Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (17): 3357-3371.doi: 10.3864/j.issn.0578-1752.2025.17.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Cloning and Genetic Effect Analysis of TaTIFY11c-4A in Wheat

JIA YuJing1,2(), LI ChaoNan2, PAN ZhiXiong1,2, YANG DeLong1,*(), MAO XinGuo2,*(), JING RuiLian2   

  1. 1 College of Life Science and Technology, Gansu Agricultural University/State Key Laboratory of Aridland Crop Science, Lanzhou 730070
    2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/State Key Laboratory of Crop Gene Resources and Breeding/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081
  • Received:2025-03-14 Accepted:2025-05-09 Online:2025-09-02 Published:2025-09-02
  • Contact: YANG DeLong, MAO XinGuo

Abstract:

【Objective】The TIFY family, a plant-specific group of transcription factors, plays critical roles in regulating growth, development, and stress responses. This study aimed to clone TaTIFY11c-4A in wheat, validate its genetic effects, and provide a theoretical basis for high-yield molecular breeding of wheat.【Method】The wheat cultivar Hanxuan 10 was used to clone TaTIFY11c-4A and allelic variations were detected in germplasms. The tissue-specific expression patterns of TaTIFY11c-4A and its responses to various hormones and stresses were analyzed via quantitative real-time PCR (qRT-PCR). The subcellular localization of TaTIFY11c-4A was determined through transient expression in tobacco. A molecular marker targeting the polymorphic site in TaTIFY11c-4A was developed to assess the genotypes in the natural population, and association analysis was performed to evaluate the correlations between the genotypes and phenotypes. Additionally, the spatial and temporal distribution of different genotypes were analyzed. Synergistic effects of TaTIFY11c-4A and TaSRL1-4A haplotypes were explored to identify superior genotype.【Result】TaTIFY11c-4A was successfully cloned, comprising three exons and two introns, encoding a 198-amino acid protein with conserved TIFY and Jas domains. TaTIFY11c-4A is expressed in roots, root bases and leaves at the seedling stage, and highly expressed in roots and leaves at the booting stage. There are multiple cis-acting elements related to hormone responses, stress adaptation, and endosperm development in the promoter of TaTIFY11c-4A. Its expression responds to plant hormones (ABA, IAA, MeJA) and abiotic stresses (drought, high salinity, low and high temperature). A SNP (G/A) was identified in its promoter at -405 bp. A molecular marker was developed based on the SNP and association analysis revealed significant correlations between TaTIFY11c-4A alleles and plant height, thousand grain weight under multiple environments such as drought and high temperature, and root depth at tillering stage. Compared with genotype SNP-G, wheat germplasms carrying the SNP-A allele exhibited shorter plants, higher thousand grain weight, and shallower roots at tillering stage, and have been positively selected in the wheat breeding process. TaTIFY11c-4A-SNP-A and TaSRL1-4A-SNP-C genotypes synergistically reduced plant height and enhanced thousand grain weight.【Conclusion】TaTIFY11c-4A encodes a nuclear-localized JAZ protein. It is expressed in various tissues of wheat and involved in responses to ABA, IAA, MeJA, as well as abiotic stresses such as drought, extreme temperature, and high salinity. The TaTIFY11c-4A-SNP is associated with plant height and thousand grain weight under multiple environments, and root depth. SNP-A allele has been positively selected in the wheat breeding process. The superior genotypes and combinations of TaTIFY11c-4A and TaSRL1-4A provide genetic resources for breeding high-yield and stress-resistant wheat cultivars.

Key words: wheat, TaTIFY11c-4A, molecular marker, association analysis, plant height, thousand grain weight, root depth

Table 1

Primers used in this study"

引物名称Primer name 正向引物Forward primer (5′-3′) 反向引物Reverse primer (5′-3′)
TaTIFY11c-4A-qRT CACGTACATACCTCGGCACC CTGCTCCCTCATGTACTGGC
TaTUB-qRT CGTGCTGTCTTTGTAGATCTCG GACCAGTGCAGTTGTCTGAAAG
TaTIFY11c-4A-1300-GFP CCAAATCGACTCTAGAATGGG
AGCCGAGCAGCAGCA
TGCTCACCATGGTACCGTTGA
GCTGGAGCGCGGG
TaTIFY11c-4A ACCAAGGATAGCAACACTC AACGGCAACAATCAAGGA
TaTIFY11c-4A-SacⅠ ACGAAGTCTCAATGGACGGAGACCTAG GGGGGTGGTGGAAGAAATGCCTGAG

Fig. 1

Sequence and phylogenetic analysis of TaTIFY11c-4A a: TaTIFY11c-4A gene structure diagram; b: Phylogenetic tree of TIFY proteins; c: Amino acid sequence alignment"

Fig. 2

Tissue expression pattern of wheat TaTIFY11c-4A a: Seedling stage; b: Booting stage. L: Leaf; R: Root; RB: Root base; S: Spike; FL: Flag leaf; P: Peduncle; St: Stem; R0-30, R30-60, and R60-90 represent the roots between 0-30, 30-60, and 60-90 cm below the ground"

Fig. 3

Subcellular localization of wheat TaTIFY11c-4A in tobacco leaves"

Fig. 4

Expression patterns of TaTIFY11c-4A in wheat seedlings treated with hormones and abiotic stresses a: Cis-acting element prediction in TaTIFY11c-4A promoter region. DRE core: Drought responsive element. ARE: cis-element essential for the anaerobic induction; WUN-motif, WRE: Wound responsive element; STRE: Stress responsive element; LTR: Low temperature responsive element; Sp1, GT1-motif, Box 4, G-box: Light responsive element; ABRE: ABA responsive element; CGTCA-motif, TGACG-motif: MeJA responsive element; TGA element: Auxin responsive element; GCN4_motif: cis-element involved in endosperm expression. b and d: Expression levels of TaTIFY11c-4A in leaves; c and e: Expression levels of TaTIFY11c-4A in roots"

Fig. 5

Sequence polymorphism and dCAPS molecular marker of TaTIFY11c-4A a: The schematic diagram of SNPs and molecular marker in the promoter region of TaTIFY11c-4A. Red box indicates digestion site, red letter indicates variation site, and red dot indicates mismatched base; b: The agarose gel electrophoresis of two genotypes. M: 100 bp DNA ladder; G: SNP-G genotype; A: SNP-A genotype"

Table 2

TaTIFY11c-4A genotype in wheat material of Group 1"

编号 Number 材料名称 Accession name 基因型 Genotype 编号 Number 材料名称 Accession name 基因型 Genotype
1 PANDAS SNP-A 17 临抗5108 Linkang 5108 SNP-G
2 安85中124-1 An 85 Zhong 124-1 SNP-G 18 白齐麦 Baiqimai SNP-G
3 偃展1号 Yanzhan 1 SNP-A 19 昌乐5号 Changle 5 SNP-G
4 霸王鞭 Bawangbian SNP-G 20 红和尚 Hongheshang SNP-G
5 北京10号 Beijing 10 SNP-G 21 北京8686 Beijing 8686 SNP-G
6 北京14号 Beijing 14 SNP-G 22 04-044 SNP-G
7 沧州小麦 Cangzhouxiaomai SNP-G 23 04-030 SNP-G
8 长武131 Changwu 131 SNP-A 24 春22 9th-25 Chun 22 9th-25 SNP-G
9 长6878 Chang 6878 SNP-G 25 紫秆白芒先 Ziganbaimangxian SNP-G
10 大荔1号 Dali 1 SNP-G 26 京品10号 Jingpin 10 SNP-G
11 单R8093 Dan R8093 SNP-G 27 春04 9th-5-1 Chun 04 9th-5-1 SNP-G
12 丰抗13 Fengkang 13 SNP-G 28 春45 9th-50-1 Chun 45 9th-50-1 SNP-G
13 冀麦41 Jimai 41 SNP-G 29 内乡188 Neixiang 188 SNP-G
14 冀麦6号 Jimai 6 SNP-G 30 京411 Jing 411 SNP-G
15 晋2148-7 Jin 2148-7 SNP-G 31 中国春 Chinese Spring SNP-G
16 京核8922 Jinghe 8922 SNP-A 32 白糙麦 Baicaomai SNP-G

Table 3

Association analysis between TaTIFY11c-4A and thousand grain weight and plant height in 16 environments"

环境
Environment
P(千粒重)
P-value
(Thousand grain weight)
P(株高)
P-value
(Plant height)
环境
Environment
P(千粒重)
P-value
(Thousand grain weight)
P(株高)
P-value
(Plant height)
E1 0.03915* 0.00599** E9 0.02229* 0.01174*
E2 0.01354* 0.00141** E10 0.03127* 0.00881**
E3 0.00081*** 0.01997* E11 0.32457 0.00192**
E4 0.03561* 0.00371** E12 0.00305** 0.00783**
E5 0.04201* 0.02537* E13 0.00097*** 0.00555**
E6 0.10469 0.00875** E14 0.00169** 0.00637**
E7 0.04312* 0.0136* E15 0.05409 0.01093*
E8 0.02590* 0.01771* E16 0.13964 0.00726**

Fig. 6

Spatiotemporal distribution of two genotypes of TaTIFY11c-4A in Chinese wheat a, b, c: Comparison of the thousand grain weight, plant height, and root depth of the two genotypes of TaTIFY11c-4A in the wheat Population 2. d, e: The distribution frequencies of the two genotypes of TaTIFY11c-4A in landraces and modern cultivars across the ten major wheat-growing zones in China. Ⅰ: Northern Winter Wheat Zone; Ⅱ: Huang-Huai Winter Wheat Zone; Ⅲ: Middle and Lower Yangtze River Wheat Zone; Ⅳ: Southwest Winter Wheat Zone; Ⅴ: South China Winter Wheat Zone; Ⅵ: Northeast Spring Wheat Zone; Ⅶ: Northern Spring Wheat Zone; Ⅷ: Northwest Spring Wheat Zone; Ⅸ: Qinghai-Tibet Spring and Winter Wheat Zone; Ⅹ: Xinjiang Winter and Spring Wheat Zone. f: Plant height and thousand grain weight of cultivars released in different decades in wheat Population 2 under 16 environments. g: Frequency of two TaTIFY11c-4A genotypes of cultivars released in different decades in wheat Population 2"

Fig. 7

Differences in plant height, thousand grain weight and root depth among the haplotype combinations of TaTIFY11c-4A and TaSRL1-4A a: The genotypic combinations of TaTIFY11c-4A and TaSRL1-4A; b: Plant height; c: Thousand grain weight; d: Root depth at tillering stage. Different lowercase letters indicate significant differences between haplotypes within the same environment (P<0.05)"

[1]
SHIFERAW B, SMALE M, BRAUN H J, DUVEILLER E, REYNOLDS M, MURICHO G. Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Security, 2013, 5(3): 291-317.
[2]
RAY D K, MUELLER N D, WEST P C, FOLEY J A. Yield trends are insufficient to double global crop production by 2050. PLoS ONE, 2013, 8(6): e66428.
[3]
LIU Y J, ZHANG J, GE Q S. The optimization of wheat yield through adaptive crop management in a changing climate: Evidence from China. Journal of the Science of Food and Agriculture, 2021, 101(9): 3644-3653.

doi: 10.1002/jsfa.10993 pmid: 33275287
[4]
SHAH N H, PAULSEN G M. Interaction of drought and high temperature on photosynthesis and grain-filling of wheat. Plant and Soil, 2003, 257(1): 219-226.
[5]
ASSENG S, EWERT F, MARTRE P, RÖTTER R P, LOBELL D B, CAMMARANO D, KIMBALL B A, OTTMAN M J, WALL G W, WHITE J W, et al. Rising temperatures reduce global wheat production. Nature Climate Change, 2014, 5(2): 143-147.
[6]
SENAPATI N, STRATONOVITCH P, PAUL M J, SEMENOV M A. Drought tolerance during reproductive development is important for increasing wheat yield potential under climate change in Europe. Journal of Experimental Botany, 2019, 70(9): 2549-2560.

doi: 10.1093/jxb/ery226 pmid: 29901813
[7]
景蕊莲, 昌小平, 胡荣海. 冬小麦幼苗根系形态性状及抗旱性的遗传. 遗传, 1998, 20(S1): 91-94.
JING R L, CHANG X P, HU R H. Inheritance of root morphological characters and drought resistance of winter wheat seedlings. Hereditas (Beijing), 1998, 20(S1): 91-94. (in Chinese)
[8]
VANHOLME B, GRUNEWALD W, BATEMAN A, KOHCHI T, GHEYSEN G. The tify family previously known as ZIM. Trends in Plant Science, 2007, 12(6): 239-244.

doi: 10.1016/j.tplants.2007.04.004 pmid: 17499004
[9]
SHIKATA M, MATSUDA Y, ANDO K, NISHII A, TAKEMURA M, YOKOTA A, KOHCHI T. Characterization of Arabidopsis ZIM a member of a novel plant-specific GATA factor gene family. Journal of Experimental Botany, 2004, 55(397): 631-639.
[10]
WHITE D W R. PEAPOD regulates Lamina size and curvature in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(35): 13238-13243.
[11]
DONG K, WU F Q, CHENG S Q, LI S, ZHANG F, XING X X, JIN X, LUO S, FENG M, MIAO R, CHANG Y Q, et al. OsPRMT6a- mediated arginine methylation of OsJAZ 1 regulates jasmonate signaling and spikelet development in rice. Molecular Plant, 2024, 17(6): 900-919.
[12]
SEO J S, JOO J, KIM M J, KIM Y K, NAHM B H, SONG S I, CHEONG J J, LEE J S, KIM J K, CHOI Y D. OsbHLH148, a basic helix-loop-helix protein, interacts with OsJAZ proteins in a jasmonate signaling pathway leading to drought tolerance in rice. The Plant Journal, 2011, 65(6): 907-921.
[13]
WU H, YE H Y, YAO R F, ZHANG T, XIONG L Z. OsJAZ 9 acts as a transcriptional regulator in jasmonate signaling and modulates salt stress tolerance in rice. Plant Science, 2015, 232: 1-12.
[14]
LIU H X, YAO Y X, MA J Y, WANG S Y, LI S, WANG W W, YU X M, SUN F L, ZHANG C, XI Y J. Wheat TaTIFY3B and TaTIFY10A play roles in seed germination and abiotic stress responses in transgenic Arabidopsis and rice. BMC Plant Biology, 2024, 24(1): 951.
[15]
EBEL C, BENFEKI A, HANIN M, SOLANO R, CHINI A. Characterization of wheat (Triticum aestivum) TIFY family and role of Triticum Durum TdTIFY11a in salt stress tolerance. PLoS ONE, 2018, 13(7): e0200566.
[16]
张自阳, 周谦, 王依, 王志伟, 朱启迪, 茹振钢, 刘明久. 小麦倒春寒响应基因TaJAZ6的克隆、表达模式及亚细胞定位分析. 华北农学报, 2024, 39(1): 27-36.

doi: 10.7668/hbnxb.20194434
ZHANG Z Y, ZHOU Q, WANG Y, WANG Z W, ZHU Q D, RU Z G, LIU M J. Cloning, expression pattern and subcellular localization analysis of late spring cold response gene TaJAZ6 in wheat. Acta Agriculturae Boreali-Sinica, 2024, 39(1): 27-36. (in Chinese)
[17]
梁佳文, 魏铁锁, 樊晓培, 苍晶, 张达. TaJAZ7D蛋白在冬小麦JA抗寒途径中的作用. 麦类作物学报, 2022, 42(11): 1317-1325.
LIANG J W, WEI T S, FAN X P, CANG J, ZHANG D. Role of TaJAZ7D protein in JA cold-resistance pathway of winter wheat. Journal of Triticeae Crops, 2022, 42(11): 1317-1325. (in Chinese)
[18]
荆叶醒. 小麦TaJAZ1基因的克隆及其调控小麦白粉病抗性机理的研究[D]. 北京: 中国农业科学院, 2019.
JING Y X. Gene cloning of TaJAZ1 and research on the mechanism of TaJAZ1-regulated resistance against powdery mildew in wheat (Triticum aestivum L.)[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019. (in Chinese)
[19]
陈欣. 小麦TIFY转录因子TaTIFY10b调控籽粒发育的分子机理解析[D]. 北京: 中国农业科学院, 2021.
CHEN X. Molecular mechanism of wheat TIFY transcription factor TaTIFY10b in regulating grain development[D]. Beijing: Chinese Academy of Agricultural Sciences, 2021. (in Chinese)
[20]
ZHUANG M J, LI C N, WANG J Y, MAO X G, LI L, YIN J, DU Y, WANG X, JING R L. The wheat short root length 1 gene TaSRL1 controls root length in an auxin-dependent pathway. Journal of Experimental Botany, 2021, 72(20): 6977-6989.
[21]
LI L, MAO X G, WANG J Y, CHANG X P, REYNOLDS M, JING R L. Genetic dissection of drought and heat-responsive agronomic traits in wheat. Plant, Cell & Environment, 2019, 42(9): 2540-2553.
[22]
LI L, PENG Z, MAO X G, WANG J Y, CHANG X P, REYNOLDS M, JING R L. Genome-wide association study reveals genomic regions controlling root and shoot traits at late growth stages in wheat. Annals of Botany, 2019, 124(6): 993-1006.

doi: 10.1093/aob/mcz041 pmid: 31329816
[23]
HAO C Y, WANG L F, GE H M, DONG Y C, ZHANG X Y. Genetic diversity and linkage disequilibrium in Chinese bread wheat (Triticum aestivum L.) revealed by SSR markers. PLoS ONE, 2011, 6(2): e17279.
[24]
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001, 25(4): 402-408.

doi: 10.1006/meth.2001.1262 pmid: 11846609
[25]
YU J, ZHANG Y X, DI C, ZHANG Q L, ZHANG K, WANG C C, YOU Q, YAN H, DAI S Y, YUAN J S, XU W Y, SU Z. JAZ 7 negatively regulates dark-induced leaf senescence in Arabidopsis. Journal of Experimental Botany, 2016, 67(3): 751-762.
[26]
HAN X, KUI M Y, HE K R, YANG M L, DU J C, JIANG Y J, HU Y R. Jasmonate-regulated root growth inhibition and root hair elongation. Journal of Experimental Botany, 2023, 74(4): 1176-1185.
[27]
FU J, WU H, MA S Q, XIANG D H, LIU R Y, XIONG L Z. OsJAZ 1 attenuates drought resistance by regulating JA and ABA signaling in rice. Frontiers in Plant Science, 2017, 8: 2108.
[28]
SINGH A P, MANI B, GIRI J. OsJAZ 9 is involved in water-deficit stress tolerance by regulating leaf width and stomatal density in rice. Plant Physiology and Biochemistry, 2021, 162: 161-170.
[29]
王朝亮, 史素英. 灾害性天气对小麦产量的影响. 中国种业, 2012(2): 61-62.
WANG C L, SHI S Y. Effect of disastrous weather on wheat yield. China Seed Industry, 2012(2): 61-62. (in Chinese)
[30]
刘兵. 生育后期高温胁迫对小麦生长发育及产量形成影响的模拟研究[D]. 南京: 南京农业大学, 2016.
LIU B. Modelling the effects of heat stress during late growth stage on growth and yield formation in wheat. Nanjing: Nanjing Agricultural University, 2016. (in Chinese)
[31]
XIA C, ZHANG L C, ZOU C, GU Y Q, DUAN J L, ZHAO G Y, WU J J, LIU Y, FANG X H, GAO L F, JIAO Y N, SUN J Q, PAN Y H, LIU X, JIA J Z, KONG X Y. A TRIM insertion in the promoter of Ms2 causes male sterility in wheat. Nature Communications, 2017, 8: 15407.

doi: 10.1038/ncomms15407 pmid: 28497807
[32]
TIAN X L, XIA X C, XU D A, LIU Y Q, XIE L, HASSAN M A, SONG J, LI F J, WANG D S, ZHANG Y, et al. Rht24b, an ancient variation of TaGA2ox-A9, reduces plant height without yield penalty in wheat. New Phytologist, 2022, 233(2): 738-750.
[33]
LI C N, WANG J Y, LI L, LI J L, ZHUANG M J, LI B, LI Q R, HUANG J F, DU Y, WANG J P, FAN Z P, MAO X G, JING R L. TaMOR is essential for root initiation and improvement of root system architecture in wheat. Plant Biotechnology Journal, 2022, 20(5): 862-875.
[34]
WANG J Y, LI L, LI C N, YANG X, XUE Y H, ZHU Z, MAO X G, JING R L. A transposon in the vacuolar sorting receptor gene TaVSR1-B promoter region is associated with wheat root depth at booting stage. Plant Biotechnology Journal, 2021, 19(7): 1456-1467.

doi: 10.1111/pbi.13564 pmid: 33555662
[35]
MAO H D, LI S M, WANG Z X, CHENG X X, LI F F, MEI F M, CHEN N, KANG Z S. Regulatory changes in TaSNAC8-6A are associated with drought tolerance in wheat seedlings. Plant Biotechnology Journal, 2020, 18(4): 1078-1092.

doi: 10.1111/pbi.13277 pmid: 31617659
[1] LI YunLi, DIAO DengChao, LIU YaRui, SUN YuChen, MENG XiangYu, WU ChenFang, WANG Yu, WU JianHui, LI ChunLian, ZENG QingDong, HAN DeJun, ZHENG WeiJun. Genome-Wide Association Study of Heat Tolerance at Seedling Stage in A Wheat Natural Population [J]. Scientia Agricultura Sinica, 2025, 58(9): 1663-1683.
[2] LÜ Tao, SUN GuoQing, GUO DongCai, CHEN QuanJia, CAI YongSheng, FAN BiaoXing, QU YanYing, ZHENG Kai. Development and Effectiveness Evaluation of InDel Molecular Markers Closely Linked to Fiber Strength QTL in Gossypium barbadense [J]. Scientia Agricultura Sinica, 2025, 58(9): 1684-1701.
[3] PU LiXia, ZHANG JiaRui, YE JianPing, HUANG XiuLan, FAN GaoQiong, YANG HongKun. The Combined Effects of 16, 17-Dihydro Gibberellin A5 and Straw Mulching on Tillering and Grain Yield of Dryland Wheat [J]. Scientia Agricultura Sinica, 2025, 58(9): 1735-1748.
[4] CHEN BingRu, TANG YuJie, ZHANG LiXia, ZHOU YuFei, YU Miao, SHI GuiShan, WANG XinDing, LI Yang, GAO ShiJie, LU XiaoChun, WANG Nai, DIAO XianMin. The Green Revolution of Chinese Grain Hybrid Sorghum [J]. Scientia Agricultura Sinica, 2025, 58(8): 1494-1507.
[5] WU Yu, QU XiangRu, YANG Dan, WU Qin, CHEN GuoYue, JIANG QianTao, WEI YuMing, XU Qiang. Widespread Non-Targeted Metabolomics Reveals Metabolites of Chloroplasts in Wheat Responses to Stripe Rust [J]. Scientia Agricultura Sinica, 2025, 58(7): 1333-1343.
[6] YIN Bo, YU AiZhong, WANG PengFei, YANG XueHui, WANG YuLong, SHANG YongPan, ZHANG DongLing, LIU YaLong, LI Yue, WANG Feng. Effects of Green Manure Returning Combined with Nitrogen Fertilizer Reduction on Hydrothermal Characteristics of Wheat Field and Grain Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2025, 58(7): 1366-1380.
[7] PAN LiYuan, WANG YongJun, LI HaiJun, HOU Fu, LI Jing, LI LiLi, SUN SuYang. Screening Regulatory Genes Related to Wheat Grain Protein Accumulation Based on Transcriptome and WGCNA Analysis [J]. Scientia Agricultura Sinica, 2025, 58(6): 1065-1082.
[8] TANG Yu, LEI BiXin, WANG ChuanWei, YAN XuanTao, WANG Hao, ZHENG Jie, ZHANG WenJing, MA ShangYu, HUANG ZhengLai, FAN YongHui. Response Mechanism of Anthocyanin Accumulation in Colored Wheat to Post-Anthesis High Temperature Stress [J]. Scientia Agricultura Sinica, 2025, 58(6): 1083-1101.
[9] ZHANG HongCheng, XING ZhiPeng, ZHANG RuiHong, SHAN Xiang, XI XiaoBo, CHENG Shuang, WENG WenAn, HU Qun, CUI PeiYuan, WEI HaiYan. Characteristics and Technical Approaches of Integrated Unmanned High-Yield Cultivation of Wheat [J]. Scientia Agricultura Sinica, 2025, 58(5): 864-876.
[10] ZHANG Ling, CAO Lei, CAI Cheng, YAN XinYi, XIANG BoCai, AI Jia, ZHAN XinYang, SONG YouHong, ZHU YuLei. Changes in Seed Vigor and Physiological Index of Winter Wheat Under Natural Aging Condition [J]. Scientia Agricultura Sinica, 2025, 58(5): 877-889.
[11] SHE WenTing, SUN RuiQing, DANG HaiYan, LI WenHu, ZHANG Feng, TIAN Yi, XU JunFeng, DING YuLan, WANG ZhaoHui. Sulfur Concentration and Distribution in Wheat Grain Sampled from Farmers’ Fields in Main Wheat Production Regions of China and Its Affecting Factors [J]. Scientia Agricultura Sinica, 2025, 58(5): 956-974.
[12] ZHANG Tao, WANG Huan, XIE HongKai, CHEN YinJi. Formation and Structure of Wheat Bran Polysaccharide-Golden Threadfin Bream Surimi Blended Gel [J]. Scientia Agricultura Sinica, 2025, 58(5): 1004-1016.
[13] DIAO DengChao, LI YunLi, MENG XiangYu, JI SongHan, SUN YuChen, MA XueHong, LI Jie, FENG YongJia, LI ChunLian, WU JianHui, ZENG QingDong, HAN DeJun, $\boxed{\hbox{WANG ChangFa}}$, ZHENG WeiJun. Cloning and Heat Tolerance Function of Wheat TaGRAS34-5A Gene [J]. Scientia Agricultura Sinica, 2025, 58(4): 617-634.
[14] SHI Fan, LI WenGuang, YI ShuSheng, YANG Na, CHEN YuMeng, ZHENG Wei, ZHANG XueChen, LI ZiYan, ZHAI BingNian. The Variation Characteristics of Soil Organic Carbon Fractions Under the Combined Application of Organic and Inorganic Fertilizers [J]. Scientia Agricultura Sinica, 2025, 58(4): 719-732.
[15] MU ShuJia, DONG LiXia, LI Guang, YAN ZhenGang, LU YuLan. Optimization of N2O Emission Parameters in Dryland Spring Wheat Farmland Soil Based on Whale Optimization Algorithm [J]. Scientia Agricultura Sinica, 2025, 58(3): 537-547.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!