Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (17): 3544-3560.doi: 10.3864/j.issn.0578-1752.2025.17.014

• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles     Next Articles

Prediction and Analysis of Feeding Density on Production Performance, Cecal Flora Diversity, Short-Chain Fatty Acid Content and Microbial Differential Function of Langya Chickens

LI XueFeng1,4(), WANG Hui1, ZHANG NingBo1, JIN TaiHua1, ZHANG ShuEr2, ZHENG QuanSheng3, TAO JiaShu2, LI QingKe, LÜ ShenJin1,*(), LI YongZhu1,*()   

  1. 1 College of Agriculture and Forestry Sciences of Linyi University, Linyi 276000, Shandong
    2 Shandong Provincial Animal Husbandry Station, Jinan 250100
    3 Shandong Langya Chicken Seed Industry Co., Ltd., Linyi 276000, Shandong
    4 Shandong Lanshan Yimeng Chicken Science and Technology Courtyard, Linyi 276000, Shandong
  • Received:2025-03-09 Accepted:2025-06-16 Online:2025-09-03 Published:2025-09-03
  • Contact: Lü ShenJin, LI YongZhu

Abstract:

【Objective】This experiment aimed to investigate the differences in cecal microbiota diversity, short-chain fatty acids (SCFAs), and microbial functional profiles of Langya hens under identical feeding conditions but varying stocking densities, thereby providing a theoretical basis for the healthy breeding of Langya chickens.【Method】A single-factor experimental design was employed. A total of 450 20-week-old Langya hens with similar body weights (P>0. 05) were selected and divided into three treatments: low stocking density (540 cm²/hen, L), medium stocking density (450 cm²/hen, I), and high stocking density (360cm²/hen, H). Each treatment included 15 replicates with 10 birds per replicate. At 23 weeks (A) and 43 weeks (B) of age, three birds per group were randomly selected for body weight measurement and euthanasia to collect cecal content. The Illumina MiSeq platform was used to analyze cecal microbiota diversity, and gas chromatography was applied to quantify SCFA concentrations.【Result】(1) At the end of the 23rd week, the daily weight gain, average egg weight, daily egg production and feed-to-egg ratio in the AL group were significantly higher than those in the AH group (P<0.05), the egg production rate in the AL group was significantly higher than that in the AI group (P<0.05), the egg production rate in the AI group was significantly higher than that in the AH group (P<0.05), and the egg production rate in the AL group was highly significant higher than that of the AH group (P<0.01); at the end of the 43rd week, the body weight, daily weight gain, average egg weight, daily egg production and feed-to-egg ratio in the BL group were significantly higher than those in the BH group (P<0.05), and the egg production rate in the BL group was significantly higher than those of the BI group (P<0.05), and the egg production rate of the BI group was significantly higher than those in the BH group (P<0.05). weight, daily weight gain, average egg weight, daily egg production and feed-to-egg ratio in the BL group were significantly higher than that in the BH group (P<0.05), the egg production rate was significantly higher in the BL group than in the BI group (P<0.05), the egg production rate in the BI group was significantly higher than that in the BH group (P<0.05), and the egg production rate in the BL group was highly significant than that in the BH group (P<0.01). (2) At the phylum level, Bacteroidota in group AH was significantly higher than that in group AI (P<0. 05), while Firmicutes in group BH was significantly higher than that in the BI and BL groups (P<0. 05). At the genus level, Prevotellaceae_UCG-003 in group AL was significantly higher than in AH (P<0. 05) and highly significantly higher than that in AI (P<0. 01). Alloprevotella in AL was significantly higher than in AI (P<0. 05). In group BH, Blautia, Christensenellaceae_R-7_group, UCG-002, and Ruminococcus were significantly higher than that in BL group (P<0. 05). Oscillibacter and Intestinimonas in BI group were significantly higher than that in BL (P<0. 05). (3) At the end of 23 weeks, acetic acid, propionic acid, isobutyric acid, butyric acid and valeric acid in AL group and AI group were significantly higher than those in AH group (P<0.05). At the end of 43 weeks, propionic acid in BI and BH group was significantly higher than that in BL groups (P<0.05). Isobutyric acid and valeric acid in BI group were significantly higher than those in BL group (P<0.05). (4) Comparative analysis using KEGG metabolic pathways and 16S functional prediction revealed that the low-density group exhibited significant enrichment in pathways related to energy metabolism, cell growth, endocrine system, protein folding/processing, and longevity regulation compared to medium-and high-density groups.【Conclusion】Different stocking densities affected the production performance, cecal flora diversity and structure composition of Langya chickens during the 20-43 weekend. In the low stocking density, the production performance of Langya chickens was improved, the cecal flora diversity and the content of SCFAs in fermentation products were increased, and the pathways of energy metabolism, cell growth, endocrine system, protein folding chicken related processing and longevity regulation in KEGG pathway were significantly enriched.

Key words: Langya chicken, weight, cecal flora, diversity, short-chainfatty acids

Table 1

The main ingredients and nutritional level of ration (air-dry basis)"

原料组成 Ingredient 含量 Content (%) 营养水平 Nutrient levels2) 含量 Content (%)
玉米 Corn 58.94 粗蛋白质 CP 16.50
大豆粕 Soybean meal 1.86 代谢能 ME/(MJ/kg) 12.82
麸皮 Rice bran 8.61 钙 Ca 3.36
玉米胚芽粕 Corn germ meal 5.00 总磷 TP 0.60
干酒糟及其可溶物 DDGS 10.00 有效磷 AP 0.44
石粉 Limestone 8.31 赖氨酸 Lys 0.79
玉米蛋白粉 Corn gluten meal 5.00 蛋氨酸 Met 0.39
磷酸氢钙 CaHPO4 0.40 蛋+胱 Met+Sys 0.66
DL-蛋氨酸 Met 0.03 苏氨酸 Thr 0.59
盐(氯化钠) NaCl 0.30
L-赖氨酸硫酸盐70% L-lysine sulfate 70 % 0.50
70%氯化胆碱 70% Choline chloride 0.05
预混料 Premix1) 1.00
合计 Total 100.00

Table 2

Effects of different stocking densities on production performance of Langya chicken"

周龄
Week-
age
组别
Group
体重
Weight
(g)
日增重
Daily gain
平均蛋重
average egg-weight (g)
日产蛋量
Daily egg production
(g/只、日)
产蛋率
Laying rate
(%)
采食量
Feed intake
(g)
料蛋比
Feed-egg
ratio
20 L 1215.24±15.27 29.76±3.54 0.84±0.05 2.82±0.42 110.89±6.87
I 1231.18±21.54 28.52±2.86 0.73±0.04 2.58±0.37 109.45±3.58
H 1226.62±31.63 29.34±4.18 0.80±0.07 2.74±0.62 110.24±4.35
P 0.8742 0.9421 0.9367 0.7842 0.9248
23 AL 1587.66±26.51 17.70±0.16a 36.34±3.82a 8.09±1.04a 22.24±3.05a 123.27±6.62 15.23±2.14a
AI 1528.23±20.86 14.14±0.59ab 35.28±5.75ab 6.53±1.28ab 18.52±2.42b 121.21±5.16 18.56±1.85b
AH 1473.00±15.72 11.73±0.30b 34.61±7.24b 6.00±3.20b 17.34±1.86c 118.46±1.74 19.74±2.47b
P 0.5748 0.0347 0.0426 0.0374 0.0235 0.8754 0.0407
43 BL 1844.73±18.25a 1.84±0.16a 45.52±1.87a 32.20±5.22a 70.74±5.23a 124.52±6.62 3.87±0.52a
BI 1735.17±36.11ab 1.48±0.59ab 42.52±2.42ab 28.37±3.54ab 66.71±3.17b 122.74±5.16 4.32±0.47b
BH 1645.36±28.19b 1.23±0.30b 40.43±2.74b 25.92±4.01b 64.13±4.12c 120.42±1.74 4.65±0.32b
P 0.0347 0.0265 0.0342 0.0236 0.0410 0.8762 0.0405

Table 3

Analysis of α diversity index of cecal flora in Langya chickens with different feeding densities"

组别Group 指数Shannon 指数Chao1 指数ACE 指数PD whole tree
AL 7.22 1051.94 1070.10 75.70
AI 6.97 986.77 994.75 77.45
AH 6.89 963.51 977.56 68.84
P value 0.904 0.879 0.887 0.865
BL 7.44 1286.10a 1293.29a 95.41a
BI 7.45 1155.05ab 1162.89ab 84.73ab
BH 7.13 1053.91b 1081.07b 77.86b
P 0.975 0.041 0.035 0.029

Fig. 1

Wayne diagram of intestinal microflora of Langya chickens with different stocking densities"

Fig. 2

Distribution histogram of β diversity and LDA value of cecal microbial colonies in Langya chickens with different feeding densities"

Fig. 3

Horizontal distribution of phylum and genus of cecal flora in Langya chickens with different feeding densities"

Fig. 4

Standardization of cecal flora Z-Score of Langya chickens with different feeding densities"

Table 4

Effects of different stocking densities on the content of short chain fatty acids in cecum of Langya chicken (μg·g -1)"

分组
Group
乙酸
Acetic acid
丙酸
Propionic acid
异丁酸
Isobutyric acid
丁酸
Butyric acid
异戊酸
Isovaleric acid
戊酸
Valeric acid
AL 1424.39a 722.11a 106.92a 306.54a 115.48 95.70a
AI 1594.38a 720.14a 101.10a 317.39a 111.37 95.22a
AH 1020.29b 512.45b 86.93b 193.09b 95.76 70.79b
P value 0.014 0.016 0.008 0.009 0.284 0.038
BL 1734.46 651.65b 77.52b 320.56 104.82 79.03b
BI 1794.30 784.67a 113.06a 335.94 109.71 110.43a
BH 1764.38 718.16a 95.29ab 328.25 107.27 94.73ab
P 0.925 0.042 0.024 0.946 0.937 0.035

Fig. 5

Pearson correlation analysis between level difference at different time and cecal fermentation parameters W, A, P, I, B, i and v represent body weight, acetic acid, propionic acid, butyric acid, isobutyric acid, isovaleric acid and valeric acid, respectively. The mapping data were derived from the correlation coefficient between the relative abundance of each short-chain fatty acid and the genus"

Fig. 6

Differential function prediction analysis of cecal microorganisms in Langya chickens with different feeding densities"

[1]
BILAL R M, HASSAN F U, FARAG M R, ALI NASIR T, RAGNI M, MAHGOUB H A M, ALAGAWANY M. Thermal stress and high stocking densities in poultry farms: Potential effects and mitigation strategies. Journal of Thermal Biology, 2021, 99: 102944.
[2]
袁建敏. 肉禽饲养密度应激及营养调控研究进展. 中国家禽, 2017, 39(17): 1-5.
YUAN J M. Research progress on feeding density stress and nutritional regulation of meat birds. China Poultry, 2017, 39(17): 1-5. (in Chinese)
[3]
王永康, 徐新红. 未来蛋鸡笼养的发展趋势和动物福利问题. 中国家禽, 2002, 24(20): 1-4.
WANG Y K, XU X H. Development trend and animal wealth of future cage layers. China Poultry, 2002, 24(20): 1-4. (in Chinese)
[4]
于江明, 王秋菊, 刘勃麟, 宁博林, 王龙, 赵乾雨, 刘胜军, 全佳慧. 不同饲养密度对笼养蛋鸡十二指肠肠道菌群的影响. 动物营养学报, 2016, 28(3): 899-907.
YU J M, WANG Q J, LIU B L, NING B L, WANG L, ZHAO Q Y, LIU S J, QUAN J H. Effects of different stocking density on microbial flora of duodenum for caged layer. Chinese Journal of Animal Nutrition, 2016, 28(3): 899-907. (in Chinese)
[5]
SVIHUS B, SVIHUS C, CHOCT M, CHOCT C, CLASSEN H L, CLASSEN C L. Function and nutritional roles of the avian caeca: A review. World’s Poultry Science Journal, 2013, 69(2): 249-264.
[6]
TURNBAUGH P J, LEY R E, MAHOWALD M A, MAGRINI V, MARDIS E R, GORDON J I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 2006, 444(7122): 1027-1031.
[7]
CANI P D, VAN HUL M. Gut microbiota in overweight and obesity: Crosstalk with adipose tissue. Nature Reviews Gastroenterology & Hepatology, 2024, 21(3): 164-183.
[8]
国家市场监督管理总局, 中国国家标准化管理委员会. 饲料中钙的测定: GB/T 6436—2018[S]. 北京: 中国标准出版社, 2018.
State Administration of Market Regulation, Standardization Administration of the People’s Republic of China. Determination of calcium in feeds: GB/T 6436—2018[S]. Beijing: Standards Press of China, 2018. (in Chinese)
[9]
国家市场监督管理总局, 国家标准化管理委员会. 饲料中总磷的测定分光光度法: GB/T 6437—2018[S]. 北京: 中国标准出版社, 2018.
State Administration of Market Regulation, Standardization Administration of the People’s Republic of China. Determination of phosphorus in feeds—Spectrophotometry: GB/T 6437—2018[S]. Beijing: Standards Press of China, 2018. (in Chinese)
[10]
国家市场监督管理总局, 国家标准化管理委员会. 饲料中粗蛋白的测定凯氏定氮法: GB/T 6432—2018[S]. 北京: 中国标准出版社, 2018.
State Administration of Market Regulation, Standardization Administration of the People’s Republic of China. Determination of crude protein in feeds—Kjeldahl method: GB/T 6432—2018[S]. Beijing: Standards Press of China, 2018. (in Chinese)
[11]
熊本海, 罗清尧, 赵峰, 郑姗姗. 中国饲料成分及营养价值表(2021年第32版)制订说明. 中国饲料, 2021(23): 97.
XIONG B H, LUO Q Y, ZHAO F, ZHENG S S. Introduction of tables of feed composition and nutritive values in China (2021 thirty-second edition). China Feed, 2021(23): 97. (in Chinese)
[12]
临沂市市场监督管理局. 琅琊鸡笼养饲养管理技术规程.DB 3713/T223[S]. 临沂, 2021.
Linyi City Market Supervision Administration. Technical regulations for cage rearing and feeding management of Langya chickens.DB 3713/T223[S]. Linyi, 2021. (in Chinese)
[13]
中华人民共和国农业部. 家禽生产性能名词术语和度量统计方法: NY/T 823—2004[S]. 北京: 中国农业出版社, 2004.
Ministry of Agriculture of the People’s Republic of China. Performance ferms and measurement for poultry: NY/T 823—2004[S]. Beijing: China Agriculture Press, 2004. (in Chinese)
[14]
高飞宇, 张卫云, 李鼎, 张丽阳, 吴炳鑫, 吴伟, 朱玲, 胡云, 崔小燕, 汪圣晨, 李婷婷, 罗绪刚. 饲粮氯化钠缺乏或过量对22-42日龄肉仔鸡生长性能、肠道形态、盲肠菌群及短链脂肪酸含量的影响. 中国家禽, 2024, 46(4): 40-46.
GAO F Y, ZHANG W Y, LI D, ZHANG L Y, WU B X, WU W, ZHU L, HU Y, CUI X Y, WANG S C, LI T T, LUO X G. Effect of dietary sodium chloride deficiency or excess on growth performance, intestinal morphology, caecal microflora and short-chain fatty acid content of broilers from 22 to 42 days of age. China Poultry, 2024, 46(4): 40-46. (in Chinese)
[15]
SIMITZIS P E, KALOGERAKI E, GOLIOMYTIS M, CHARISMIADOU M A, TRIANTAPHYLLOPOULOS K, AYOUTANTI A, NIFOROU K, HAGER-THEODORIDES A L, DELIGEORGIS S G. Impact of stocking density on broiler growth performance, meat characteristics, behavioural components and indicators of physiological and oxidative stress. British Poultry Science, 2012, 53(6): 721-730.

doi: 10.1080/00071668.2012.745930 pmid: 23398415
[16]
QAID M, ALBATSHAN H, SHAFEY T, HUSSEIN E, ABUDABOS A M. Effect of stocking density on the performance and immunity of 1- to 14-d- old broiler chicks. Revista Brasileira de Ciência Avícola, 2016, 18(4): 683-692.
[17]
张蒙, 黄晨轩, 岳巧娴, 锡建中, 代占辉, 赵晓钰, 陈辉. 饲养密度对大午金凤商品代蛋雏鸡生长性能、器官指数及血清抗氧化指标的影响. 中国家禽, 2018, 40(4): 36-41.
ZHANG M, HUANG C X, YUE Q X, XI J Z, DAI Z H, ZHAO X Y, CHEN H. Effects of stocking density on growth performance, immune organs indexes and seram antioxidant capacity of Dawujinfeng commercial layer chicks. China Poultry, 2018, 40(4): 36-41. (in Chinese)
[18]
刘玮, 韩海霞, 李大鹏, 陶家树, 雷秋霞, 周艳, 刘杰, 王杰, 曹顶国, 李福伟, 邵庆平, 李惠敏. 饲养密度对蛋鸡生产性能、蛋品质、血清指标和肠道组织形态的影响. 动物营养学报, 2022, 34(11): 7002-7012.

doi: 10.3969/j.issn.1006-267x.2022.11.021
LIU W, HAN H X, LI D P, TAO J S, LEI Q X, ZHOU Y, LIU J, WANG J, CAO D G, LI F W, SHAO Q P, LI H M. Effects of stocking density on laying performance, egg quality, serum parameters and intestinal morphology of laying hens. Chinese Journal of Animal Nutrition, 2022, 34(11): 7002-7012. (in Chinese)

doi: 10.3969/j.issn.1006-267x.2022.11.021
[19]
万文龙, 俸艳萍, 龚炎长, 张弘毅, 王莹. 不同饲养密度对地面平养蛋鸡福利状况和生产性能的影响. 中国家禽, 2019, 41(19): 39-45.
WAN W L, FENG Y P, GONG Y C, ZHANG H Y, WANG Y. Effect of different stocking density on welfare status and production performance of layer raising on floor. China Poultry, 2019, 41(19): 39-45. (in Chinese)
[20]
ZABIR M, MIAH M A, ALAM M, BHUIYAN M E J, HAQUE M I, SUJAN K M, MUSTARI A. Impacts of stocking density rates on welfare, growth and hemato-biochemical profile in broiler chickens. Journal of Advanced Veterinary and Animal Research, 2021; 8(4): 642-649.
[21]
SUGIHARTO S. Dietary strategies to alleviate high-stocking-density- induced stress in broiler chickens - a comprehensive review. Archives Animal Breeding, 2022, 65(1): 21-36.
[22]
SHIRA E B, SKLAN D, FRIEDMAN A. Impaired immune responses in broiler hatchling hindgut following delayed access to feed. Veterinary Immunology and Immunopathology, 2005, 105(1-2): 33-45.

pmid: 15797473
[23]
NIBA A T, BEAL J D, KUDI A C, BROOKS P H. Bacterial fermentation in the gastrointestinal tract of non-ruminants: Influence of fermented feeds and fermentable carbohydrates. Tropical Animal Health and Production, 2009, 41(7): 1393-1407.

doi: 10.1007/s11250-009-9327-6 pmid: 19283504
[24]
MANCABELLI L, FERRARIO C, MILANI C, MANGIFESTA M, TURRONI F, DURANTI S, LUGLI G A, VIAPPIANI A, OSSIPRANDI M C, VAN SINDEREN D, VENTURA M. Insights into the biodiversity of the gut microbiota of broiler chickens. Environmental Microbiology, 2016, 18(12): 4727-4738.

doi: 10.1111/1462-2920.13363 pmid: 27129897
[25]
STANLEY D, GEIER M S, DENMAN S E, HARING V R, CROWLEY T M, HUGHES R J, MOORE R J. Identification of chicken intestinal microbiota correlated with the efficiency of energy extraction from feed. Veterinary Microbiology, 2013, 164(1/2): 85-92.
[26]
KOU X Y, MA Q S, LIU Y H, KHAN M Z, WU B X, CHEN W T, LIU X T, WANG C F, LI Y. Exploring the effect of gastrointestinal Prevotella on growth performance traits in livestock animals. Animals, 2024, 14(13): 1965.
[27]
SHAH T, GUO X S, SONG Y W, FANG Y G, DING L M. Comparative analysis of gut bacterial diversity in wild and domestic yaks on the Qinghai-Tibetan Plateau. Animals, 2024, 14(16): 2380.
[28]
XIE C L, CHENG J H, CHEN P, YAN X, LUO C L, QU H, SHU D M, JI J. Integrating gut and IgA-coated microbiota to identify Blautia as a probiotic for enhancing feed efficiency in chickens. iMeta, 2025, 4(1): e264.
[29]
HE Z X, LIU R R, WANG M J, WANG Q, ZHENG J M, DING J Q, WEN J, FAHEY A G, ZHAO G P. Combined effect of microbially derived cecal SCFA and host genetics on feed efficiency in broiler chickens. Microbiome, 2023, 11(1): 198.

doi: 10.1186/s40168-023-01627-6 pmid: 37653442
[30]
YIN Z C, JI S Y, YANG J T, GUO W, LI Y L, REN Z Z, YANG X J. Cecal microbial succession and its apparent association with nutrient metabolism in broiler chickens. mSphere, 2023, 8(3): e0061422.
[31]
RAMAN M, AMBALAM P, DOBLE M. Short-chain fatty acids. Probiotics and Bioactive Carbohydrates in Colon Cancer Management. New Delhi: Springer India, 2016: 97-115.
[32]
SMITS L P, BOUTER K E C, DE VOS W M, BORODY T J, NIEUWDORP M. Therapeutic potential of fecal microbiota transplantation. Gastroenterology, 2013, 145(5): 946-953.

doi: 10.1053/j.gastro.2013.08.058 pmid: 24018052
[33]
SHEN A, EDWARDS A N, SARKER M R, PAREDES-SABJA D. Sporulation and germination in clostridial pathogens. Microbiology Spectrum, 2019, 7(6). doi:10.1128/microbiolspec.GPP3-0017-2018.
[34]
LEE J, D’AIGLE J, ATADJA L, QUAICOE V, HONARPISHEH P, GANESH B P, HASSAN A, GRAF J, PETROSINO J, PUTLURI N, et al. Gut microbiota-derived short-chain fatty acids promote poststroke recovery in aged mice. Circulation Research, 2020, 127(4): 453-465.

doi: 10.1161/CIRCRESAHA.119.316448 pmid: 32354259
[35]
YEOMAN C J, CHIA N, JERALDO P, SIPOS M, GOLDENFELD N D, WHITE B A. The microbiome of the chicken gastrointestinal tract. Animal Health Research Reviews, 2012, 13(1): 89-99.

doi: 10.1017/S1466252312000138 pmid: 22853945
[36]
LIU L X, LI Q Q, YANG Y J, GUO A W. Biological function of short-chain fatty acids and its regulation on intestinal health of poultry. Frontiers in Veterinary Science, 2021, 8: 736739.
[37]
PANDA A K, RAMA RAO S V, RAJU M V L N, SUNDER C S. Effect of butyric acid on performance, gastrointestinal tract health and carcass characteristics in broiler chickens. Asian-Australasian Journal of Animal Sciences, 2009, 22(7): 1026-1031.
[38]
ONRUST L, VAN DRIESSCHE K, DUCATELLE R, SCHWARZER K, HAESEBROUCK F, VAN IMMERSEEL F. Valeric acid glyceride esters in feed promote broiler performance and reduce the incidence of necrotic enteritis. Poultry Science, 2018, 97(7): 2303-2311.

doi: 10.3382/ps/pey085 pmid: 29562369
[39]
ZDUNCZYK Z, JANKOWSKI J, MIKULSKI D, PRZYBYLSKA- GORNOWICZ B, SOSNOWSKA E, JUSKIEWICZ J. Gastrointestinal morphology and function in turkeys fed diets diluted with whole grain wheat. Poultry Science, 2013, 92(7): 1799-1811.

doi: 10.3382/ps.2012-02482 pmid: 23776267
[40]
SUN B S, HOU L Y, YANG Y. The development of the gut microbiota and short-chain fatty acids of layer chickens in different growth periods. Frontiers in Veterinary Science, 2021, 8: 666535.
[41]
JING Y, YUAN Y Q, MONSON M, WANG P, MU F, ZHANG Q, NA W, ZHANG K, WANG Y X, LENG L, et al. Multi-omics association reveals the effects of intestinal microbiome-host interactions on fat deposition in broilers. Frontiers in Microbiology, 2021, 12: 815538.
[42]
DING J M, ZHAO L L, WANG L F, ZHAO W J, ZHAI Z X, LENG L, WANG Y X, HE C, ZHANG Y, ZHANG H P, LI H, MENG H. Divergent selection-induced obesity alters the composition and functional pathways of chicken gut microbiota. Genetics, Selection, Evolution, 2016, 48(1): 93.

pmid: 27894254
[1] BAI YuXin, LIU LingZhi, AN TingTing, LI ShuangYi, WANG JingKuan. Eeffects of Long-Term Fertilization on Bacterial Community Structure and Carbon Metabolic Functions in Brown Soil [J]. Scientia Agricultura Sinica, 2025, 58(8): 1579-1590.
[2] PAN LiYuan, WANG YongJun, LI HaiJun, HOU Fu, LI Jing, LI LiLi, SUN SuYang. Screening Regulatory Genes Related to Wheat Grain Protein Accumulation Based on Transcriptome and WGCNA Analysis [J]. Scientia Agricultura Sinica, 2025, 58(6): 1065-1082.
[3] TANG GuiMei, LI WeiDong, ZHOU YuXia, KONG YouHan, XIAO XiaoLing, PENG YingShu, ZHANG Li, FU HongYan, LIU Yang, HUANG GuoLin. Genetic Diversity Analysis of Cymbidium faberi Germplasm Resources Based on Phenotypic Traits [J]. Scientia Agricultura Sinica, 2025, 58(2): 339-354.
[4] JIA YuJing, LI ChaoNan, PAN ZhiXiong, YANG DeLong, MAO XinGuo, JING RuiLian. Cloning and Genetic Effect Analysis of TaTIFY11c-4A in Wheat [J]. Scientia Agricultura Sinica, 2025, 58(17): 3357-3371.
[5] LIU PengPeng, LI JiangBo, XU HongJun, NIE YingBin, HAN XinNian, KONG DeZhen, SANG Wei. Genetic Diversity Analysis of Protein Fractions and Quality in Xinjiang Winter Wheat Cultivar Resources [J]. Scientia Agricultura Sinica, 2025, 58(15): 2948-2959.
[6] DONG Xue, CHEN MengQiu, SHAO Jin, WU XueYou, TANG PeiAn. Construction of a Differential Gene Expression and Quality Regulation Network in Stored Rice Grain Using WGCNA [J]. Scientia Agricultura Sinica, 2025, 58(14): 2885-2903.
[7] WANG Hui, DING BaoPeng, LI YuXian, REN QuanRu, ZHOU Hai, ZHAO JunLiang, HU HaiFei. Research Progress and Prospects on Crop Pan-Genomics [J]. Scientia Agricultura Sinica, 2025, 58(11): 2045-2061.
[8] WANG Wei, WU ChuanLei, HU XiaoYu, LI JiaJia, BAI PengYu, WANG GuoJi, MIAO Long, WANG XiaoBo. Genome-Wide Identification of Soybean LOX Gene Family and the Effect of GmLOX15A1 Gene Allele on 100-Seed Weight [J]. Scientia Agricultura Sinica, 2025, 58(1): 10-29.
[9] PAN Jing, MENG ZhiHao, WANG Sen, WANG HaiBo, HE Ping, CHANG YuanSheng, ZHENG WenYan, LI LinGuang, WANG Chen, WANG Ping, HE XiaoWen. Diversity Analysis and Comprehensive Evaluation of Fruit Quality Traits in Reciprocal Cross Progenies of Apple Golden Delicious and Fuji Nagafu No.2 [J]. Scientia Agricultura Sinica, 2024, 57(24): 4945-4963.
[10] LI Pei, HE ZhiLin, TAN YueXia, ZHAO WanTong, FENG JinYing, CHEN GuiHu, YAN Chi, WANG ZiHao, HUANG Ping, JIANG Dong. Genetic Diversity Analysis of Mandarin and Excellent Germplasm Screening Based on Whole-Genome Resequencing Data and Phenotypic Traits [J]. Scientia Agricultura Sinica, 2024, 57(23): 4761-4773.
[11] ZHANG HuiYong, WU HuCong, ZHU GuoQiang, LI GuoHui, YU Yan, YIN JianMei, XUE Qian, ZHOU ChengHao, JIANG YiXiu, SU YiJun, HUANG HuaYun, HAN Wei. Detox Dynamics and Reproductive Performance of Langya Chickens Infected with ALV-J [J]. Scientia Agricultura Sinica, 2024, 57(23): 4815-4824.
[12] SU LanXi, PU QiuJie, BAI TingYu, WU YueXian, WU Gang, TAN LeHe, HU YaLi. Effects of Soil Texture on Rhizosphere Microbial Carbon Source Utilization, Nematode Community and Fruit Sugar of Jackfruit [J]. Scientia Agricultura Sinica, 2024, 57(2): 349-362.
[13] YANG Chun, YANG DaiXing, LI Yan, LIANG SiHui, DENG XiaoQiang, QIAO DaHe, CHEN Juan, GUO Yan, LIN KaiQin, CHEN ZhengWu. Comprehensive Analysis of Morphologic Characters and Biochemical Components of Guizhou Dashu Tea Germplasms [J]. Scientia Agricultura Sinica, 2024, 57(19): 3894-3916.
[14] LI YuShan, XIAO Jing, MA Yue, TIAN Chao, ZHAO LianJia, WANG Fan, SONG Yu, JIANG ChengYao. Identification and Evaluation of Phenotypic Characters and Genetic Diversity Analysis of 169 Tomato Germplasm Resources [J]. Scientia Agricultura Sinica, 2024, 57(18): 3671-3683.
[15] ZHAI CaiJiao, GE LiJiao, CHENG YuJing, QIU Liang, WANG XiaoQiu, LIU ShuiDong. Genetic Diversity Analysis of Wax Gourd and Chieh-Qua Germplasm Resources Based on Phenotypic Traits and SSR Markers [J]. Scientia Agricultura Sinica, 2024, 57(17): 3440-3457.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!