Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (17): 3473-3487.doi: 10.3864/j.issn.0578-1752.2025.17.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Nitrogen and Potassium Application Rate on Soil Salinity, Yield and Quality of Korla Fragrant Pear Under Drip Irrigation in Southern Xinjiang

WANG Long1,2(), WANG Jun2,*(), JIANG Jing1, LIU Hao2, LIU DeZhao2, LI JiuSheng2   

  1. 1 College of Water Resources Science and Engineering, Taiyuan University of Technology, Taiyuan 030024
    2 China Institute of Water Resources and Hydropower Research, Beijing 100048
  • Received:2024-10-08 Accepted:2024-12-03 Online:2025-09-02 Published:2025-09-02
  • Contact: WANG Jun

Abstract:

【Objective】This study aimed to assess the impacts of nitrogen and potassium application rates under drip irrigation on the soil salinity, yield, and quality of labor-saving and high-density Korla fragrant pear orchards, and to put forward the appropriate nitrogen and potassium fertilization was crucial for scientific field fertilization management.【Method】A field experiment was conducted, and the treatments included five nitrogen application rates (0, N0; 100 kg·hm-2, N1; 200 kg·hm-2, N2; 300 kg·hm-2, N3; 400 kg·hm-2, N4), four potassium application rates (0, K0; 50 kg·hm-2, K1; 100 kg·hm-2, K2; 150 kg·hm-2, K3). The differences in soil salinity, yield and quality of fragrant pears under different nitrogen and potassium application levels were analyzed. The grey correlation analysis was used to assess the optimal N and K application rates.【Result】Nitrogen and potassium application rate significantly influenced soil salt accumulation in the 0-100 cm soil layer at different growth stages (P<0.05). As the nitrogen rate increased, salt accumulation first decreased and then increased. The lowest salt accumulation was obtained from nitrogen application rate of 300 kg·hm-2, which was 18.7%-237.0% lower than other treatments. With potassium application rate increasing, salt accumulation gradually decreased. And the lowest value was obtained with potassium application rate of 150 kg·hm-2, which was 10.0%-219.1% lower than other potassium application rates. Both nitrogen and potassium application rate significantly influenced the yield and quality of fragrant pears (P<0.05). The yield and fruit quality firstly increased and then decreased with the nitrogen application rate increasing, and the best was obtained from the nitrogen application rate of 300 kg·hm-2. The yield, single fruit weight, and soluble solids were 9.0%-16.7%, 2.4%-8.6%, and 2.3%-5.8% higher than other nitrogen application rates treatments, respectively, while peel hardness decreased by 2.5%-4.1%. Higher potassium application rates result in a greater yield and quality, and the yield, fruit weight and soluble solid under potassium application rate of 150 kg·hm-2 were 2.2%-7.9%, 2.3%-6.5% and 0.5%-3.7% greater than other potassium application rate treatments, respectively, while the peeling hardness decreased by 0.8%-8.0%. Grey correlation analysis indicated that N3K3 treatment produced a high yield and quality of Korla fragrant pear.【Conclusion】The appropriate nitrogen and potassium application rates were 300 and 150 kg·hm-2 for labor-saving cultivated Korla fragrant pear under drip irrigation.

Key words: Korla fragrant pear, drip irrigation, labor-saving cultivation, soil salinity, yield, quality, Southern Xinjiang

Table 1

Physical properties of soil in the study plots"

土层
Soil layer
(cm)
土壤含盐量
Soil salinity
(g·kg-1)
pH 土壤容重
Soil bulk density
(g·cm-3)
颗粒质量百分数
Particle mass percentage (%)
土壤质地
Soil texture
<0.002 mm 0.05—0.002 mm 0.05—2.0 mm
0—20 6.44 8.05 1.58 8.36 75.91 15.73 粉壤土
Silty loam
20—40 9.47 7.98 1.53 9.95 78.71 11.34
40—60 11.98 7.48 1.59 12.55 78.10 9.35
60—80 5.65 7.44 1.58 6.88 66.51 26.61
80—100 5.15 7.69 1.59 6.54 60.12 33.34

Table 2

Field experimental treatments"

2022 2023
处理编号 Treatment N (kg·hm-2) K (kg·hm-2) 处理编号 Treatment N (kg·hm-2) K (kg·hm-2)
N1K1 100 50 N2K1 200 50
N1K2 100 100 N2K2 200 100
N1K3 100 150 N2K3 200 150
N2K1 200 50 N0K2 0 100
N2K2 200 100 N3K0 300 0
N2K3 200 150 N3K1 300 50
N0K2 0 100 N3K2 300 100
N3K0 300 0 N3K3 300 150
N3K1 300 50 N4K1 400 50
N3K2 300 100 N4K2 400 100
N3K3 300 150 N4K3 400 150

Fig. 1

The irrigation amount during fragrant pear growing season in 2022 and 2023"

Fig. 2

Nitrogen and potassium application rates during fragrant pear growing season in 2022 and 2023"

Table 3

Impact of different nitrogen and potassium application rates on soil water storage (mm) in 2022 and 2023"

2022 2023
处理
Treatment
坐果期
Fruit setting stage
膨果期
Fruit swelling stage
成熟期
Ripening stage
处理
Treatment
坐果期
Fruit setting stage
膨果期
Fruit swelling stage
成熟期
Ripening stage
N1K1 302.88±14.42a 318.39±0.5a 308.88±22.21a N2K1 260.21±11.22a 317.87±14.6ab 288.29±10.67bc
N2K1 289.85±13.8ab 305.07±6.1abc 310.11±11.02a N3K1 223.31±11.75b 305.17±16.17ab 301.38±23.81abc
N3K1 299.84±14.28ab 294.14±12.14c 261.74±8.69cd N4K1 257.5±2.18ab 333.24±16.41a 331.3±0.51a
N0K2 287.53±10.85ab 305.43±5.65abc 308.75±18.17ab N0K2 261.88±9.05a 311.94±14.55ab 296.66±9.88abc
N1K2 284.64±13.55ab 314.43±5.76ab 298.92±13.3ab N2K2 263.89±4.2a 299.78±22.69ab 288.36±9.37bc
N2K2 287.3±27.66ab 304.51±1.65abc 290.39±7.7abc N3K2 264.33±8.07a 266.82±13.8c 282.12±24.02bc
N3K2 284.64±13.55ab 299.38±8.19bc 281.43±28.1abc N4K2 267.24±14.07a 313.99±15.32ab 316.63±10.49ab
N1K3 287.07±13.67ab 315.94±6.73ab 278.75±3.17abc N2K3 256.11±13.48ab 313.32±5.68ab 294.07±23.33abc
N2K3 294.54±14.03ab 304.68±5.22abc 266.55±7.18bcd N3K3 262.12±13.8a 296.6±6.02bc 269.84±19.54c
N3K3 247.04±11.76b 296.11±13.43c 242.09±23.42d N4K3 273.42±14.39a 307.55±13.15ab 306.42±26.41abc
N3K0 272.59±12.98ab 309.32±2abc 285.24±5.64abc N3K0 261.46±6.18a 312.75±14.62ab 278.49±8.15bc
显著性Significance
N ns (P=0.651) ** (P=0.001 ) ** (P =0.002) N ns (P =0.356) * (P =0.033) * (P=0.014)
K ns (P=0.452) ns (P=0.226) ns (P =0.051) K ns (P =0.158) ns (P =0.069) ns (P=0.385)
N×K ns (P=0.405) ns (P=0.932) ns (P=0.185) N×K ns (P =0.316) ns (P =0.404) ns (P=0.385)

Fig. 3

Soil salt accumulation under different fertilization treatments during various growth stages of fragrant pear in 2022 and 2023 Different lowercase letters indicate significant differences (P<0.05) in soil salt accumulation among the treatments"

Table 4

Variance analysis of soil salt accumulation during various growth stages of fragrant pear"

因子
Factor
坐果期 Fruit setting stage 膨果期 Fruit swelling stage 成熟期 Ripening stage
2022 2023 2022 2023 2022 2023
N ** (P=0.000) ** (P=0.000) ** (P=0.000) ** (P=0.000) ** (P=0.000) ** (P=0.000)
K ** (P=0.000) ** (P=0.000) ** (P=0.000) ** (P=0.000) ** (P=0.000) ** (P=0.000)
N×K ** (P=0.000) ns (P=0.074) ns (P=0.624) * (P=0.048) ** (P=0.002) ns (P=0.052)

Fig. 4

Yield of fragrant pear under different fertilization treatments in 2022 and 2023"

Table 5

Variance analysis of fragrant pear yield"

因子
Factor
产量Yield(kg·hm-2
2022 2023
N ** (P=0.000) ** (P=0.000)
K * (P=0.010) ** (P=0.000)
N×K ns (P=0.935) ** (P=0.002)

Table 6

Effects of different nitrogen and potassium application rates on fruit quality of fragrant pear in 2022"

试验处理
Treatment
单果重
Single fruit weight (g)
可溶性固形物含量
Soluble solids content (%)
去皮硬度
Peel firmness (kg·cm-2)
N1K1 112.77±3.17c 11.15±0.19abc 7.77±0.22ab
N2K1 115.93±2.19bc 11.57±0.18ab 8.08±0.63a
N3K1 118.98±0.52bc 11.77±0.43ab 7.49±0.4abc
N0K2 118.46±2.05bc 10.6±0.59bc 7.63±0.42abc
N1K2 111.93±3.64c 11.75±0.43c 6.88±0.32c
N2K2 118.51±5.3bc 11.95±0.27a 7.98±0.54a
N3K2 122.77±5.89ab 12.1±0.7a 6.89±0.56abc
N1K3 115.9±3.98bc 11.21±0.29abc 7.51±0.22abc
N2K3 121.88±5.13ab 11.75±0.76ab 7.08±0.21bc
N3K3 128.16±2.56a 12.21±0.64a 6.88±0.43c
N3K0 116.76±4.78bc 11.25±0.96abc 7.39±0.6c
显著性Significance
N ** (P=0.000) ** (P=0.008) ns (P=0.089)
K ** (P=0.003) ** (P=0.034) * (P=0.043)
N×K ns (P=0.733) ns (P=0.694) ns (P=0.101)

Table 7

Effects of different nitrogen and potassium application rates on fruit quality of fragrant pear in 2023"

试验处理
Treatment
单果重
Single fruit weight
(g)
可溶性固形物含量
Soluble solids content (%)
去皮硬度
Peel firmness
(kg·cm-2)
Vc
(mg·100g-1)
可溶性糖
Soluble sugar
(%)
可滴定酸
Titratable acidity
(g·L-1)
糖酸比
Sugar-acid ratio
N2K1 110.55±1.64d 11.35±0.66d 7.6±0.39b 1.99±0.03cd 7.8±0.19c 0.88±0.07abc 88.44±4.35c
N3K1 116.27±5.91bcd 12.06±0.46ab 7.5±0.33bc 2.09±0.03ab 7.93±0.16c 0.9±0.01ab 88.48±2.52c
N4K1 117.66±2.49cd 11.86±0.5abcd 7.37±0.27bc 2.11±0.02bc 7.35±0.1d 0.92±0.05ab 79.72±3.41d
N0K2 114.63±0.72cd 11.39±0.34cd 8.1±0.38a 1.92±0.18d 6.92±0.14ef 0.9±0.08ab 77.11±3.86d
N2K2 116.31±2.08bcd 11.77±0.65abcd 7.43±0.22bc 2.2±0.03bc 8.47±0.07ab 0.82±0.05bcd 103.63±0.99b
N3K2 122.17±4.4b 12.18±0.56a 6.99±0.27d 2.32±0.03a 8.74±0.21a 0.78±0.04cd 111.73±6.37ab
N4K2 120.19±2.42bc 11.92±0.36abc 7.34±0.25bc 2.3±0.04ab 6.55±0.14gh 0.91±0.07ab 74.86±5.36de
N2K3 119.11±4.56bc 11.83±0.45abcd 7.32±0.24bc 1.87±0.11bc 7.7±0.15c 0.74±0.09d 104.27±4.48b
N3K3 127.79±2.15a 12.23±0.34a 6.94±0.29d 2.1±0.06a 8.28±0.14b 0.73±0.06d 113.4±1.99a
N4K3 119.89±1.78bc 11.51±0.8bcd 7.27±0.28c 2.18±0.12bcd 6.55±0.14g 0.97±0.1a 67.42±1.43e
N3K0 115.73±3.79cd 11.6±0.35bcd 7.29±0.23bc 2.04±0.01d 7.2±0.11de 0.95±0.09a 76.01±5.23de
显著性Significance
N ** (P=0.001) ** (P=0.000) **(P=0.000) ** (P=0.000) ** (P=0.000) ** (P=0.007) ** (P=0.000)
K ** (P=0.000) ** (P=0.025) ** (P=0.001) ** (P=0.000) ** (P=0.000) ns (P=0.058) ** (P=0.000)
N×K ns (P=0.199) ns (P=0.183) ns (P=0.097) ns (P=0.419) ** (P=0.000) ns (P=0.087) ** (P=0.000)

Table 8

AHP hierarchical analysis results"

指标
Indicator
特征向量
Eigenvector
权重值
Weight value (%)
最大特征根
Largest eigenvalue
CI值
CI value
产量Yield 1.70 21.21 8.31 0.04
可溶性糖Soluble sugar 1.42 17.73
糖酸比Ratio of sugar to acid 1.20 15.03
可滴定酸Titratable acidity 1.02 12.80
去皮硬度Peel hardness 0.87 10.92
单果重Individual fruit weight 0.60 7.44
Vc 0.60 7.44
可溶性固形物Soluble solids content 0.60 7.44

Table 9

Grey relational degree comprehensive evaluation results"

指标Indicator N2K1 N3K1 N4K1 N0K2 N2K2 N3K2 N4K2 N2K3 N3K3 N4K3 N3K0
产量Yield 0.39 0.57 0.36 0.33 0.42 0.68 0.44 0.68 1 0.37 0.38
可溶性糖Soluble sugar 0.54 0.57 0.44 0.38 0.8 1 0.33 0.51 0.7 0.33 0.42
糖酸比Ratio of sugar to acid 0.48 0.48 0.41 0.39 0.7 0.93 0.37 0.72 1 0.33 0.38
可滴定酸Titratable acidity 0.42 0.4 0.37 0.4 0.53 0.66 0.38 0.9 1 0.33 0.35
去皮硬度Peel hardness 0.45 0.49 0.55 0.33 0.52 0.91 0.57 0.58 1 0.61 0.6
单果重Individual fruit weight 0.33 0.43 0.46 0.4 0.43 0.61 0.53 0.5 1 0.52 0.42
Vc 0.41 0.64 0.51 0.36 0.5 1 0.62 0.52 0.97 0.45 0.33
可溶性固形物Soluble solids content 0.33 0.72 0.54 0.34 0.49 0.9 0.59 0.52 1 0.38 0.41
关联度R Correlation degree R 0.43 0.53 0.44 0.36 0.57 0.83 0.45 0.64 0.95 0.4 0.41
优劣次序Order of merit 8 5 7 11 4 2 6 3 1 10 9
[1]
王苏珂, 李秀根, 郭献平, 郑洁, 王龙, 薛华柏, 苏艳丽, 杨健. 优异地方品种‘库尔勒香梨’在育种上的应用. 果树学报, 2018, 35(增刊): 26-30.
WANG S K, LI X G, GUO X P, ZHENG J, WANG L, XUE H B, SU Y L, YANG J. The excellent germplasm ‘Kuerlexiangli’ pear and its utilization in pear breeding. Journal of Fruit Science, 2018, 35(Suppl.): 26-30. (in Chinese)
[2]
柴仲平, 王雪梅, 陈波浪, 蒋平安, 盛建东, 何传文. 不同施肥处理对库尔勒香梨长势与产量的影响. 水土保持研究, 2013, 20(3): 172-175.
CHAI Z P, WANG X M, CHEN B L, JIANG P A, SHENG J D, HE C W. Impact of different fertilization treatments on growth and yield of Korla fragrant pear. Research of Soil and Water Conservation, 2013, 20(3): 172-175. (in Chinese)
[3]
丁邦新, 刘雪艳, 何雪菲, 陈波浪, 柴仲平. ‘库尔勒香梨’园测土配方推荐施肥研究. 果树学报, 2019, 36(8): 1020-1028.
DING B X, LIU X Y, HE X F, CHEN B L, CHAI Z P. Recommendation of fertilization for ‘Kuerlexiangli’ pear orchards based on soil testing. Journal of Fruit Science, 2019, 36(8): 1020-1028. (in Chinese)
[4]
何新林, 王佳鑫, 龚萍, 赵丽, 衡通, 王春霞, 张景瑞. 南疆矮化密植高产优质香梨节水灌溉模式筛选. 农业工程学报, 2024, 40(2): 249-262.
HE X L, WANG J X, GONG P, ZHAO L, HENG T, WANG C X, ZHANG J R. Irrigation modes screening for water saving, high yield and quality of dwarfed and densely planted fragrant pears in South Xinjiang of China. Transactions of the Chinese Society of Agricultural Engineering, 2024, 40(2): 249-262. (in Chinese)
[5]
刘茂, 柴仲平, 盛建东, 丁阔, 何传文. 施用有机肥对库尔勒香梨叶片营养元素及果实产量、品质的影响. 北方园艺, 2014(10): 159-163.
LIU M, CHAI Z P, SHENG J D, DING K, HE C W. Effect of organic fertilizer on the elements of leaves and the yield, quality of Korla fragrant pear. Northern Horticulture, 2014(10): 159-163. (in Chinese)
[6]
柴仲平, 王雪梅, 陈波浪, 盛建东, 刘茂, 沈幸, 李珊珊. 库尔勒香梨叶片营养诊断研究. 干旱地区农业研究, 2014, 32(2): 177-185.
CHAI Z P, WANG X M, CHEN B L, SHENG J D, LIU M, SHEN X, LI S S. Study on leaf nutrition diagnosis of Korla fragrant pear. Agricultural Research in the Arid Areas, 2014, 32(2): 177-185. (in Chinese)
[7]
吴荣, 刘善江, 孙昊, 田野, 陈益山, 杜颖, 马良. 有机氮与无机氮不同配比对设施菜地次生盐渍化土壤改良效果. 中国土壤与肥料, 2018(6): 61-66.
WU R, LIU S J, SUN H, TIAN Y, CHEN Y S, DU Y, MA L. Study on the effect of organic nitrogen and inorganic nitrogen on the improvement of secondary salinized soil. Soil and Fertilizer Sciences in China, 2018(6): 61-66. (in Chinese)
[8]
张景瑞, 王春霞, 马建江, 王宏鑫, 王佳鑫. 基于AquaCrop模型的库尔勒香梨生长动态模拟及滴灌制度优化. 水土保持学报, 2023, 37(5): 328-336, 344.
ZHANG J R, WANG C X, MA J J, WANG H X, WANG J X. Dynamic simulation of Korla fragrant pear growth and optimization of drip irrigation system based on AquaCrop model. Journal of Soil and Water Conservation, 2023, 37(5): 328-336, 344. (in Chinese)
[9]
夏立忠, 李忠佩, 杨林章. 大棚栽培番茄不同施肥条件下土壤养分和盐分组成与含量的变化. 土壤, 2005, 37(6): 620-625.
XIA L Z, LI Z P, YANG L Z. Changes in composition and content of nutrients and water soluble salts in soil under plastic greenhouse tomato cultivation in relation to fertilization. Soils, 2005, 37(6): 620-625. (in Chinese)
[10]
XIE H Y, LI J, ZHANG Y T, XU X B, WANG L Q, OUYANG Z. Evaluation of coastal farming under salinization and optimized fertilization strategies in China. The Science of the Total Environment, 2021, 797: 149038.
[11]
CHE Z, WANG J, LI J S. Effects of water quality, irrigation amount and nitrogen applied on soil salinity and cotton production under mulched drip irrigation in arid Northwest China. Agricultural Water Management, 2021, 247: 106738.
[12]
ALOMAR R, JENA D. Potassium and brackish water irrigation influence electrical conductivity, potassium dynamic, and maize yield in coastal saline soil. Communications in Soil Science and Plant Analysis, 2024, 55(5): 723-734.
[13]
张蒙, 张怀方, 黄晋霞, 陈新, 王文泉, 曾长英. 氮、钾、钙不同配比对木薯生长发育及块根品质的影响. 中国土壤与肥料, 2023(6): 175-185.
ZHANG M, ZHANG H F, HUANG J X, CHEN X, WANG W Q, ZENG C Y. Effects of different proportions of nitrogen,potassium and calcium on growth and tuber quality of cassava. Soil and Fertilizer Sciences in China, 2023(6): 175-185. (in Chinese)
[14]
李丹萍, 寸待泽, 李晶, 周先艳, 李进学, 付小猛, 董建梅, 杜玉霞. 不同氮钾肥用量对百香果生长、品质及产量的影响. 中国土壤与肥料, 2022(12): 123-132.
LI D P, CUN D Z, LI J, ZHOU X Y, LI J X, FU X M, DONG J M, DU Y X. Effects of different nitrogen and potassium dosage on growth,quality and yield of passion fruit. Soil and Fertilizer Sciences in China, 2022(12): 123-132. (in Chinese)
[15]
沈晗, 石俊雄, 杨凯, 朱启法, 汤朝起, 张恒, 徐玮杰, 裴洲洋, 李世金, 朱经伟. 化肥减量条件下水溶性追肥比例对烤烟产质量的影响. 中国土壤与肥料, 2021(5): 89-94.
SHEN H, SHI J X, YANG K, ZHU Q F, TANG C Q, ZHANG H, XU W J, PEI Z Y, LI S J, ZHU J W. Effects of different ratio of water soluble fertilizer topdressing on yield and quality of tobacco leaves under the condition of reducing fertilizer. Soil and Fertilizer Sciences in China, 2021(5): 89-94. (in Chinese)
[16]
SETE P B, COMIN J J, NARA CIOTTA M, ALMEIDA SALUME J, THEWES F, BRACKMANN A, TOSELLI M, NAVA G, ROZANE D E, LOSS A, et al. Nitrogen fertilization affects yield and fruit quality in pear. Scientia Horticulturae, 2019, 258: 108782.
[17]
GILL P, GANAIE M, DHILLON W, SINGH N P. Effect of foliar sprays of potassium on fruit size and quality of ‘Patharnakh’ pear. Indian Journal of Horticulture, 2012, 69(4): 512-516.
[18]
武晓, 申长卫, 丁易飞, 伍从成, 董彩霞, 徐阳春. 黄冠梨果实和叶片钾素积累特征及其对施钾的响应. 植物营养与肥料学报, 2016, 22(5): 1425-1432.
WU X, SHEN C W, DING Y F, WU C C, DONG C X, XU Y C. Potassium accumulation in ‘Huangguan’ pear fruits and leaves and their response to different potassium application. Journal of Plant Nutrition and Fertilizers, 2016, 22(5): 1425-1432. (in Chinese)
[19]
WANG Z Y, ZHANG H J, WANG Y Y, WANG Y, LEI L, LIANG C, WANG Y C. Deficit irrigation decision-making of indigowoad root based on a model coupling fuzzy theory and grey relational analysis. Agricultural Water Management, 2023, 275: 107983.
[20]
马文霞, 倪玉洁, 谢倩, 何淑敏, 叶清华, 叶俊, 陈清西. 鲜食百香果果实品质综合评价模型的建立及应用. 食品科学, 2020, 41(13): 53-60.

doi: 10.7506/spkx1002-6630-20190625-327
MA W X, NI Y J, XIE Q, HE S M, YE Q H, YE J, CHEN Q X. Establishment and application of comprehensive evaluation model for quality of fresh passion fruit. Food Science, 2020, 41(13): 53-60. (in Chinese)

doi: 10.7506/spkx1002-6630-20190625-327
[21]
周道明, 孙涛, 赵玉红, 贾媛婕, 杨铭菲, 屈锋, 胡晓辉. 基于品质、产量与水肥利用效率的基质栽培辣椒水肥管理优化. 中国农业科学, 2023, 56(12): 2354-2366. doi: 10.3864/j.issn.0578-1752.2023.12.010.
ZHOU D M, SUN T, ZHAO Y H, JIA Y J, YANG M F, QU F, HU X H. Optimization of water and fertilizer management of substrate cultivated peppers based on quality, yield, and water and fertilizer use efficiency. Scientia Agricultura Sinica, 2023, 56(12): 2354-2366. doi: 10.3864/j.issn.0578-1752.2023.12.010. (in Chinese)
[22]
CHU H Y, LIN X G, FUJII T, MORIMOTO S, YAGI K, HU J L, ZHANG J B. Soil microbial biomass, dehydrogenase activity, bacterial community structure in response to long-term fertilizer management. Soil Biology and Biochemistry, 2007, 39(11): 2971-2976.
[23]
何天明, 张峰, 唐章虎, 覃伟铭, 宋金龙, 王鑫, 程嘉宝. 新疆梨园施肥技术规程. 西北园艺(果树), 2021(2): 44-47.
HE T M, ZHANG F, TANG Z H, QIN W M, SONG J L, WANG X, CHENG J B. Technical specification for fertilization in Xinjiang pear orchard. Northwest Horticulture, 2021(2): 44-47. (in Chinese)
[24]
韦广源, 谭军利, 李红, 马波, 王月梅, 田海梅, 王西娜. 施氮量和灌溉定额对引黄灌区麦后复种油菜产量和水氮利用的影响. 中国生态农业学报(中英文), 2023, 31(11): 1745-1757.
WEI G Y, TAN J L, LI H, MA B, WANG Y M, TIAN H M, WANG X N. Effects of nitrogen application rate and irrigation quota on yield and water and nitrogen utilization of post-spring wheat multiple cropping oilseed rape in Yellow River Irrigation Area. Chinese Journal of Eco-Agriculture, 2023, 31(11): 1745-1757. (in Chinese)
[25]
陈文娟, 李明思, 秦文豹, 徐亚南, 聂锦杰, 梁萌帆. 水平翻耕措施对覆膜滴灌土壤水盐分布调控效果研究. 农业机械学报, 2020, 51(3): 276-286.
CHEN W J, LI M S, QIN W B, XU Y N, NIE J J, LIANG M F. Effect of horizontal tillage measures regulatory on soil water and salt distribution under mulched drip irrigation. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(3): 276-286. (in Chinese)
[26]
雷杰, 张硕, 刘承岳, 孔春贤, 杨广, 李小龙, 李鹏飞, 何新林, 李毅. 不同矿化度水源膜下滴灌对棉花土壤盐分分布及生长的影响. 西北农业学报, 2024, 33(4): 619-629.
LEI J, ZHANG S, LIU C Y, KONG C X, YANG G, LI X L, LI P F, HE X L, LI Y. Effect of drip irrigation with film mulching on soil salinity distribution and cotton growth under different water source salinity levels. Acta Agriculturae Boreali-occidentalis Sinica, 2024, 33(4): 619-629. (in Chinese)
[27]
代丽, 朱爱华, 赵匀. 应用层次分析法计算分插机构优化目标的权重. 农业工程学报, 2013, 29(2): 60-65.
DAI L, ZHU A H, ZHAO Y. Using AHP to calculate optimization objective weights of transplanting mechanism. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(2): 60-65. (in Chinese)
[28]
唐帅, 易自力, 李娜, 谢一顾, 邓子牛, 李大志. 冰糖橙果实品质综合评价量化模型的建立及应用. 果树学报, 2018, 35(7): 889-897.
TANG S, YI Z L, LI N, XIE Y G, DENG Z N, LI D Z. A quantitative model for the comprehensive evaluation of the fruit quality of the Bingtang sweet orange. Journal of Fruit Science, 2018, 35(7): 889-897. (in Chinese)
[29]
邓健康, 刘璇, 吴昕烨, 毕金峰, 焦艺, 钟耀广. 基于层次分析和灰色关联度法的苹果(等外果)汁品质评价. 中国食品学报, 2017, 17(4): 197-208.
DENG J K, LIU X, WU X Y, BI J F, JIAO Y, ZHONG Y G. Quality evaluation of apple (substandard fruit) juice based on analytic hierarchy process and grey relational analysis. Journal of Chinese Institute of Food Science and Technology, 2017, 17(4): 197-208. (in Chinese)
[30]
MACHADO R, SERRALHEIRO R. Soil salinity: Effect on vegetable crop growth management practices to prevent and mitigate soil salinization. Horticulturae, 2017, 3(2): 30.
[31]
陈昊, 王军, 马超, 胡海珠, 李久生. 不同水质滴灌与施氮措施下土壤盐分及关键离子变化研究. 灌溉排水学报, 2023, 42(1): 80-86.
CHEN H, WANG J, MA C, HU H Z, LI J S. The combined effect of drip irrigation quality and nitrogen fertilization on soil salinity and Na+ and Ca2+ concentration in soil water. Journal of Irrigation and Drainage, 2023, 42(1): 80-86. (in Chinese)
[32]
党建友, 裴雪霞, 张定一, 张晶, 王姣爱, 程麦凤. 灌溉方法与施氮对土壤水分、硝态氮和小麦生长发育的调控效应. 应用生态学报, 2019, 30(4): 1161-1169.

doi: 10.13287/j.1001-9332.201904.034
DANG J Y, PEI X X, ZHANG D Y, ZHANG J, WANG J A, CHENG M F. Regulation effects of irrigation methods and nitrogen application on soil water, nitrate, and wheat growth and development. Chinese Journal of Applied Ecology, 2019, 30(4): 1161-1169. (in Chinese)
[33]
马泽跃, 黄战, 陈波浪, 米日古丽·艾山, 柴仲平. 不同施氮水平下库尔勒香梨园土壤微生物量与产量、品质的相关性. 果树学报, 2022, 39 (11): 2046-2055.
MA Z Y, HUANG Z, CHEN B L, MIRGUL AISHAN, CHAI Z P. Correlation between the soil microbial biomass and yield and quality in Kuerlexiangli pear orchard with different nitrogen application levels. Journal of Fruit Science, 2022, 39(11): 2046-2055. (in Chinese)
[34]
杨江波, 张绩, 李俊杰, 郑永强, 吕强, 谢让金, 马岩岩, 邓烈, 何绍兰, 易时来. 三峡重庆库区施氮水平对塔罗科血橙树体养分、产量品质及土壤理化性质的影响. 中国农业科学, 2019, 52(5): 893-908. doi: 10.3864/j.issn.0578-1752.2019.05.011.
YANG J B, ZHANG J, LI J J, ZHENG Y Q, Q, XIE R J, MA Y Y, DENG L, HE S L, YI S L. Effects of nitrogen application levels on nutrient, yield and quality of Tarocco Blood Orange and soil physicochemical properties in the Three Gorges Reservoir area of Chongqing. Scientia Agricultura Sinica, 2019, 52(5): 893-908. doi: 10.3864/j.issn.0578-1752.2019.05.011. (in Chinese)
[35]
薛亮, 马忠明, 杜少平, 冯守疆, 冉生斌. 氮素用量对膜下滴灌甜瓜产量以及氮素平衡、硝态氮累积的影响. 中国农业科学, 2019, 52(4): 690-700. doi: 10.3864/j.issn.0578-1752.2019.04.010.
XUE L, MA Z M, DU S P, FENG S J, RAN S B. Effects of application of nitrogen on melon yield, nitrogen balance and soil nitrogen accumulation under plastic mulching with drip irrigation. Scientia Agricultura Sinica, 2019, 52(4): 690-700. doi: 10.3864/j.issn.0578-1752.2019.04.010. (in Chinese)
[36]
WAKEEL A. Potassium-sodium interactions in soil and plant under saline-sodic conditions. Journal of Plant Nutrition and Soil Science, 2013, 176(3): 344-354.
[37]
郇恒福, 周健民, 王火焰, 高艳芳, 段增强. 施用不同水平氮、钾素对温室土壤有效养分及水溶性盐分离子的影响. 热带作物学报, 2009, 30(7): 939-946.
HUAN H F, ZHOU J M, WANG H Y, GAO Y F, DUAN Z Q. Effects of N and P application on available nutrients and water soluble salt ions in the greenhouse soil. Chinese Journal of Tropical Crops, 2009, 30(7): 939-946. (in Chinese)
[38]
王春霞, 王全九, 刘建军, 庄亮, 振兴. 滴灌施钾肥土壤水盐分布特征的田间试验. 农业工程学报, 2010, 26(3): 25-31.
WANG C X, WANG Q J, LIU J J, ZHUANG L, ZHEN X. Field trial for characteristics of soil water and salt distribution in drip fertigation of kalium-using fertilizers. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(3): 25-31. (in Chinese)
[39]
BOTELLA M Á, ARÉVALO L, MESTRE T C, RUBIO F, GARCÍA-SÁNCHEZ F, RIVERO R M, MARTÍNEZ V. Potassium fertilization enhances pepper fruit quality. Journal of Plant Nutrition, 2017, 40(2): 145-155.
[40]
张绩, 李俊杰, 万连杰, 杨江波, 郑永强, 吕强, 谢让金, 马岩岩, 邓烈, 易时来. 施钾水平对纽荷尔脐橙养分、产量和品质的影响. 中国农业科学, 2020, 53(20): 4271-4286. doi: 10.3864/j.issn.0578-1752.2020.20.015.
ZHANG J, LI J J, WAN L J, YANG J B, ZHENG Y Q, Q, XIE R J, MA Y Y, DENG L, YI S L. Effects of potassium application levels on nutrient, yield and quality of Newhall navel orange. Scientia Agricultura Sinica, 2020, 53(20): 4271-4286. doi: 10.3864/j.issn.0578-1752.2020.20.015. (in Chinese)
[41]
王仁才, 夏利红, 熊兴耀, 李大志. 钾对猕猴桃果实品质与贮藏的影响. 果树学报, 2006, 23(2): 200-204.
WANG R C, XIA L H, XIONG X Y, LI D Z. Effects of applying potassium on kiwifruit eating quality and storage life. Journal of Fruit Science, 2006, 23(2): 200-204. (in Chinese)
[42]
王凤婷, 艾希珍, 刘金亮, 徐坤范. 钾对日光温室黄瓜糖、维生素C、硝酸盐及其相关酶活性的影响. 植物营养与肥料学报, 2005, 11(5): 682-687, 703.
WANG F T, AI X Z, LIU J L, XU K F. Effects of potassium on sugar, vitamin C, nitrate contents and their relevant enzymes of cucumber in solar-greenhouse. Plant Nutrition and Fertilizer Sciences, 2005, 11(5): 682-687, 703. (in Chinese)
[43]
白翠华, 周昌敏, 王祥和, 罗东林, 朱陆伟, 姚丽贤. 荔枝钾氮肥滴施比例及施肥方式对土壤pH和盐分的影响. 土壤通报, 2021, 52(5): 1104-1113.
BAI C H, ZHOU C M, WANG X H, LUO D L, ZHU L W, YAO L X. Soil pH and salinity as affected by fertilizer ratio of potassium and nitrogen in drip fertigation and fertilization method in Litchi. Chinese Journal of Soil Science, 2021, 52(5): 1104-1113. (in Chinese)
[44]
赵文艳, 张晓敏, 石宗琳, 陈竹君, 韩学轩, 王信增, 李靖. 氮钾肥施用对土壤有效养分和盐分及番茄生长的影响. 水土保持学报, 2011, 25(4): 100-103, 109.
ZHAO W Y, ZHANG X M, SHI Z L, CHEN Z J, HAN X X, WANG X Z, LI J. Effects of application of nitrogen and potassium fertilizers on available nutrient, water-soluble salt in soil and the growth of tomato. Journal of Soil and Water Conservation, 2011, 25(4): 100-103, 109. (in Chinese)
[45]
YANG X Q, DU R C, HE D W, LI D Y, CHEN J R, HAN X L, WANG Z Q, ZHANG Z. Optimal combination of potassium coupled with water and nitrogen for strawberry quality based on consumer-orientation. Agricultural Water Management, 2023, 287: 108461.
[46]
康利允, 常高正, 高宁宁, 李晓慧, 李海伦, 梁慎, 徐小利, 赵卫星. 不同氮、钾肥施用量对甜瓜养分吸收、分配及产量的影响. 中国农业科学, 2018, 51(9): 1758-1770. doi: 10.3864/j.issn.0578-1752.2018.09.013.
KANG L Y, CHANG G Z, GAO N N, LI X H, LI H L, LIANG S, XU X L, ZHAO W X. Effects of different nitrogen and potassium fertilizing amount on nutrition absorption, nutrition distribution and yield of muskmelon. Scientia Agricultura Sinica, 2018, 51(9): 1758-1770. doi: 10.3864/j.issn.0578-1752.2018.09.013. (in Chinese)
[47]
何志刚, 娄春荣, 王秀娟, 董环, 韩瑛祚. 氮钾配施对设施番茄土壤微生物群落及土壤养分和盐分的影响. 北方园艺, 2017(9): 148-153.
HE Z G, LOU C R, WANG X J, DONG H, HAN Y Z. Nitrogen and potassium on soil microbial communities of tomato and soil nutrient and salinity. Northern Horticulture, 2017(9): 148-153. (in Chinese)
[48]
NAVA G, DECHEN A R, NACHTIGALL G R. Nitrogen and potassium fertilization affect apple fruit quality in southern Brazil. Communications in Soil Science and Plant Analysis, 2007, 39(1/2): 96-107.
[1] PU LiXia, ZHANG JiaRui, YE JianPing, HUANG XiuLan, FAN GaoQiong, YANG HongKun. The Combined Effects of 16, 17-Dihydro Gibberellin A5 and Straw Mulching on Tillering and Grain Yield of Dryland Wheat [J]. Scientia Agricultura Sinica, 2025, 58(9): 1735-1748.
[2] GUO ChenLi, LIU Yang, CHEN Yan, HU Wei, WANG YouHua, ZHOU ZhiGuo, ZHAO WenQing. Effects of Phosphorus Fertilizer Postpone Under Nitrogen Reduction Condition on Yield, Phosphorus Fertilizer Utilization Efficiency of Drip-Irrigated Cotton [J]. Scientia Agricultura Sinica, 2025, 58(9): 1749-1766.
[3] JI ShengYang, LU BaiYi, LI PeiWu. Some Reflections on Modern Science of Agricultural Product Quality [J]. Scientia Agricultura Sinica, 2025, 58(9): 1830-1844.
[4] LIU JinSong, WU LongMei, BAO XiaoZhe, LIU ZhiXia, ZHANG Bin, YANG TaoTao. Effects of a Short-Term Reduction in Nitrogen Fertilizer Application Rates on the Grain Yield and Rice Quality of Early and Late-Season Dual-Use Rice in South China [J]. Scientia Agricultura Sinica, 2025, 58(8): 1508-1520.
[5] WEI WenHua, LI Pan, SHAO GuanGui, FAN ZhiLong, HU FaLong, FAN Hong, HE Wei, CHAI Qiang, YIN Wen, ZHAO LianHao. Response of Silage Maize Yield and Quality to Reduced Irrigation and Combined Organic-Inorganic Fertilizer in Northwest Irrigation Areas [J]. Scientia Agricultura Sinica, 2025, 58(8): 1521-1534.
[6] XUE YuQi, ZHAO JiYu, SUN WangSheng, REN BaiZhao, ZHAO Bin, LIU Peng, ZHANG JiWang. Effects of Different Nitrogen Forms on Yield and Quality of Summer Maize [J]. Scientia Agricultura Sinica, 2025, 58(8): 1535-1549.
[7] LI ShaoXing, SONG WenFeng, WEI ZeYu, ZHOU YuLing, SONG LiXia, REN Ke, MA Qun, WANG LongChang. Effects of Straw and Milk Vetch Mulching on Soil Fertility and Sweet Potato Yield [J]. Scientia Agricultura Sinica, 2025, 58(8): 1591-1603.
[8] YIN Bo, YU AiZhong, WANG PengFei, YANG XueHui, WANG YuLong, SHANG YongPan, ZHANG DongLing, LIU YaLong, LI Yue, WANG Feng. Effects of Green Manure Returning Combined with Nitrogen Fertilizer Reduction on Hydrothermal Characteristics of Wheat Field and Grain Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2025, 58(7): 1366-1380.
[9] CHEN GuiPing, LI Pan, SHAO GuanGui, WU XiaYu, YIN Wen, ZHAO LianHao, FAN ZhiLong, HU FaLong. The Regulatory Effect of Reduced Irrigation and Combined Organic- Inorganic Fertilizer Application on Stay-Green Characteristics in Silage Maize Leaves After Tasseling Stage [J]. Scientia Agricultura Sinica, 2025, 58(7): 1381-1396.
[10] TIAN LiWen, LOU ShanWei, ZHANG PengZhong, DU MingWei, LUO HongHai, LI Jie, PAHATI MaiMaiTi, MA TengFei, ZHANG LiZhen. Analysis of Problems and Pathways for Increasing Cotton Yield per Unit Area in Xinjiang Under Green and Efficient Production Mode [J]. Scientia Agricultura Sinica, 2025, 58(6): 1102-1115.
[11] ZHANG YaFeng, DONG WeiJin, LI QiYun, LU Yang, ZHANG ZhengKun, SUI Li. Effect of Interaction Between Beauveria bassiana and Potassium on Tomato Fruit Quality [J]. Scientia Agricultura Sinica, 2025, 58(6): 1131-1144.
[12] ZHANG HongCheng, XING ZhiPeng, ZHANG RuiHong, SHAN Xiang, XI XiaoBo, CHENG Shuang, WENG WenAn, HU Qun, CUI PeiYuan, WEI HaiYan. Characteristics and Technical Approaches of Integrated Unmanned High-Yield Cultivation of Wheat [J]. Scientia Agricultura Sinica, 2025, 58(5): 864-876.
[13] ZHANG Han, ZHANG YuQi, LI JingLai, XU Hong, LI WeiHuan, LI Tao. Effects of LED Supplementary Lighting on Production and Leaf Physiological Properties of Substrate-Cultivated Strawberry in Chinese Solar Greenhouse [J]. Scientia Agricultura Sinica, 2025, 58(5): 975-990.
[14] YANG YongQing, HU PengJu, SONG YaHui, JIN XinXin, SU Qiao, WANG Jin. QTL Mapping of Quality Traits for A Peanut Germplasm SW9721-3 with Ultra-High Oil Content [J]. Scientia Agricultura Sinica, 2025, 58(4): 635-646.
[15] CHEN Ge, GU Yu, WEN Jiong, FU YueFeng, HE Xi, LI Wei, ZHOU JunYu, LIU QiongFeng, WU HaiYong. Effects of Fallow Weeds Returning to the Field on Photosynthetic Matter Production and Yield of Rice [J]. Scientia Agricultura Sinica, 2025, 58(4): 647-659.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!