Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (17): 3372-3388.doi: 10.3864/j.issn.0578-1752.2025.17.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Identification of Dwarf Genes and Mining of Plant Height Genetic Loci in Shanxi Wheat

XIANG AiHui1,2(), BAI RongJi2(), HAO YuQiong1, ZHAO JiaJia1, WU BangBang1, LI XiaoHua1, ZHENG XingWei1, GUAN PanFeng3,*(), ZHENG Jun1,2,*()   

  1. 1 Institute of Wheat Research, Shanxi Agriculture University/Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Linfen 041000, Shanxi
    2 College of Agriculture, Shanxi Agricultural University, Taigu 030801, Shanxi
    3 School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001
  • Received:2025-03-06 Accepted:2025-05-01 Online:2025-09-02 Published:2025-09-02
  • Contact: GUAN PanFeng, ZHENG Jun

Abstract:

【Objective】Dwarf genes play a crucial role in wheat genetics and breeding. Different ecological zones and wheat varieties have varying requirements for plant height. Therefore, understanding the distribution pattern and characteristics of dwarf genes in Shanxi wheat, as well as identifying novel genetic loci related to plant height will contribute to wheat genetic improvement.【Method】Based on the accurate identification of plant height and component traits, a total of 11 known dwarfing gene types were genotyped in 306 Shanxi wheat samples and integrated with a 16K SNP chip to conduct genome-wide association analysis aimed at identifying new loci controlling plant height.【Result】With the exception of spike length, both of the plant height and component traits of Shanxi wheat exhibited a gradual decline over the years of breeding and the various compositional traits associated with plant height were influenced by distinct selection pressures. The distribution frequency of 11 dwarfing genes in Shanxi wheat from high to low was Rht12, Rht24, Rht8, Rht26, Rht13, Rht25, Rht2, Rht5, Rht4, Rht1, and Rht9, among which Rht1, Rht2, and Rht25 have not been found in landraces. Except for Rht2 and Rht25 is more widely distributed in irrigated cultivars than in dryland cultivars, the distribution of other dwarfing genes is relatively similar in dryland cultivars and irrigated cultivars. A total of 125 different dwarf genes combination were identified, of which the combination with the highest distribution frequency was Rht8+Rht12+Rht24. Combined with association analysis, a total of 26 stable genetic loci were identified to be distributed on 14 chromosomes including 1A, 2A, and 2B. Notably, eight loci such as QPH-6D, QPH-7A, and Q3rd IL-1D have not been reported yet. Among these, QPH-6D mainly reduced plant height by shortening the length of the third and fourth internodes by approximately 13.68 %, while QPH-7A reduced the plant height by 16.87 % via shortening the length of the second and third internodes.【Conclusion】The main dwarf genes in Shanxi wheat were mainly Rht12, Rht24, and Rht8. 26 stable genetic loci were located on chromosomes 1A, 2A, and 2B, among which eight loci such as QPH-6D, QPH-7A, and Q3rd IL-1D may be novel loci related to plant height.

Key words: Shanxi wheat, plant height, compositional traits, dwarf gene, genome-wide association study

Table 1

Molecular marker and its primer sequences of different dwarfing genes"

基因 Gene 标记 Marker 引物序列 Primer sequence (5′-3′) 参考文献 References
Rht4 WMS317-F TGCTAGCAATGCTCCGGGTAAC [32]
WMS317-R TCACGAAACCTTTTCCTCCTCC
Rht5 BARC102-F GGAGAGGACCTGCTAAAATCGAAGACA [33]
BARC102-R GCGTTTACGGATCAGTGTTGGAGA
Rht8 WMC503-F GCAATAGTTCCCGCAAGAAAAG [34]
WMC503-R ATCAACTACCTCCAGATCCCGT
Rht9 BARC151-F TGAGGAAAATGTCTCTATAGCATCC
BARC151-R CGCATAAACACCTTCGCTCTTCCACTC
Rht12 WMS291-F CATCCCTACGCCACTCTGC [35]
WMS291-R AATGGTATCTATTCCGACCCG
Rht13 WMS577-F ATGGCATAATTTGGTGAAATTG [36]
WMS577-R TGTTTCAAGCCCAACTTCTATT
Rht25 PlzAR1 GAGGCAGCAAAAGTGGAAGG [7]
PlzAF2 CTGTATATGCATGTGTGTCTC
Rht26 KASP518-A GAAGGTGACCAAGTTCATGCTAGTGCCCACTACCGGTTCG [20]
KASP518-B GAAGGTCGGAGTCAACGGATTAGTGCCCACTACCGGTTCA
KASP518-C GGATTGGAAAAGTGACCCGC

Table 2

Phenotypic analysis of plant height and component traits of different types of varieties"

性状
Trait
环境
Env.
地方品种Landrace 育成品种<BOLD>C</BOLD>ultivar 旱地品种Dryland cultivar 水地品种Irrigated cultivar 总计Total
变幅
Range
均值
Mean
变异系数
CV (%)
变幅
Range
均值
Mean
变异系数
CV (%)
变幅
Range
均值
Mean
变异系数
CV (%)
变幅
Range
均值
Mean
变异系数
CV (%)
变幅
Range
均值
Mean
变异系数
CV (%)
株高
PH
(cm)
E1 103.20-160.80 131.63 8.90 66.20-165.60 93.36** 17.82 66.94-165.60 98.44 17.73 66.20-139.60 88.76** 16.19 66.20-165.60 97.72 20.69
E2 87.40-151.20 133.24 11.23 60.40-163.20 86.78** 20.24 62.18-163.20 91.63 19.94 60.40-138.60 82.41** 19.09 60.40-163.20 92.62 24.98
E3 87.00-156.60 131.20 13.70 61.40-148.80 89.19** 20.85 61.90-148.80 93.21 20.88 61.40-148.40 85.47** 19.81 61.40-156.60 94.42 24.50
E4 85.20-158.20 133.80 13.31 57.60-161.90 89.60** 20.10 68.46-161.90 94.86 19.48 57.60-147.00 84.84** 19.06 57.60-161.90 95.16 24.37
BLUP 86.56-148.80 129.40 12.35 64.98-158.51 89.92** 18.50 68.27-158.51 94.61 18.25 64.98-140.51 85.73** 17.32 64.98-158.51 95.09 22.35
穗长
SL
(cm)
E1 5.54-12.04 7.99 16.55 6.40-13.00 9.07** 12.29 6.40-12.48 9.21 11.56 6.46-13.00 8.95 12.85 5.54-13.00 8.95 13.29
E2 4.56-15.38 8.66 24.71 5.64-12.72 8.78 12.76 6.74-11.74 8.93 11.56 5.64-12.72 8.64* 13.68 4.56-15.38 8.76 14.71
E3 5.42-11.20 7.88 15.02 5.76-12.48 9.00** 12.35 6.12-12.04 9.13 12.00 5.76-12.48 8.89 12.54 5.42-12.48 8.87 13.30
E4 5.24-14.54 8.23 20.58 6.36-13.18 8.83** 12.56 6.38-12.22 9.00 11.14 6.36-13.18 8.68* 13.67 5.24-14.54 8.76 13.84
BLUP 5.90-14.08 8.38 18.75 6.34-12.17 8.93** 10.13 6.92-10.90 9.05 8.89 6.34-12.17 8.82* 11.08 5.90-14.08 8.86 11.63
穗叶距
DSL
(cm)
E1 8.60-33.38 25.11 18.98 4.76-36.10 13.67** 37.04 5.86-27.42 14.77 36.16 4.76-36.10 12.68** 36.14 4.76-36.10 14.97 41.45
E2 5.72-38.46 25.31 25.00 3.52-32.86 13.55** 42.11 4.78-30.04 14.76 40.50 3.52-32.86 12.47** 41.93 3.52-38.46 15.03 46.41
E3 11.44-35.14 23.37 23.44 3.00-30.40 13.34** 41.27 3.00-30.4 14.52 39.30 3.24-28.24 12.24** 41.61 3.00-35.14 14.59 43.99
E4 5.58-38.22 24.57 27.42 3.44-32.46 14.04** 40.71 4.60-29.68 15.38 38.10 3.44-32.46 12.86** 41.20 1.58-38.22 15.37 44.30
BLUP 4.25-33.02 23.34 24.54 5.26-31.82 13.74** 36.64 5.63-26.82 14.88 35.15 5.26-31.82 12.74** 36.34 4.25-33.02 15.00 40.40
穗下节
间长度
UIL
(cm)
E1 30.68-52.66 45.49 10.79 19.80-55.90 31.84** 19.92 21.72-49.54 33.46 19.46 19.80-55.90 30.38** 19.11 19.80-55.90 33.40 22.65
E2 32.72-59.58 43.85 14.01 18.16-54.88 30.53** 22.71 18.88-49.98 32.21 21.74 18.16-54.88 29.04** 22.47 18.16-59.58 32.21 25.26
E3 28.32-56.80 43.33 14.37 18.74-53.44 31.45** 21.00 22.10-53.44 32.80 20.30 18.74-49.54 30.19** 20.89 18.74-56.80 32.93 23.19
E4 29.02-58.18 43.85 15.21 19.06-53.22 31.60** 22.16 19.58-53.22 33.55 21.76 19.06-51.88 29.84** 20.80 19.06-58.18 33.14 24.30
BLUP 31.25-52.19 42.87 12.33 20.44-50.54 31.46** 19.38 22.36-47.92 33.03 18.77 20.44-50.54 30.07** 18.79 20.44-52.19 32.95 21.61
第2节
间长度
2nd IL
E1 22.48-38.78 33.49 10.81 14.56-39.74 23.87** 19.74 15.96-39.74 25.41 19.10 14.56-37.26 22.47** 18.32 14.56-39.74 24.97 22.12
E2 21.44-41.34 32.82 16.60 14.74-38.08 22.66** 20.26 14.74-38.08 23.92 20.20 14.84-35.22 21.54** 18.84 14.74-41.34 23.94 24.16
E3 20.78-41.82 34.59 14.49 9.48-38.78 22.96** 22.66 13.74-38.78 24.18 22.33 9.48-35.76 21.83** 21.78 9.48-41.82 24.41 26.40
E4 20.26-45.88 34.59 18.25 13.06-41.44 23.07** 21.10 14.14-41.44 24.73 20.63 13.06-34.62 21.57** 19.01 13.06-45.88 24.52 25.88
BLUP 20.94-40.41 32.80 15.29 15.39-37.35 23.19** 19.30 15.39-37.35 24.57 18.88 15.46-34.48 21.94** 17.90 15.39-40.41 24.44 22.83
第3节
间长度
3rd IL
(cm)
E1 14.88-26.32 21.84 14.67 8.02-31.58 13.69** 22.80 9.62-31.58 14.49 22.47 8.02-20.62 12.96** 21.71 8.02-31.58 14.62 27.78
E2 13.46-25.56 20.75 17.63 7.46-32.20 12.39** 24.79 8.52-32.20 13.00 25.84 7.46-23.34 11.84** 22.66 7.46-32.20 13.44 31.21
E3 11.22-30.78 22.44 22.15 5.44-26.55 13.05** 27.76 7.50-25.90 13.56 28.23 5.44-26.55 12.58* 26.74 5.44-30.78 14.22 34.54
E4 11.72-30.08 21.43 21.24 6.32-31.20 13.13** 24.54 8.84-31.20 13.91 24.75 6.32-25.94 12.41** 22.81 6.32-31.20 14.17 30.93
BLUP 12.88-26.12 21.77 14.15 8.88-29.44 13.12** 21.87 9.57-29.44 13.78 22.10 8.88-21.90 12.54** 20.55 8.88-29.44 14.25 28.83
第4节
间长度
4th IL
(cm)
E1 8.82-17.90 14.15 15.86 5.48-22.24 9.45** 25.94 6.00-22.24 10.02 25.70 5.48-15.68 8.92** 24.86 5.48-22.24 9.99 28.54
E2 5.84-17.00 12.82 21.48 3.38-19.84 8.15** 28.37 4.54-19.84 8.64 29.04 3.38-14.00 7.70** 26.38 3.38-19.84 8.74 32.39
E3 8.36-20.54 14.49 23.06 1.45-20.38 8.66** 31.42 4.36-16.94 9.11 30.76 1.45-20.38 8.24** 31.41 1.45-20.54 9.39 36.21
E4 7.28-22.93 13.56 24.31 4.06-19.02 8.59** 26.92 4.06-19.02 9.15 27.58 4.34-15.70 8.07** 24.48 4.06-22.93 9.22 32.07
BLUP 8.30-17.88 13.15 16.82 5.51-17.69 8.76** 22.65 6.45-17.69 9.24 22.53 5.51-14.91 8.33** 21.55 5.51-17.88 9.34 26.76
第5节
间长度
5th IL
(cm)
E1 4.42-14.16 8.93 25.47 1.23-14.76 5.15** 38.39 2.25-14.76 5.47 38.90 1.23-11.15 4.86* 36.74 1.23-14.76 5.58 42.01
E2 2.07-11.78 7.38 30.75 1.50-13.98 4.18** 41.08 1.50-13.98 4.43 43.70 1.50-9.26 3.96* 37.14 1.50-13.98 4.59 45.50
E3 3.70-14.44 9.14 33.32 0.35-15.08 4.43** 49.19 0.35-10.96 4.53 48.47 0.35-15.08 4.35* 49.67 0.35-15.08 5.03 55.44
E4 2.66-15.68 7.69 40.19 1.15-12.74 4.48** 39.73 1.15-12.74 4.77 41.00 1.20-12.02 4.22* 37.12 1.15-15.68 4.89 46.18
BLUP 3.94-11.93 7.64 23.84 2.13-11.08 4.61** 28.03 2.74-11.08 4.81 29.06 2.13-10.04 4.44* 26.24 2.13-11.93 5.01 34.12

Fig. 1

Classification of plant height and evolution characteristics of plant height composition traits of wheat in Shanxi A:Shanxi wheat plant height polymorphism; B: Classification of plant height of Shanxi Wheat Varieties; C-J: Plant height and plant height composition traits phenotypes and the percentage of plant height composition traits in plant height.Yellow dots and solid lines indicate the percentage of plant height composition traits in plant height and its trend, and blue dots and dashed lines indicate trait phenotypic values and their trends; K: Analysis of the percentage of plant height composition traits in plant height for different types. SL: Spike length; DSL: Distance from base of the spike to the flag leaf ligule; UIL: Uppermost internode length; 2nd IL: 2nd internode length; 3rd IL: 3rd internode length; 4th IL: 4th internode length; 5th IL: 5th internode length. PH: Plant height. ***: Significant difference at 0.001. The same as below"

Fig. 2

Detection results of dwarf genes in some varieties A: Detection result of dwarfing gene Rht4; B: Detection result of dwarfing gene Rht5; C: Detection result of dwarfing gene Rht8; D: Detection result of dwarfing gene Rht9; E: Detection result of dwarfing gene Rht12; F: Detection result of dwarfing gene Rht13; G: Detection result of dwarfing gene Rht25; H: Rht26 gene KASP molecular marker genotyping results. A and C: A-CK: 02-38; C-CK: Xinong890; 1: Jinmai66; 2: Dahongmai; 3: Jinmai32; 4: Jinmai1; 5: Jinmai19; 6: Jinmai20; 7: Jinmai21; 8: Jinmai70; 9: Qisuimai. B, D and E: M: 50bp DNA Marker; B-CK: 06-6-5-3-4; D-CK: Xinong891; E-CK: 06-6-5-24; 1: Dahongmai; 2: Yulanmai; 3: Jinmai31; 4: Jinmai29; 5: Jinmai53; 6: Jinmai47; 7: Hongtumai; 8: Shunmai1718; 9: Hongxiaomai. F andG: M: 50bp DNA Marker; F-CK: Xinong887; G-CK: Nonglin10; 1: Yunhan20410; 2: Jinmai11; 3: Jinmai20; 4: Jinmai59; 5: Jinmai19; 6: Xianmai; 7: Hongxiaomai; 8: Dahongmai; 9: Baixianmai. + indicates the presence of a dwarf gene; -indicates the absence of dwarf gene"

Fig. 3

Distribution of dwarf genes and effect of number of dwarf genes on plant height A: A single dwarf gene is distributed in Shanxi wheat; B: Dwarf gene combinations are distributed in Shanxi wheat; C: Effect of thenumber of dwarf genes on plant height; D: The distribution frequency of dwarf genes in cultivar in different periods. Different letters indicate significant differences at P<0.05"

Table 3

QTL loci for plant height and composition traits"

性状
Traits
QTL标记
QTL marker
染色体
Chr.
位置
Position (Mb)
标记
Marker
环境
Environment
P
<BOLD>P</BOLD> value (×10-5)
表型贡献率
R2 (%)
参考文献
References
株高
PH
QPH-2A 2A 59.28-115.28 2A_87283474 E1, E2, E3, E4, BLUP 1.63-6.10 4.88-5.78 [52]
QPH-2D 2D 29.47-36.47 2D_32970833 E2, E4, BLUP 0.76-4.70 4.96-6.40 Rht8[6]
QPH-4A 4A 618.36-670.86 4A_644613024 E2, E4, BLUP 2.18-6.18 4.85-5.47 [53]
QPH-4B 4B 30.82-55.82 4B_48317177 E4 9.82 3.64 Rht1[3]
QPH-4D 4D 0.92-20.92 4D_10917137 E1 1.47 5.88 Rht2[3]
QPH-5A 5A 560.95-608.95 5A_608950417 E2, E3, E4, BLUP 1.14-4.30 5.12-6.21 Rht9[43]
QPH-6D 6D 387.78-392.08 6D_389928252 E2, E4, BLUP 1.72-7.30 3.56-6.75
QPH-7A 7A 682.23-702.23 7A_692232694 E1, E3, E4, BLUP 2.59-7.75 4.63-7.58
穗长SL QSL-1A 1A 12.22-16.72 1A_14467852 E2, E4, BLUP 0.80-5.88 5.18-6.34 [61]
穗叶距
DSL
QDSL-5A 5A 318.46-336.24 5A_324460015 E1, E4, BLUP 0.31-8.95 4.62-6.99 [55]
QDSL-4D 4D 0.92-20.92 4D_10917137 E1 9.77 4.76 Rht2[3]
QDSL-6A 6A 76.49-129.49 6A_102993644 E3 1.04 5.22 Rht25[18]
穗下节间长度UIL QUIL-6A 6A 76.49-129.49 6A_102993644 E3 1.49 5.04 Rht25[18]
第2节间长度
2nd IL
Q2nd IL-2D 2D 29.47-36.47 2D_32970833 E4 9.69 4.64 Rht8[6]
Q2nd IL-4B 4B 40.82-55.82 4B_48317177 E1, E2, E3, BLUP 1.10-3.92 4.26-4.99 Rht1[3]
Q2nd IL-7A 7A 682.23-702.23 7A_692232694 E1, E2, E3, E4, BLUP 1.17-6.66 4.76-6.17
第3节间长度
3rd IL
Q3rd IL-1D 1D 262.94-274.14 1D_268540306 E1, E2, E4, BLUP 0.29-8.27 4.55-7.00
Q3rd IL-2A 2A 59.28-115.28 2A_87283474 E2, E4, BLUP 1.18-3.60 5.01-5.93 [46]
Q3rd IL-2B 2B 197.11-202.11 2B_202107777 E1, E2, BLUP 3.01-7.68 5.42-6.08 [58]
Q3rd IL-2D 2D 29.47-36.47 2D_32970833 E2, E4, BLUP 1.34-4.35 4.89-5.95 Rht8[6]
Q3rd IL-3B 3B 0-42.16 3B_10662726 E2 9.87 4.54 Rht5[57]
Q3rd IL-4B 4B 30.82-55.82 4B_48317177 E1, E4, BLUP 4.82-9.57 3.48-3.85 Rht1[3]
Q3rd IL-4D 4D 18.55-38.55 4D_28547729 E4 1.17 6.15 Rht2[3]
Q3rd IL.6A 6A 558.85-611.85 6A_585345446 E2, E4, BLUP 3.14-7.49 4.99-5.37 [59]
Q3rd IL-6D 6D 387.78-392.08 6D_389928252 E1, E2, E3, BLUP 4.35-7.25 3.77-5.04
Q3rd IL-7A 7A 682.23-702.23 7A_692232694 E2, E3, E4, BLUP 0.54-2.72 5.47-6.56
Q3rd IL-7B 7B 233.63-245.13 7B_239379204 E1, E4, BLUP 0.84-8.93 4.48-6.34 [62]
第4节间长度
4th IL
Q4th IL-2A 2A 59.28-115.28 2A_87283474 E1, E2, BLUP 1.99-8.31 4.62-5.72 [46]
Q4th IL-2D 2D 29.47-36.47 2D_32970833 E2, E3, E4, BLUP 0.18-2.65 5.33-7.41 Rht8[6]
Q4th IL-3B 3B 9.28-72.28 3B_40776268 E4 2.05 5.50 Rht5[57]
Q4th IL-4B 4B 30.82-55.82 4B_48317177 E4 7.02 3.60 Rht1[3]
Q4th IL-4D 4D 18.55-38.55 4D_28547729 E4 2.00 5.57 Rht2[3]
Q4th IL-6D 6D 387.78-392.08 6D_389928252 E1, E2, BLUP 2.77-8.08 4.75-5.35
第5节间长度
5th IL
Q5th IL-1B 1B 544.60-558.35 1B_546854696 E1, E4, BLUP 1.53-3.23 4.70-5.63 [60]
Q5th IL-2B 2B 419.99-429.99 2B_424009984 E1, E2, E4 1.87-8.05 4.52-5.34
Q5th IL-5A.2 5A 552.57-564.57 5A_558574163 E2 1.00 7.52 Rht9[54]
Q5th IL-5A.4 5A 687.64-699.64 5A_693635094 E3 8.38 5.02 Rht12[56]
Q5th IL-5D 5D 494.40-496.40 5D_495395359 E1, E2, E3, BLUP 0.05-2.11 5.24-5.67 [63]
Q5th IL-7A 7A 212.95-232.95 7A_222945332 E1, E4, BLUP 1.84-2.10 4.18-5.35 [4]

Fig. 4

Effect of QPH-6D and QPH-7A on plant height and constitutive traits A: Manhattan plot of genome-wide association analysis for plant height; B: Manhattan map of QPH-7A authenticated by GWAS; C: Manhattan map of QPH-6D authenticated by GWAS; D: QPH-7A distribution frequency; E: QPH-6D distribution frequency; F: Effect of QPH-7A on plant height and compositional traits; G: Effect of QPH-6D on plant height and compositional traits. E1, E2, E3, and E4 represent plant heights measured from Hongtong in 2022-2023, Hancun in 2022-2023, Hongtong in 2023-2024, and Hancun in 2023-2024, respectively; BLUP: best linear unbiased prediction. *, ** and *** indicate significant difference at the 0.05, 0.01 and0.001 probability levels; respectively. NS: No significant difference"

[1]
DIXON L E, PASQUARIELLO M, BODEN S A. TEOSINTE BRANCHED1 regulates height and stem internode length in bread wheat. Journal of Experimental Botany, 2020, 71(16): 4742-4750.

doi: 10.1093/jxb/eraa252 pmid: 32449515
[2]
何中虎, 夏先春, 陈新民, 庄巧生. 中国小麦育种进展与展望. 作物学报, 2011, 37(2): 202-215.
HE Z H, XIA X C, CHEN X M, ZHUANG Q S. Progress of wheat breeding in China and the future perspective. Acta Agronomica Sinica, 2011, 37(2): 202-215. (in Chinese)
[3]
PENG J R, RICHARDS D E, HARTLEY N M, MURPHY G P, DEVOS K M, FLINTHAM J E, BEALES J, FISH L J, WORLAND A J, PELICA F, et al. ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature, 1999, 400(6741): 256-261.
[4]
XU D A, JIA C F, LYU X R, YANG T Z, QIN H M, WANG Y L, HAO Q L, LIU W X, DAI X H, ZENG J B, et al. In silico curation of QTL-rich clusters and candidate gene identification for plant height of bread wheat. The Crop Journal, 2023, 11(5): 1480-1490.
[5]
LIU X L, ZHENG S S, TIAN S Q, SI Y Q, MA S W, LING H Q, NIU J Q. Natural variant of Rht27, a dwarfing gene, enhances yield potential in wheat. Theoretical and Applied Genetics, 2024, 137(6): 128.
[6]
XIONG H C, ZHOU C Y, FU M Y, GUO H J, XIE Y D, ZHAO L S, GU J Y, ZHAO S R, DING Y P, LI Y T, et al. Cloning and functional characterization of Rht8, a “Green Revolution” replacement gene in wheat. Molecular Plant, 2022, 15(3): 373-376.
[7]
ZHANG J L, LI C X, ZHANG W J, ZHANG X Q, MO Y, TRANQUILLI G E, VANZETTI L S, DUBCOVSKY J. Wheat plant height locus RHT25 encodes a PLATZ transcription factor that interacts with DELLA (RHT1). Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(19): e2300203120.
[8]
TIAN X L, XIA X C, XU D A, LIU Y Q, XIE L, HASSAN M A, SONG J, LI F J, WANG D S, ZHANG Y, et al. Rht24b, an ancient variation of TaGA2ox-A9, reduces plant height without yield penalty in wheat. New Phytologist, 2022, 233(2): 738-750.
[9]
BORRILL P, MAGO R, XU T Y, FORD B, WILLIAMS S J, DERKX A, BOVILL W D, HYLES J, BHATT D, XIA X D, et al. An autoactiveNB- LRRgene causesRht13dwarfism in wheat. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(48): e2209875119.
[10]
BAZHENOV M S, DIVASHUK M G, AMAGAI Y, WATANABE N, KARLOV G I. Isolation of the dwarfing Rht-B1p (Rht17) gene from wheat and the development of an allele-specific PCR marker. Molecular Breeding, 2015, 35(11): 213.
[11]
CHAI L L, XIN M M, DONG C Q, CHEN Z Y, ZHAI H J, ZHUANG J H, CHENG X J, WANG N J, GENG J, WANG X B, et al. A natural variation in Ribonuclease H-like gene underlies Rht 8 to confer “Green Revolution” trait in wheat. Molecular Plant, 2022, 15(3): 377-380.
[12]
FORD B A, FOO E, SHARWOOD R, KARAFIATOVA M, VRÁNA J, MACMILLAN C, NICHOLS D S, STEUERNAGEL B, UAUY C, DOLEŽEL J, CHANDLER P M, SPIELMEYER W. Rht18 semidwarfism in wheat is due to increased GA 2-oxidaseA9 expression and reduced GA content. Plant Physiology, 2018, 177(1): 168-180.
[13]
LI A X, YANG W L, LOU X Y, LIU D C, SUN J Z, GUO X L, WANG J, LI Y W, ZHAN K H, LING H Q, ZHANG A M. Novel natural allelic variations at the Rht-1 loci in wheat. Journal of Integrative Plant Biology, 2013, 55(11): 1026-1037.
[14]
BIAN Y J, LI L L, TIAN X L, XU D A, SUN M J, LI F J, XIE L N, LIU S Y, LIU B Y, XIA X C, HE Z H, CAO S H. Rht12b, a widely used ancient allele of TaGA2oxA13, reduces plant height and enhances yield potential in wheat. Theoretical and Applied Genetics, 2023, 136(12): 253.
[15]
LIU Y X, ZHANG J L, HU Y G, CHEN J L. Dwarfing genes Rht4 and Rht-B1b affect plant height and key agronomic traits in common wheat under two water regimes. Field Crops Research, 2017, 204: 242-248.
[16]
DAOURA B G, CHEN L, HU Y G. Agronomic traits affected by dwarfing gene Rht-5 in common wheat (Triticum aestivum L.). Australian Journal of Crop Science, 2013, 7(9): 1270-1276.
[17]
TAY Z L. Effects of gibberellic acid responsive dwarfing gene Rht9 on plant height and agronomic traits in common wheat. American Journal of Agriculture and Forestry, 2017, 5(4): 102.
[18]
MO Y, VANZETTI L S, HALE I, SPAGNOLO E J, GUIDOBALDI F, AL-OBOUDI J, ODLE N, PEARCE S, HELGUERA M, DUBCOVSKY J. Identification and characterization of Rht25, a locus on chromosome arm 6AS affecting wheat plant height, heading time, and spike development. Theoretical and Applied Genetics, 2018, 131(10): 2021-2035.
[19]
TIAN X L, WEN W E, XIE L, FU L P, XU D A, FU C, WANG D S, CHEN X M, XIA X C, CHEN Q J, HE Z H, CAO S H. Molecular mapping of reduced plant height gene Rht24 in bread wheat. Frontiers in Plant Science, 2017, 8: 1379.
[20]
SONG J, LI L, LIU B Y, DONG Y C, DONG Y, LI F J, LIU S Y, LUO X M, SUN M J, NI Z Q, et al. Fine mapping of reduced height locus RHT26 in common wheat. Theoretical and Applied Genetics, 2023, 136(3): 62.
[21]
HEDDEN P. The genes of the Green Revolution. Trends in Genetics, 2003, 19(1): 5-9.

doi: 10.1016/s0168-9525(02)00009-4 pmid: 12493241
[22]
KNOPF C, BECKER H, EBMEYER E, KORZUN V. Occurrence of three dwarfing Rht genes in German winter wheat varieties. Cereal Research Communications, 2008, 36(4): 553-560.
[23]
DIVASHUK M G, BESPALOVA L A, VASILYEV A V, FESENKO I A, PUZYRNAYA O Y, KARLOV G I. Reduced height genes and their importance in winter wheat cultivars grown in southern Russia. Euphytica, 2013, 190(1): 137-144.
[24]
杨松杰, 张晓科, 何中虎, 夏先春, 周阳. 用STS标记检测矮秆基因Rht-B1bRht-D1b在中国小麦中的分布. 中国农业科学, 2006, 39(8): 1680-1688. doi: 10.3864/j.issn.0578-1752.at-2004-2865.
YANG S J, ZHANG X K, HE Z H, XIA X C, ZHOU Y. Distribution of dwarfing genes Rht-B1b and Rht-D1b in Chinese bread wheats detected by STS marker. Scientia Agricultura Sinica, 2006, 39(8): 1680-1688. doi: 10.3864/j.issn.0578-1752.at-2004-2865. (in Chinese)
[25]
周阳, 何中虎, 张改生, 夏兰琴, 陈新民, 张立平, 陈锋. 用微卫星标记鉴定中国小麦品种中Rht8矮秆基因的分布. 作物学报, 2003, 29(6): 810-814.
ZHOU Y, HE Z H, ZHANG G S, XIA L Q, CHEN X M, ZHANG L P, CHEN F. Rht8 dwarf gene distribution in Chinese wheats identified by microsatellite marker. Acta Agronomica Sinica, 2003, 29(6): 810-814. (in Chinese)
[26]
慕美财, 刘勇, 郭小丽, 张曰秋, 于凯, 刘冬成, 张爱民. 山东小麦品种中矮秆基因Rht-B1bRht-D1b分布的分子鉴定. 分子植物育种, 2005, 3(4): 473-478.
MU M C, LIU Y, GUO X L, ZHANG Y Q, YU K, LIU D C, ZHANG A M. Distribution of Rht-B1b and Rht-D1b in wheat cultivars in Shandong detected by molecular markers. Molecular Plant Breeding, 2005, 3(4): 473-478. (in Chinese)
[27]
杨芳萍, 郭莹, 田媛媛, 曹世勤, 刘金栋, 张雪婷, 鲁清林, 张文涛, 王世红, 虎梦霞, 王雅美. 甘肃省小麦品种(系)矮秆基因检测及分布规律. 植物遗传资源学报, 2024, 25(2): 206-230.

doi: 10.13430/j.cnki.jpgr.20230804001
YANG F P, GUO Y, TIAN Y Y, CAO S Q, LIU J D, ZHANG X T, LU Q L, ZHANG W T, WANG S H, HU M X, WANG Y M. Detection and distribution of dwarf genes of wheat varieties in Gansu Province. Journal of Plant Genetic Resources, 2024, 25(2): 206-230. (in Chinese)

doi: 10.13430/j.cnki.jpgr.20230804001
[28]
王玉叶, 张海萍, 来得娥, 赵秋霞, 常成, 马传喜. 257份小麦品种资源中矮秆基因的分子检测. 安徽农业大学学报, 2013, 40(5): 860-866.
WANG Y Y, ZHANG H P, LAI D E, ZHAO Q X, CHANG C, MA C X. Detection of dwarf genes in 257 wheat variety resources using molecular markers. Journal of Anhui Agricultural University, 2013, 40(5): 860-866. (in Chinese)
[29]
丁传光, 张华, 陈浩, 何员江, 顾莎莎, 李晴, 周新力, 袁国强, 任勇. 211份四川小麦品种(系)矮秆基因分子检测. 四川农业大学学报, 2024, 42(6): 1232-1244.
DING C G, ZHANG H, CHEN H, HE Y J, GU S S, LI Q, ZHOU X L, YUAN G Q, REN Y. Molecular detection of dwarf genes in 211 Sichuan wheat varieties(lines). Journal of Sichuan Agricultural University, 2024, 42(6): 1232-1244. (in Chinese)
[30]
赵佳佳, 乔玲, 武棒棒, 葛川, 乔麟轶, 张树伟, 闫素仙, 郑兴卫, 郑军. 山西省小麦苗期根系性状及抗旱特性分析. 作物学报, 2021, 47(4): 714-727.

doi: 10.3724/SP.J.1006.2021.01048
ZHAO J J, QIAO L, WU B B, GE C, QIAO L Y, ZHANG S W, YAN S X, ZHENG X W, ZHENG J. Seedling root characteristics and drought resistance of wheat in Shanxi province. Acta Agronomica Sinica, 2021, 47(4): 714-727. (in Chinese)
[31]
CHEN F, XU H X, ZHANG F Y, XIA X C, HE Z H, WANG D W, DONG Z D, ZHAN K H, CHENG X Y, CUI D Q. Physical mapping of puroindoline b-2 genes and molecular characterization of a novel variant in durum wheat (Triticum turgidum L.). Molecular Breeding, 2011, 28(2): 153-161.
[32]
DU Y Y, CHEN L, WANG Y S, YANG Z Y, SAEED I, DAOURA B G, HU Y G. The combination of dwarfing genes Rht4 and Rht8 reduced plant height, improved yield traits of rainfed bread wheat (Triticum aestivum L.). Field Crops Research, 2018, 215: 149-155.
[33]
DAOURA B G, CHEN L, DU Y Y, HU Y G. Genetic effects of dwarfing gene Rht-5 on agronomic traits in common wheat (Triticum aestivum L.) and QTL analysis on its linked traits. Field Crops Research, 2014, 156: 22-29.
[34]
贺军与, 尹顺琼, 陈云琼, 熊静蕾, 王卫斌, 周鸿斌, 陈梅, 王梦玥, 陈升位. 小麦矮秆突变体的鉴定及其突变性状的关联分析. 作物学报, 2021, 47(5): 974-982.

doi: 10.3724/SP.J.1006.2021.01066
HE J Y, YIN S Q, CHEN Y Q, XIONG J L, WANG W B, ZHOU H B, CHEN M, WANG M Y, CHEN S W. Identification of wheat dwarf mutants and analysis on association between the mutant traits of the dwarf plants. Acta Agronomica Sinica, 2021, 47(5): 974-982. (in Chinese)
[35]
CHEN L, PHILLIPS A L, CONDON A G, PARRY M A J, HU Y G. GA-responsive dwarfing gene Rht12 affects the developmental and agronomic traits in common bread wheat. PLoS ONE, 2013, 8(4): e62285.
[36]
WANG Y S, CHEN L, DU Y Y, YANG Z Y, CONDON A G, HU Y G. Genetic effect of dwarfing gene Rht13compared with Rht-D1b on plant height and some agronomic traits in common wheat (Triticum aestivum L.). Field Crops Research, 2014, 162: 39-47.
[37]
卫乃翠, 陶金博, 苑名杨, 张彧, 开梦想, 乔玲, 武棒棒, 郝宇琼, 郑兴卫, 王娟玲, 赵佳佳, 郑军. 山西小麦苗期耐低磷特性及遗传分析. 中国农业科学, 2024, 57(5): 831-845. doi: 10.3864/j.issn.0578-1752.2024.05.001.
WEI N C, TAO J B, YUAN M Y, ZHANG Y, KAI M X, QIAO L, WU B B, HAO Y Q, ZHENG X W, WANG J L, ZHAO J J, ZHENG J. Seedling characterization and genetic analysis of low phosphorus tolerance in Shanxi varieties. Scientia Agricultura Sinica, 2024, 57(5): 831-845. doi: 10.3864/j.issn.0578-1752.2024.05.001. (in Chinese)
[38]
ZHANG X H, WARBURTON M L, SETTER T, LIU H J, XUE Y D, YANG N, YAN J B, XIAO Y J. Genome-wide association studies of drought-related metabolic changes in maize using an enlarged SNP panel. Theoretical and Applied Genetics, 2016, 129(8): 1449-1463.

doi: 10.1007/s00122-016-2716-0 pmid: 27121008
[39]
BRANCOURT-HULMEL M, DOUSSINAULT G, LECOMTE C, BÉRARD P, LE BUANEC B, TROTTET M. Genetic improvement of agronomic traits of winter wheat cultivars released in France from 1946 to 1992. Crop Science, 2003, 43(1): 37-45.
[40]
IQBAL M, MOAKHAR N P, STRENZKE K, HAILE T, POZNIAK C, HUCL P, SPANER D. Genetic improvement in grain yield and other traits of wheat grown in western Canada. Crop Science, 2016, 56(2): 613-624.
[41]
庄巧生. 中国小麦品种改良及系谱分析. 北京: 中国农业出版社, 2003.
ZHUANG Q S. Chinese Wheat Improvement and Pedigree Analysis. Beijing: China Agriculture Press, 2003. (in Chinese)
[42]
ZHENG T C, ZHANG X K, YIN G H, WANG L N, HAN Y L, CHEN L, HUANG F, TANG J W, XIA X C, HE Z H. Genetic gains in grain yield, net photosynthesis and stomatal conductance achieved in Henan Province of China between 1981 and 2008. Field Crops Research, 2011, 122(3): 225-233.
[43]
XIAO Y G, QIAN Z G, WU K, LIU J J, XIA X C, JI W Q, HE Z H. Genetic gains in grain yield and physiological traits of winter wheat in Shandong Province, China, from 1969 to 2006. Crop Science, 2012, 52(1): 44-56.
[44]
YAO Y R, LV L H, ZHANG L H, YAO H P, DONG Z Q, ZHANG J T, JI J J, JIA X L, WANG H J. Genetic gains in grain yield and physiological traits of winter wheat in Hebei Province of China, from 1964 to 2007. Field Crops Research, 2019, 239: 114-123.
[45]
ZHOU Y, ZHU H Z, CAI S B, HE Z H, ZHANG X K, XIA X C, ZHANG G S. Genetic improvement of grain yield and associated traits in the Southern China winter wheat region: 1949 to 2000. Euphytica, 2007, 157(3): 465-473.
[46]
LIU H, TANG H P, LUO W, MU Y, JIANG Q T, LIU Y X, CHEN G Y, WANG J R, ZHENG Z, QI P F, et al. Genetic dissection of wheat uppermost-internode diameter and its association with agronomic traits in five recombinant inbred line populations at various field environments. Journal of Integrative Agriculture, 2021, 20(11): 2849-2861.

doi: 10.1016/S2095-3119(20)63412-8
[47]
CUI F, LI J, DING A M, ZHAO C H, WANG L, WANG X Q, LI S S, BAO Y G, LI X F, FENG D S, KONG L R, WANG H G. Conditional QTL mapping for plant height with respect to the length of the spike and internode in two mapping populations of wheat. Theoretical and Applied Genetics, 2011, 122(8): 1517-1536.

doi: 10.1007/s00122-011-1551-6 pmid: 21359559
[48]
ZHANG X K, YANG S J, ZHOU Y, HE Z H, XIA X C. Distribution of the Rht-B1b, Rht-D1b and Rht8 reduced height genes in autumn- sown Chinese wheats detected by molecular markers. Euphytica, 2006, 152(1): 109-116.
[49]
李怡鑫, 陈向东, 张雪宁, 林孟杰, 尤丽, 李冉, 轩庆庆, 姜小苓, 姜豪, 王润发, 茹振钢, 吴晓军. 47份外引小麦种质中矮秆基因的检测及其降秆效应分析. 麦类作物学报, 2021, 41(5): 561-568.
LI Y X, CHEN X D, ZHANG X N, LIN M J, YOU L, LI R, XUAN Q Q, JIANG X L, JIANG H, WANG R F, RU Z G, WU X J. Detection of dwarf genes and analysis of their height reduction effect in 47 introduced wheat germplasms. Journal of Triticeae Crops, 2021, 41(5): 561-568. (in Chinese)
[50]
郭保宏, 宋春华, 贾继增. 我国小麦品种的Rht1Rht2矮秆基因鉴定及分布研究. 中国农业科学, 1997, 30(5): 56-60. doi: 10.3864/j.issn.0578-1752.1997-30-05-56-60.
GUO B H, SONG C H, JIA J Z. Identification and distribution of Rht1 and Rht2 dwarf genes in Chinese elite dwarf wheat varieties. Scientia Agricultura Sinica, 1997, 30(5): 56-60. doi: 10.3864/j.issn.0578-1752.1997-30-05-56-60. (in Chinese)
[51]
刘晓宇, 禹海龙, 裴星旭, 梁秋芳, 岳超, 程西永, 许海霞, 詹克慧. 黄淮南部地区小麦品种矮秆基因的组成及其对茎秆特性的影响. 麦类作物学报, 2024, 44(8): 985-995.
LIU X Y, YU H L, PEI X X, LIANG Q F, YUE C, CHENG X Y, XU H X, ZHAN K H. Composition of dwarfing genes and their effects on stem characteristics of wheat varieties in the southern area of Huanghuai wheat region. Journal of Triticeae Crops, 2024, 44(8): 985-995. (in Chinese)
[52]
LU Y, XING L P, XING S J, HU P, CUI C F, ZHANG M Y, XIAO J, WANG H Y, ZHANG R Q, WANG X E, CHEN P D, CAO A Z. Characterization of a putative new semi-dominant reduced height gene, Rht_NM9, in wheat (Triticum aestivum L.). Journal of Genetics and Genomics, 2015, 42(12): 685-698.
[53]
ZHANG N, FAN X L, CUI F, ZHAO C H, ZHANG W, ZHAO X Q, YANG L J, PAN R Q, CHEN M, HAN J, et al. Characterization of the temporal and spatial expression of wheat (Triticum aestivum L.) plant height at the QTL level and their influence on yield-related traits. Theoretical and Applied Genetics, 2017, 130(6): 1235-1252.
[54]
ELLIS M H, REBETZKE G J, AZANZA F, RICHARDS R A, SPIELMEYER W. Molecular mapping of gibberellin-responsive dwarfing genes in bread wheat. Theoretical and Applied Genetics, 2005, 111(3): 423-430.

doi: 10.1007/s00122-005-2008-6 pmid: 15968526
[55]
LUJÁN BASILE S M, RAMÍREZ I A, CRESCENTE J M, CONDE M B, DEMICHELIS M, ABBATE P, ROGERS W J, PONTAROLI A C, HELGUERA M, VANZETTI L S. Haplotype block analysis of an Argentinean hexaploid wheat collection and GWAS for yield components and adaptation. BMC Plant Biology, 2019, 19(1): 553.

doi: 10.1186/s12870-019-2015-4 pmid: 31842779
[56]
SUN L H, YANG W L, LI Y F, SHAN Q Q, YE X B, WANG D Z, YU K, LU W W, XIN P Y, PEI Z, et al. A wheat dominant dwarfing line with Rht12, which reduces stem cell length and affects gibberellic acid synthesis, is a 5AL terminal deletion line. The Plant Journal, 2019, 97(5): 887-900.
[57]
CUI C G, LU Q M, ZHAO Z C, LU S, DUAN S, YANG Y, QIAO Y, CHEN L, HU Y G. The fine mapping of dwarf gene Rht5 in bread wheat and its effects on plant height and main agronomic traits. Planta, 2022, 255(6): 114.
[58]
AMALOVA A, ABUGALIEVA S, CHUDINOV V, SEREDA G, TOKHETOVA L, ABDIKHALYK A, TURUSPEKOV Y. QTL mapping of agronomic traits in wheat using the UK Avalon × Cadenza reference mapping population grown in Kazakhstan. PeerJ, 2021, 9: e10733.
[59]
XU Y F, LI S S, LI L H, MA F F, FU X Y, SHI Z L, XU H X, MA P T, AN D G. QTL mapping for yield and photosynthetic related traits under different water regimes in wheat. Molecular Breeding, 2017, 37(3): 34.
[60]
LI F J, WEN W E, LIU J D, ZHANG Y, CAO S H, HE Z H, RASHEED A, JIN H, ZHANG C, YAN J, et al. Genetic architecture of grain yield in bread wheat based on genome-wide association studies. BMC Plant Biology, 2019, 19(1): 168.

doi: 10.1186/s12870-019-1781-3 pmid: 31035920
[61]
ZANKE C D, LING J, PLIESKE J, KOLLERS S, EBMEYER E, KORZUN V, ARGILLIER O, STIEWE G, HINZE M, NEUMANN K, GANAL M W, RÖDER M S. Whole genome association mapping of plant height in winter wheat (Triticum aestivum L.). PLoS ONE, 2014, 9(11): e113287.
[62]
ZHANG L, ZHANG H, QIAO L Y, MIAO L F, YAN D, LIU P, ZHAO G Y, JIA J Z, GAO L F. Wheat MADS-box gene TaSEP3-D1negatively regulates heading date. The Crop Journal, 2021, 9(5): 1115-1123.
[63]
LI A L, HAO C Y, WANG Z Y, GENG S F, JIA M L, WANG F, HAN X, KONG X C, YIN L J, TAO S, et al. Wheat breeding history reveals synergistic selection of pleiotropic genomic sites for plant architecture and grain yield. Molecular Plant, 2022, 15(3): 504-519.
[1] CHEN BingRu, TANG YuJie, ZHANG LiXia, ZHOU YuFei, YU Miao, SHI GuiShan, WANG XinDing, LI Yang, GAO ShiJie, LU XiaoChun, WANG Nai, DIAO XianMin. The Green Revolution of Chinese Grain Hybrid Sorghum [J]. Scientia Agricultura Sinica, 2025, 58(8): 1494-1507.
[2] ZHOU GuangFei, MA Liang, MA Lu, ZHANG ShuYu, ZHANG HuiMin, SONG XuDong, ZHANG ZhenLiang, LU HuHua, HAO DeRong, MAO YuXiang, XUE Lin, CHEN GuoQing. Genome-Wide Association Study of Husk Traits in Maize [J]. Scientia Agricultura Sinica, 2025, 58(3): 431-442.
[3] JIA YuJing, LI ChaoNan, PAN ZhiXiong, YANG DeLong, MAO XinGuo, JING RuiLian. Cloning and Genetic Effect Analysis of TaTIFY11c-4A in Wheat [J]. Scientia Agricultura Sinica, 2025, 58(17): 3357-3371.
[4] ZHENG MinHua, CHEN Luo, XING JiaLe, XIE YueLan, JIANG XianYa, NIE Shuai, CAI FuGe, WU HaoXiang, LU ZhanHua, SUN Wei, HUO Xing, BAI Song, ZHAO JunLiang, YANG Wu. Genome-Wide Association Study and Genetic Improvement Study of Rice Blast Resistance [J]. Scientia Agricultura Sinica, 2025, 58(14): 2707-2719.
[5] LI Ning, GAO LiFeng, HUANG Xin, SHI HuaWei, YANG JinWen, SHI YuGang, CHEN Ming, JIA JiZeng, SUN DaiZhen. Screening of Wheat Varieties with Low Nitrogen Tolerance and Genome-Wide Association Studies of Low Nitrogen Stress Tolerance Index [J]. Scientia Agricultura Sinica, 2025, 58(13): 2487-2503.
[6] ZHAO ZhenJian, WANG Kai, CHEN Dong, SHEN Qi, YU Yang, CUI ShengDi, WANG JunGe, CHEN ZiYang, YU ShiXin, CHEN JiaMiao, WANG XiangFeng, TANG GuoQing. Integrated Aanalysis of Genome and DNA Methylation for Screening Key Genes Related to Pork Quality Traits [J]. Scientia Agricultura Sinica, 2024, 57(7): 1394-1406.
[7] ZHANG JianLong, XING WenWen, YE ShaoBo, ZHANG Chao, ZHENG DeCong. Oat Plant Height Estimation Based on a Dual Output Regression Convolutional Neural Network [J]. Scientia Agricultura Sinica, 2024, 57(20): 3974-3985.
[8] LIU DeLong, LI ShiRu, WANG ChuanXing, GUO ShuQing, MA ZhiXiu, WU YongJiang, HAN HuiBing, LI YuJie, ZHANG PanPan, YANG Pu. Phenotypical Variation and Dynamic QTL Mapping of Plant Height in Foxtail Millet at Different Developmental Stages [J]. Scientia Agricultura Sinica, 2024, 57(18): 3533-3550.
[9] SHOU XinYue, LIU Zhi, CHEN YueHan, LI ChenHui, SUN BinCheng, SUN RuJian, HAN DeZhi, LU WenCheng, SHEN YongHui, WANG XiaoBo, YAN Long. Genome-Wide Association Analysis of Soybean Nodulation-Related Traits in the Northern Hebei [J]. Scientia Agricultura Sinica, 2024, 57(11): 2102-2113.
[10] TAN LiZhi, ZHAO YiQiang. Principle, Optimization and Application of Mixed Models in Genome- Wide Association Study [J]. Scientia Agricultura Sinica, 2023, 56(9): 1617-1632.
[11] YANG MingLu, ZHANG HaiLiang, LUO HanPeng, HUANG XiXia, ZHANG HanLin, ZHANG ShiShi, WANG Yan, LIU Lin, GUO Gang, WANG YaChun. Estimation of Genetic Parameters and Genome-Wide Association Study of Heat Indicators in Holstein Cattle Based on Collar-Mounted Device [J]. Scientia Agricultura Sinica, 2023, 56(5): 995-1006.
[12] ZHOU WenQi, ZHANG HeTong, HE HaiJun, GONG DianMing, YANG YanZhong, LIU ZhongXiang, LI YongSheng, WANG XiaoJuan, LIAN XiaoRong, ZHOU YuQian, QIU FaZhan. Candidate Gene Localization of ZmDLE1 Gene Regulating Plant Height and Ear Height in Maize [J]. Scientia Agricultura Sinica, 2023, 56(5): 821-837.
[13] WANG Mai, DONG QingFeng, GAO ShenAo, LIU DeZheng, LU Shan, QIAO PengFang, CHEN Liang, HU YinGang. Genome-Wide Association Studies and Mining for Favorable Loci of Root Traits at Seedling Stage in Wheat [J]. Scientia Agricultura Sinica, 2023, 56(5): 801-820.
[14] YANG ShengNan, CHENG Li, TAN YueXia, ZHU YanSong, JIANG Dong. Genome Wide Association Study for Resistance to Citrus Brown Spot Disease [J]. Scientia Agricultura Sinica, 2023, 56(18): 3642-3654.
[15] YAO QiFu, CHEN HuangXin, ZHOU JieGuang, MA RuiYing, DENG Liang, TAN ChenXinYu, SONG JingHan, LÜ JiJuan, MA Jian. QTL Identification and Genetic Analysis of Plant Height in Wheat Based on 16K SNP Array [J]. Scientia Agricultura Sinica, 2023, 56(12): 2237-2248.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!