyx fruit. The area circled in red was the calyx abscission zone; A3: The late stage of the formation of the calyx abscission zone of the decalyx fruit; B1: The early stage of the formation of the corresponding part of calyx abscission zone of the persistent calyx fruit; B2: The critical period of the formation of the corresponding part of calyx abscission zone of the persistent calyx fruit; B3: The late formation of the corresponding part of calyx abscission zone of the persistent calyx fruit"

Table 1

qRT-PCR specific primers"

基因编号 Gene ID 正向引物 Forward primer (5′-3′) 反向引物 Reverse primer (5′-3′)
Psin03G014400 GGACAAAAGATCAGCAGCCTAC ACCTGAGAAAGCTTGCCAAG
Psin05G015600 TGCAGCTGAAATTCGTGACC CCTCAGCTGTCTCAAATGTGC
Psin01G012900 TCTCTTCTTCGGCTCCACTTC AAATCCCCGTGCAGAATTCC
Psin03G003950 ACGACAACCTTGCACCTTTG TTTGATCACTGTGGAGGAGACC
Psin12G002990 ACAGCCTAACAGCAAACCAG TCAGGCCAACAGCAGAAAAC
Psin01G002910 TGCTTGATGACACACCAACC AAGAAACAACTCCCGGACAC
Psin01G014890 ACTTTCGACAATGGCGGTTC GCTCAATGACTCCTTTGGTTCC
Psin10G013480 AACAATTTGGGGGTCAAGGG TCAGTGCAAGTAACGTCGTC
Psin03G018850 GTTCCATGTATCCTTGCAACGG AACAACTTGTCGGCTGAACC
Psin02G000220 GTTCCATGTATCCTTGCAACGG AACAACTTGTCGGCTGAACC

Table 2

Sample sequencing and data comparison statistics"

样品
Sample
原始序列数
Raw reads
有效序列数
Valid reads
有效碱基数
Valid bases
基因组比对序列数
Reads mapped
Q20
(%)
Q30
(%)
T-L-1 53100666 51652274 7.75 47429147(91.82%) 97.70 93.25
T-L-2 49583548 48231834 7.23 44281991(91.81%) 97.62 93.07
T-L-3 50550552 49112684 7.37 45132315(91.90%) 97.58 92.97
S-LD-1 59022886 57275596 8.59 52859617(92.29%) 97.76 93.44
S-LD-2 64312592 62558674 9.38 57688769(92.22%) 97.70 93.28
S-LD-3 52419448 51073616 7.66 47107851(92.24%) 97.77 93.43

Fig. 2

Principal component analysis diagram among samples"

Fig. 3

Venn diagram of differentially expressed genes"

Fig. 4

Heatmap of differentially expressed genes"

Fig. 5

Bubble plots of GO and KEGG enrichment for differentially expressed genes A and B represent the GO and KEGG enrichment maps of differentially expressed genes, respectively"

Table 3

Functional enrichment analysis of the first 20 GO terms of differential gene expression"

分类
Category
GO编号
GO number
条目
Term
差异基因数量
DEGs number
校正后P
Corrected P-value
生物过程
Biological process
GO:0009834 植物型次生细胞壁生物合成 Plant-type secondary cell wall biogenesis 36 2.06×10-14
GO:0042546 细胞壁生物合成 Cell wall biogenesis 48 5.28×10-37
GO:0071669 植物型细胞壁组织或生物合成 Plant-type cell wall organization or biogenesis 46 9.20×10-31
GO:0009832 植物型细胞壁生物合成 Plant-type cell wall biogenesis 38 1.17×10-30
GO:0045492 木聚糖生物合成过程 Xylan biosynthetic process 20 8.92×10-26
GO:0044036 细胞壁大分子代谢过程 Cell wall macromolecule metabolic process 32 4.63×10-24
GO:0010383 细胞壁多糖代谢过程 Cell wall polysaccharide metabolic process 28 3.96×10-21
GO:0009698 苯丙烷类代谢过程 Phenylpropanoid metabolic process 35 3.24×10-22
GO:0070589 细胞组分大分子生物合成过程 Cellular component macromolecule biosynthetic process 23 9.34×10-22
GO:0044038 细胞壁大分子生物合成过程 Cell wall macromolecule biosynthetic process 23 9.34×10-22
GO:0010383 细胞壁多糖代谢过程 Cell wall polysaccharide metabolic process 28 3.96×10-21
GO:0045491 木聚糖代谢过程 Xylan metabolic process 22 4.68×10-21
GO:0010410 半纤维素代谢过程 Hemicellulose metabolic process 24 3.22×10-20
GO:0033692 细胞多糖生物合成过程 Cellular polysaccharide biosynthetic process 30 3.51×10-19
GO:0070592 多糖生物合成过程 Polysaccharide biosynthetic process 23 1.63×10-22
GO:0046274 木质素分解代谢过程 Lignin catabolic process 15 9.74×10-18
GO:0046271 苯丙烷类分解代谢过程 Phenylpropanoid catabolic process 15 9.74×10-18
分子功能
Molecular function
GO:0016682 氧化还原酶活性,以二酚及相关物质为供体、氧为受体
Oxidoreductase activity, acting on diphenols and related substances as donors, oxygen as acceptor
18 2.21×10-18
GO:0052716 对苯二酚﹕氧氧化还原酶活性 Hydroquinone﹕oxygen oxidoreductase activity 15 3.05×10-18
GO:0016679 氧化还原酶活性,以二酚及相关物质为供体
Oxidoreductase activity, acting on diphenols and related substances as donors
18 1.46×10-17

Table 4

KEGG pathway with significantly enriched differential genes"

分类
Category
通路编号
Path number
途径
Pathway
差异基因数量
DEGs number
校正后P
Corrected P-value
代谢
Metabolism
ko01100 代谢途径 Metabolic pathways 64 5.82×10-7
ko00040 戊糖和葡萄糖醛酸相互转化 Pentose and glucuronate interconversions 12 7.32×10-7
ko01110 次生代谢物的生物合成 Biosynthesis of secondary metabolites 34 1.39×10-3
ko00909 倍半萜和三萜生物合成 Sesquiterpenoid and triterpenoid biosynthesis 4 1.92×10-3
ko00073 角质、木栓质和蜡的生物合成 Cutin, suberine and wax biosynthesis 4 2.28×10-3
ko00908 玉米素生物合成 Zeatin biosynthesis 3 2.51×10-3
ko00520 氨基糖和核苷酸糖代谢 Amino sugar and nucleotide sugar metabolism 7 2.91×10-3
ko00940 苯丙烷生物合成 Phenylpropanoid biosynthesis 8 1.16×10-2

Fig. 6

Statistical chart of protein identification results (A) and peptide length distribution map (B)"

Fig. 7

Differential protein volcano map"

Fig. 8

GO and KEGG enrichment bubble plots of differentially expressed proteins A and B represent GO and KEGG enrichment bubble plots of differentially expressed proteins, respectively"

Table 5

GO functional enrichment analysis of the first 20 differentially expressed proteins"

分类
Category
GO编号
GO number
条目
Term
差异蛋白数量
DEPs number
校正后P
Corrected P-value
生物过程
Biological process
GO:0042744 过氧化氢分解代谢过程 Hydrogen peroxide catabolic process 7 1.17×10-5
GO:0006979 对氧化应激的响应 Response to oxidative stress 7 8.96×10-5
GO:0046274 木质素分解代谢过程 Lignin catabolic process 4 9.21×10-5
GO:0009627 系统获得性抗性 Systemic acquired resistance 3 5.19×10-4
GO:0009734 生长素激活的信号通路 Auxin-activated signaling pathway 5 1.80×10-3
GO:0051726 细胞周期调控 Regulation of cell cycle 2 4.49×10-3
GO:0006865 氨基酸运输 Amino acid transport 3 6.44×10-3
GO:0030036 肌动蛋白细胞骨架组织 Actin cytoskeleton organization 2 6.64×10-3
GO:0045492 木聚糖生物合成过程 Xylan biosynthetic process 2 9.16×10-3
GO:0000139 高尔基体膜 Golgi membrane 7 1.02×10-2
细胞组分
Cellular component
GO:0004601 过氧化物酶活性 Peroxidase activity 7 2.83×10-5
GO:0005576 细胞外区域 Extracellular region 12 3.23×10-5
GO:0048046 质外体 Apoplast 6 2.96×10-4
GO:0005667 转录调节复合物 Transcription regulator complex 2 1.21×10-3
分子功能
Molecular function
GO:0020037 血红素结合 Heme binding 12 4.82×10-5
GO:0052716 对苯二酚﹕氧氧化还原酶活性 Hydroquinone﹕oxygen oxidoreductase activity 4 7.60×10-5
GO:0015293 同向转运体活性 Symporter activity 4 3.15×10-3
GO:0008194 UDP-糖基转移酶活性 UDP-glycosyltransferase activity 6 4.10×10-3
GO:0071702 有机物质运输 Organic substance transport 2 4.49×10-3
GO:0005504 脂肪酸结合 Fatty acid binding 2 8.30×10-3

Table 6

KEGG pathway with significantly enriched differential proteins"

分类
Category
通路编号
Path number
途径
Pathway
差异蛋白数量
DEPs number
校正后P
Corrected P-value
代谢
Metabolism
ko00940 苯丙烷生物合成 Phenylpropanoid biosynthesis 9 1.44×10-4
ko00999 多种植物次生代谢物的生物合成
Biosynthesis of various plant secondary metabolites
5 8.52×10-3
ko00561 甘油酯代谢 Glycerolipid metabolism 5 4.34×10-2
ko00908 玉米素生物合成 Zeatin biosynthesis 1 1.86×10-1
基因信息处理
Genetic information processing
ko03410 碱基切除修复 Base excision repair 3 4.96×10-2
ko03030 DNA复制 DNA replication 4 1.54×10-2

Fig. 9

GO enrichment bar chart of differentially expressed proteins and genes"

Fig. 10

GO enrichment analysis of differentially expressed proteins co-upregulated and co-downregulated with differentially expressed genes A: The GO enrichment analysis of differentially expressed proteins co-upregulated with differentially expressed genes; B: The GO enrichment analysis of differentially expressed proteins co-down-regulated with differentially expressed genes"

Fig. 11

KEGG enrichment bubble plots of differentially expressed proteins and genes"

Table 7

Functional association analysis of differentially expressed proteins and differentially expressed genes"

分类
Category
通路编号
Path number
途径
Pathway
差异蛋白数量
DEPs number
差异基因数量
DEGs number
代谢
Metabolism
ko04075 植物激素信号转导 Plant hormone signal transduction 4 9
ko00940 苯丙烷生物合成 Phenylpropanoid biosynthesis 9 8
ko00040 戊糖和葡糖醛酸相互转化 Pentose and glucuronate interconversions 2 12
ko00999 多种植物次生代谢产物的生物合成
Biosynthesis of various plant secondary metabolites
5 3
ko00908 玉米素生物合成 Zeatin biosynthesis 1 7

Fig. 12

KEGG enrichment bar chart of differentially expressed proteins and genes and KEGG enrichment analysis heat map under common trend A: The KEGG enrichment analysis of differentially expressed genes and differentially expressed proteins; B: The KEGG enrichment analysis of differentially expressed genes and differentially expressed proteins"

Table 8

Association analysis of differentially expressed genes and proteins related to calyx abscission in Korla Xiangli"

通路名称
Path name
蛋白质编号
Protein ID
蛋白质名称
Protein name
基因编号
Gene ID
基因名称
Gene name
上/下调
Up/Down
植物激素信号转导
Plant hormone signal transduction
Psin05G015600 乙烯响应转录因子
Ethylene-responsive transcription factor
上调Up
-- Psin03G014400 吲哚-3-乙酸O-甲基转移酶Indole-3-acetate O-methyltransferase 上调Up
苯丙烷生物合成
Phenylpropane biosynthesis
GWHPDTVS001290-protein 过氧化物酶 Peroxidase Psin01G012900 过氧化物酶 Peroxidase 上调Up
GWHPDTVS022442-protein 过氧化物酶 Peroxidase Psin03G003950 过氧化物酶 Peroxidase 上调Up
GWHPDTVS004740-protein 过氧化物酶 Peroxidase Psin12G002990 过氧化物酶 Peroxidase 上调Up
Psin01G002910 过氧化物酶 Peroxidase 上调Up
戊糖和葡糖醛酸
互转化
Pentose and glucuronate interconversions
Psin01G014890 果胶酯酶 Pectinesterase 上调Up
GWHPDTVS009649-protein 果胶裂解酶 Pectate lyase Psin10G013480 果胶裂解酶 Pectate lyase 上调Up
GWHPDTVS006230-protein 多聚半乳糖醛酸酶
Polygalacturonase
Psin02G000220 多聚半乳糖醛酸酶
Polygalacturonase
上调Up
Psin03G018850 多聚半乳糖醛酸酶 Polygalacturonase 上调Up

Fig. 13

Diagram of the ethylene signaling pathway in plant hormone signal transduction A: Partial schematic diagram of metabolic pathways based on Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and gene expression data. At the transcriptional or protein level, the up-regulated enzymes were shown in red; B: Heat maps of differentially expressed genes or proteins; C: The transcriptional abundance of differentially expressed genes in metabolic pathways. The same as below"

Fig. 14

Cell wall metabolic diagram in the pathway of Pentose and glucuronate interconversions"

Fig. 15

The biosynthetic pathway of phenylpropanoids"

Fig. 16

Verification of gene expression levels by qRT-PCR * indicates significant difference at P≤0.05, and ** indicates extremely significant difference at P≤0.01"

[1]
田雯, 张校立, 陈励坤, 何临梓, 王永鹏. 库尔勒香梨研究进展. 分子植物育种, 2024, 22(16): 5459-5468.
TIAN W, ZHANG X L, CHEN L K, HE L Z, WANG Y P. Research progress of Korla Xiangli. Molecular Plant Breeding, 2024, 22(16): 5459-5468. (in Chinese)
[2]
高启明, 李疆, 李阳. 库尔勒香梨研究进展. 经济林研究, 2005, 23(1): 79-82.
GAO Q M, LI J, LI Y. Literature review of researches on ‘Korla Xiangli’. Economic Forest Researches, 2005, 23(1): 79-82. (in Chinese)
[3]
何子顺, 牛建新, 邵月霞. 库尔勒香梨果实萼片脱落与宿存研究概述. 中国果菜, 2006, 26(2): 10-11.
HE Z S, NIU J X, SHAO Y X. General review of study on the Calyx leaving from fruit and persistent Calyx of Korla Xiangli. China Fruit & Vegetable, 2006, 26(2): 10-11. (in Chinese)
[4]
王翔, 陈晓博, 李爱丽, 毛龙. 植物器官脱落分子生物学研究进展. 作物学报, 2009, 35(3): 381-387.

doi: 10.3724/SP.J.1006.2009.00381
WANG X, CHEN X B, LI A L, MAO L. Advances in molecular biology study of plant organ abscission. Acta Agronomica Sinica, 2009, 35(3): 381-387. (in Chinese)

doi: 10.3724/SP.J.1006.2009.00381
[5]
张羽云, 何永梅, 杜婷婷, 张晶晶, 周苑博, 武树义, 范厚东, 裴海霞. 植物器官脱落研究进展. 内蒙古科技大学学报, 2021, 40(3): 209-216.
ZHANG Y Y, HE Y M, DU T T, ZHANG J J, ZHOU Y B, WU S Y, FAN H D, PEI H X. Research progress of plant organ abscission. Journal of Inner Mongolia University of Science and Technology, 2021, 40(3): 209-216. (in Chinese)
[6]
TAYLOR J E, WHITELAW C A. Signals in abscission. New Phytologist, 2001, 151(2): 323-340.
[7]
GULFISHAN M, JAHAN A, AHMAD BHAT T, SAHAB D. Plant senescence and organ abscission. Senescence Signalling and Control in Plants, Amsterdam: Elsevier, 2019: 255-272.
[8]
邵白俊杰. 乙烯诱导库尔勒香梨萼片脱落过程中细胞程序性死亡特征及其调控信号研究[D]. 乌鲁木齐: 新疆农业大学, 2023.
SHAO B. Study on the characteristics of programmed cell death and its regulatory signals during ethylene-induced sepal abscission in Korla Xiangli[D]. Urumqi: Xinjiang Agricultural University, 2023. (in Chinese)
[9]
MISHRA A, KHARE S, TRIVEDI P K, NATH P. Ethylene induced cotton leaf abscission is associated with higher expression of cellulase (GhCel1) and increased activities of ethylene biosynthesis enzymes in abscission zone. Plant Physiology and Biochemistry, 2008, 46(1): 54-63.

doi: 10.1016/j.plaphy.2007.09.002 pmid: 17964177
[10]
LI C Q, ZHAO M L, MA X S, WEN Z X, YING P Y, PENG M J, NING X P, XIA R, WU H, LI J G. The HD-Zip transcription factor LcHB2 regulates Litchi fruit abscission through the activation of two cellulase genes. Journal of Experimental Botany, 2019, 70(19): 5189-5203.

doi: 10.1093/jxb/erz276 pmid: 31173099
[11]
ZHENG L L, WEN Y, LIN Y, TIAN J, SHAOBAI J J, HAO Z C, WANG C F, SUN T Y, WANG L, CHEN C. Phytohormonal dynamics in the abscission zone of Korla fragrant pear during Calyx abscission: A visual study. Frontiers in Plant Science, 2024, 15: 1452072.
[12]
ZENG N B, YANG Z J, ZHANG Z F, HU L X, CHEN L. Comparative transcriptome combined with proteome analyses revealed key factors involved in alfalfa (Medicago sativa) response to waterlogging stress. International Journal of Molecular Sciences, 2019, 20(6): 1359.
[13]
PEI M S, NIU J X, LI C J, CAO F J, QUAN S W. Identification and expression analysis of genes related to Calyx persistence in Korla fragrant pear. BMC Genomics, 2016, 17: 132.

doi: 10.1186/s12864-016-2470-3 pmid: 26911295
[14]
MA L, ZHOU L, QUAN S W, XU H, YANG J P, NIU J X. Integrated analysis of mRNA-seq and miRNA-seq in Calyx abscission zone of Korla fragrant pear involved in Calyx persistence. BMC Plant Biology, 2019, 19(1): 192.

doi: 10.1186/s12870-019-1792-0 pmid: 31072362
[15]
QI X X, WU J, WANG L F, LI L T, CAO Y F, TIAN L M, DONG X G, ZHANG S L. Identifying the candidate genes involved in the Calyx abscission process of ‘Kuerlexiangli’ (Pyrus sinkiangensis Yu) by digital transcript abundance measurements. BMC Genomics, 2013, 14(1): 727.
[16]
徐航, 全绍文, 马丽, 周丽, 牛建新. 库尔勒香梨PsiERF基因的克隆和表达分析. 新疆农业科学, 2018, 55(9): 1616-1625.

doi: 10.6048/j.issn.1001-4330.2018.09.006
XU H, QUAN S W, MA L, ZHOU L, NIU J X. Molecular cloning of the PsiERF gene and its expression in Korla Xiangli. Xinjiang Agricultural Sciences, 2018, 55(9): 1616-1625. (in Chinese)
[17]
WANG B H, SUN X X, DONG F Y, ZHANG F, NIU J X. Cloning and expression analysis of an MYB gene associated with Calyx persistence in Korla fragrant pear. Plant Cell Reports, 2014, 33(8): 1333-1341.
[18]
YANG S J, VANDERBELD B, WAN J X, HUANG Y F. Narrowing down the targets: Towards successful genetic engineering of drought- tolerant crops. Molecular Plant, 2010, 3(3): 469-490.
[19]
GONG X, BAO J P, CHEN J, QI K J, XIE Z H, RUI W K, HAO G W, SHIRATAKE K, KHANIZADEH S, ZHANG S L, et al. Candidate proteins involved in the Calyx abscission process of ‘Kuerlexiangli’ (Pyrus sinkiangensis Yu) identified by iTRAQ analysis. Acta Physiologiae Plantarum, 2020, 42(7): 112.
[20]
蒋可人, 马峥, 郑航, 刘小军. 转录组与蛋白质组整合分析在生物学研究中的应用. 生物技术通报, 2018, 34(12): 50-55.

doi: 10.13560/j.cnki.biotech.bull.1985.2017-0929
JIANG K R, MA Z, ZHENG H, LIU X J. Review on the application of integrated transcriptome and proteome analysis in biology. Biotechnology Bulletin, 2018, 34(12): 50-55. (in Chinese)
[21]
郝志超, 温玥, 田嘉, 邵白俊杰, 杨丁花, 张峰. 库尔勒香梨萼片脱落与离区不同部位植物激素的关系. 植物生理学报, 2022, 58(7): 1369-1380.
HAO Z C, WEN Y, TIAN J, SHAO B J J, YANG D H, ZHANG F. Relationship between calyx abscission and phytohormones in different parts of abscission zone of Korla Xiangli. Plant Physiology, 2022, 58(7): 1369-1380. (in Chinese)
[22]
郝志超. ‘库尔勒香梨’萼片脱落的激素变化及对果实品质的影响[D]. 乌鲁木齐: 新疆农业大学, 2022.
HAO Z C. Hormone changes in sepal abscission of ' Korla Xiangli' and its effect on fruit quality[D]. Urumqi: Xinjiang agricultural university, 2022. (in Chinese)
[23]
BUCHFINK B, XIE C, HUSON D H. Fast and sensitive protein alignment using DIAMOND. Nature Methods, 2014, 12(1): 59-60.
[24]
孙晓霞, 牛建新, 王博慧, 裴茂松, 李陈静, 曹福军. ‘库尔勒香梨’脱萼组与宿萼组样品差异表达基因的筛选. 果树学报, 2015, 32(6): 1020-1027, 1314.
SUN X X, NIU J X, WANG B H, PEI M S, LI C J, CAO F J. Screening of differentially expressed genes in‘Korla Xiangli’flower samples with persistent or deciduous Calyx. Journal of Fruit Science, 2015, 32(6): 1020-1027, 1314. (in Chinese)
[25]
CHERSICOLA M, KLADNIK A, ŽNIDARIČ M T, MRAK T, GRUDEN K, DERMASTIA M. 1-aminocyclopropane-1-carboxylate oxidase induction in tomato flower pedicel phloem and abscission related processes are differentially sensitive to ethylene. Frontiers in Plant Science, 2017, 8: 464.

doi: 10.3389/fpls.2017.00464 pmid: 28408916
[26]
NAKANO T, SUZUKI K, FUJIMURA T, SHINSHI H. Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiology, 2006, 140(2): 411-432.
[27]
AGUSTÍ J, MERELO P, CERCÓS M, TADEO F R, TALÓN M. Ethylene-induced differential gene expression during abscission of Citrus leaves. Journal of Experimental Botany, 2008, 59(10): 2717-2733.

doi: 10.1093/jxb/ern138 pmid: 18515267
[28]
NAKANO T, FUJISAWA M, SHIMA Y, ITO Y. The AP2/ERF transcription factor SlERF52 functions in flower pedicel abscission in tomato. Journal of Experimental Botany, 2014, 65(12): 3111-3119.

doi: 10.1093/jxb/eru154 pmid: 24744429
[29]
SINGH P, BHARTI N, SINGH A P, TRIPATHI S K, PANDEY S P, CHAUHAN A S, KULKARNI A, SANE A P. Petal abscission in fragrant roses is associated with large scale differential regulation of the abscission zone transcriptome. Scientific Reports, 2020, 10: 17196.

doi: 10.1038/s41598-020-74144-3 pmid: 33057097
[30]
MEIR S, PHILOSOPH-HADAS S, RIOV J, TUCKER M L, PATTERSON S E, ROBERTS J A. Re-evaluation of the ethylene- dependent and-independent pathways in the regulation of floral and organ abscission. Journal of Experimental Botany, 2019, 70(5): 1461-1467.
[31]
ESTORNELL L H, AGUSTÍ J, MERELO P, TALÓN M, TADEO F R. Elucidating mechanisms underlying organ abscission. Plant Science, 2013, 199: 48-60.
[32]
QIN G, GU H, ZHAO Y. Regulation of auxin homeostasis and plant development by an indole-3-acetic acid carboxyl methyltransferase in Arabidopsis. Plant Cell, 2005, 17: 2693-2704.
[33]
LIANG Y, JIANG C Y, LIU Y, GAO Y R, LU J Y, AIWAILI P, FEI Z J, JIANG C Z, HONG B, MA C, et al. Auxin regulates sucrose transport to repress petal abscission in rose (Rosa hybrida). The Plant Cell, 2020, 32(11): 3485-3499.

doi: 10.1105/tpc.19.00695 pmid: 33830255
[34]
GAO Y R, LIU C, LI X D, XU H Q, LIANG Y, MA N, FEI Z J, GAO J P, JIANG C Z, MA C. Transcriptome profiling of petal abscission zone and functional analysis of an Aux/IAA family gene RhIAA16 involved in petal shedding in rose. Frontiers in Plant Science, 2016, 7: 1375.
[35]
仇志浪. 贵州甜樱桃异常生理落果的分子机制[D]. 贵阳: 贵州大学, 2021.
QIU Z L. Molecular mechanism of abnormal physiological fruit drop of sweet cherry in Guizhou[D]. Guiyang: Guizhou University, 2021. (in Chinese)
[36]
KIM J, SUNDARESAN S, PHILOSOPH-HADAS S, YANG R H, MEIR S, TUCKER M L. Examination of the abscission-associated transcriptomes for soybean, tomato, and Arabidopsis highlights the conserved biosynthesis of an extensible extracellular matrix and boundary layer. Frontiers in Plant Science, 2015, 6: 1109.

doi: 10.3389/fpls.2015.01109 pmid: 26697054
[37]
刘化禹, 娄爽, 秦栋, 张妍, 谢佳璇, 霍俊伟. 蓝果忍冬果柄离区形成中内源激素含量与细胞壁相关酶活性的变化特征. 西北植物学报, 2019, 39(1): 110-120.
LIU H Y, LOU S, QIN D, ZHANG Y, XIE J X, HUO J W. Characteristics of endogenous hormones and cell wall-related enzymes activities during formation of carpopodium abscission zone in blue honeysuckle. Acta Botanica Boreali-Occidentalia Sinica, 2019, 39(1): 110-120. (in Chinese)
[38]
王雪. 观赏海棠果实脱落相关酶活测定及转录组分析[D]. 秦皇岛: 河北科技师范学院, 2021.
WANG X. Determination of enzyme activity and transcriptome analysis related to fruit abscission of ornamental crabapple[D]. Qinhuangdao: Hebei Normal University of Science & Technology, 2021. (in Chinese)
[39]
吴建阳, 刘丽琴, 石胜友, 李伟才, 郑雪文, 魏永赞. 龙眼多聚半乳糖醛酸酶基因DlPG1表达模式与幼果脱落关系研究. 中国南方果树, 2017, 46(3): 14-19.
WU J Y, LIU L Q, SHI S Y, LI W C, ZHENG X W, WEI Y Z. Preliminary study on the relationship between expression of clade E PGGene and fruitlet abscission in Longan. South China Fruits, 2017, 46(3): 14-19. (in Chinese)
[40]
PACHECO J M, RANOCHA P, KASULIN L, FUSARI C M, SERVI L, APTEKMANN A A, GABARAIN V B, PERALTA J M, BORASSI C, MARZOL E, et al. Apoplastic class III peroxidases PRX62 and PRX69 promote Arabidopsis root hair growth at low temperature. Nature Communications, 2022, 13: 1310.
[41]
SINGH A P, TRIPATHI S K, NATH P, SANE A P. Petal abscission in rose is associated with the differential expression of two ethylene- responsive xyloglucan endotransglucosylase/hydrolase genes, RbXTH1 and RbXTH2. Journal of Experimental Botany, 2011, 62(14): 5091-5103.
[1] ZOU XiaoWei, XIA Lei, ZHU XiaoMin, SUN Hui, ZHOU Qi, QI Ji, ZHANG YaFeng, ZHENG Yan, JIANG ZhaoYuan. Analysis of Disease Resistance Induced by Ustilago maydis Strain with Overexpressed UM01240 Based on Transcriptome Sequencing [J]. Scientia Agricultura Sinica, 2025, 58(6): 1116-1130.
[2] SUN Ping, ZHU WenCan, LIN XianRui, WU JiaQi, CAO YiWen, CHEN ChenFei, WANG Yi, ZHU JianXi, JIA HuiJuan, QIAN MinJie, SHEN JianSheng. Effects of Rainy and Low Light Conditions on Coloration and Flavonoid Accumulation in Peach Peel Based on Metabolomic and Transcriptomic Analyses [J]. Scientia Agricultura Sinica, 2025, 58(6): 1173-1194.
[3] XIE LuLu, LI Fu, ZHANG SiYuan, GAO JianChang. Analysis of Conserved Genes in Adventitious Root Formation Based on Cross Species Transcriptomes [J]. Scientia Agricultura Sinica, 2025, 58(6): 1195-1209.
[4] GAO YanHao, WANG TingTing, BAI WeiWei, DU XingJie, LIU Xian, QIN BenYuan, FU Tong, SUN Yu, GAO TengYun, ZHANG TianLiu. The Combination of Lipidome and Transcriptome Revealed the Differential Expression Patterns of Lipid Characteristics in Different Muscle Tissues for Nanyang Cattle [J]. Scientia Agricultura Sinica, 2025, 58(6): 1239-1258.
[5] PAN Yuan, WANG De, LIU Nan, MENG XiangLong, DAI PengBo, LI Bo, HU TongLe, WANG ShuTong, CAO KeQiang, WANG YaNan. Evaluation of the Effectiveness of Two High-Throughput Sequencing Techniques in Identifying Apple Viruses and Identification of Two Novel Viruses [J]. Scientia Agricultura Sinica, 2025, 58(2): 266-280.
[6] DONG Xue, CHEN MengQiu, SHAO Jin, WU XueYou, TANG PeiAn. Construction of a Differential Gene Expression and Quality Regulation Network in Stored Rice Grain Using WGCNA [J]. Scientia Agricultura Sinica, 2025, 58(14): 2885-2903.
[7] CAO YanYong, CHENG ZeQiang, MA Juan, YANG WenBo, ZHU WeiHong, SUN XinYan, LI HuiMin, XIA LaiKun, DUAN CanXing. Integrating Transcriptomic and Metabolomic Analyses Reveals Maize Responses to Stalk Rot Caused by Fusarium proliferatum [J]. Scientia Agricultura Sinica, 2025, 58(1): 75-90.
[8] QI RenJie, NING Yu, LIU Jing, LIU ZhiYang, XU Hai, LUO ZhiDan, CHEN LongZheng. Identification and Analysis of Genes Related to Bitter Gourd Saponin Synthesis Based on Transcriptome Sequencing [J]. Scientia Agricultura Sinica, 2024, 57(9): 1779-1793.
[9] LIN Wei, WU ShuiJin, LI YueSen. Transcriptome and Proteome Association Analysis to Revealthe Molecular Mechanism of Baxi Banana Seedlings in Response to Low Temperature [J]. Scientia Agricultura Sinica, 2024, 57(8): 1575-1591.
[10] GAO ChenXi, HAO LuYang, HU Yue, LI YongXiang, ZHANG DengFeng, LI ChunHui, SONG YanChun, SHI YunSu, WANG TianYu, LI Yu, LIU XuYang. Analysis of Transposable Element Associated Epigenetic Regulation under Drought in Maize [J]. Scientia Agricultura Sinica, 2024, 57(6): 1034-1048.
[11] HAN XuDong, YANG ChuanQi, ZHANG Qing, LI YaWei, YANG XiaXia, HE JiaTian, XUE JiQuan, ZHANG XingHua, XU ShuTu, LIU JianChao. QTL Mapping and Candidate Gene Screening for Nitrogen Use Efficiency in Maize [J]. Scientia Agricultura Sinica, 2024, 57(21): 4175-4191.
[12] MA JingE, XIONG XinWei, ZHOU Min, WU SiQi, HAN Tian, RAO YouSheng, WANG ZhangFeng, XU JiGuo. Full-Length Transcriptomic Analysis of Chicken Pituitary Reveals Candidate Genes for Testicular Trait [J]. Scientia Agricultura Sinica, 2024, 57(20): 4130-4144.
[13] YIN JunLiang, LI JingYi, HAN Shuo, YANG PeiHua, MA JiaWei, LIU YiQing, HU HaiJun, ZHU YongXing. Identification of Ginger (Zingiber officinale Roscoe) NHX Gene Family Members and Characterization of Their Expression Patterns in Silicon Alleviating Salt Stress [J]. Scientia Agricultura Sinica, 2024, 57(19): 3848-3869.
[14] CHEN FeiEr, ZHANG ZhiPeng, JIANG QingXue, MA Lin, WANG XueMin. Cloning and Biological Function Verification of Alfalfa MsSPL17 [J]. Scientia Agricultura Sinica, 2024, 57(17): 3335-3349.
[15] LIU Tong, WANG ZhiRong, LI Wei, LIU Yang, WANG XiangRu, LAI DiLi, HE YuQi, ZHANG KaiXuan, ZHAO ZhenJun, ZHOU MeiLiang. Function Analysis of bHLH93 Transcription Factor in Tartary Buckwheat in Response to Aluminum Stress [J]. Scientia Agricultura Sinica, 2024, 57(16): 3127-3141.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!