Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (14): 2751-2765.doi: 10.3864/j.issn.0578-1752.2025.14.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effects of Different Carbon Returning Methods on Grain Yield, Quality and Water Use Efficiency of Maize in Dryland of the Loess Plateau

WU LingBin1,2(), WANG LinLin1,2,*(), WANG JiangWen1,2, WANG ZiChao1,2, SI JiaAng1,2, LI ShiQing1,3   

  1. 1 Gansu Agricultural University/State Key Laboratory of Aridland Crop Science, Lanzhou 730070
    2 College of Agriculture, Gansu Agricultural University, Lanzhou 730070
    3 College of Resources and Environment, Gansu Agricultural University, Lanzhou 730070
  • Received:2024-11-08 Accepted:2025-06-17 Online:2025-07-17 Published:2025-07-17
  • Contact: WANG LinLin

Abstract:

【Objective】This study aimed to investigate the response of maize grain yield, quality and water use efficiency (WUE) in the dryland of the Loess Plateau to different ways of carbon returning, and to provide a theoretical basis for high-yield and high-efficiency cultivation of maize in this region.【Method】A maize field experiment was carried out in Dingxi City, Gansu Province, from 2022 to 2023, with one no-carbon returning and four different carbon-increasing treatments of equal carbon amounts: CK, control treatment without carbon returning; S1, biochar returning treatment (0.5×104 kg·hm-2); S2, straw returning treatment (1.2×104 kg·hm-2); S3, organic returning treatment (2.0×104 kg·hm-2); S4: 50% straw returning (0.6×104 kg·hm-2) combined with 50% organic returning treatment (1.0×104 kg·hm-2) to study the effects of carbon returning methods on soil moisture, dry matter accumulation and translocation, yield, water use efficiency and grain quality of maize in dryland of Loess Plateau.【Result】Carbon returning treatments reduced soil bulk weight and increased soil porosity in the 0-30 cm soil layer, where S1 treatment significantly increased soil water content in the 0-300 cm soil layer compared with CK treatment. Compared with the CK treatment, S1 treatment significantly decreased the SPAD value and leaf area index (LAI) at flowering stage, whereas S2, S3 and S4 treatments significantly increased the LAI of maize. The aboveground dry matter accumulation at harvest and the maximum rate of dry matter accumulation under S2, S3 and S4 treatment were significantly increased by 10.83%-21.05% and 8.47%-17.13%, respectively, while the dry matter accumulation of maize after anthesis and the contribution of post-flowering dry matter to grain yield significantly increased by 28.58%-54.02% and 11.18%-19.43%, respectively. And then, maize yields significantly increased by 17.22%-29.66%, with S3 demonstrating the most pronounced yield improvement. Conversely, compared with CK, S1 treatment significantly reduced the maximum rate of dry matter accumulation and dry matter accumulation at harvest by 5.31% and 10.32%, respectively, and then decreased grain yield by 7.05%. The S3 treatment significantly increased water use efficiency for grain yield by 23.71% relative to CK, while S1, S2, and S4 showed no significant differences in water use efficiency when compared with CK. Furthermore, compared with CK, S2 treatment significantly reduced grain protein content, while S2, S3, and S4 significantly decreased grain cellulose content. In contrast, S1 treatment significantly increased grain cellulose content compared with CK treatment. 【Conclusion】Under carbon applications of 0.5×104 kg C·hm-2, organic manure application was more effective in improving maize yield and water use efficiency than straw return and biochar return.

Key words: maize, carbon returning methods, dry matter accumulation, yield, water use efficiency

Fig. 1

Monthly precipitation at the experimental site in 2022-2023"

Table 1

The experimental design in this study"

处理
Treatment
碳源用量 Types of carbon and dosage (kg·hm-2) 氮肥
Nitrogen fertilizer
(kg N·hm-2)
磷肥
Phosphate fertilizer
(kg P2O5·hm-2)
钾肥
Potash fertilizer
(kg K2O·hm-2)
玉米秸秆
Maize straw
有机肥
Organic fertilizer
生物炭
Biochar
CK 0 0 0 200 90 60
S1 0 0 5000 200 90 60
S2 12000 0 0 200 90 60
S3 0 20000 0 200 90 60
S4 6000 10000 0 200 90 60

Table 2

Effects of different carbon returning methods on soil bulk and porosity at maize harvest in 2023"

处理
Treatment
土壤容重 Soil bulk (g·cm-3) 土壤孔隙度 Soil density (%)
0—10 cm 10—20 cm 20—30 cm 0—10 cm 10—20 cm 20—30 cm
CK 1.26±0.02a 1.31±0.01a 1.37±0.03a 53.20±0.53c 51.33±0.34c 49.21±1.06c
S1 1.23±0.02ab 1.29±0.01ab 1.35±0.01ab 54.17±0.79bc 51.95±0.30bc 49.82±0.27c
S2 1.20±0.01b 1.27±0.01bc 1.28±0.02c 55.32±0.21b 52.83±0.34ab 52.48±0.63a
S3 1.21±0.03b 1.26±0.03bc 1.29±0.05bc 54.86±1.06b 53.26±1.13a 52.03±1.59ab
S4 1.14±0.03c 1.25±0.02c 1.34±0.04abc 57.59±1.13a 53.70±0.65a 50.06±1.51bc
增碳方式
Carbon returning method
** ** * ** ** *

Fig. 2

Effects of different treatments on soil water content at different growth period in maize"

Fig. 3

Effects of different carbon returning methods on SPAD values of maize leaf and leaf area index during maize growth period in 2022-2023"

Fig. 4

Effects of different carbon returning methods on maize dry matter accumulation and the rate of dry matter accumulation"

Table 3

Effect of different carbon returning methods on maize dry matter accumulation after anthesis and remobilization of pre- anthesis dry matter to grain"

年份
Year
处理
Treatment
花后干物质积累量
Dry matter accumulation
at post-anthesis
(kg·hm-2)
花后干物质积累对产量的贡献率
Contribution of dry matter
accumulation at post-anthesis
to yield (%)
花前干物质转运量
<BOLD>P</BOLD>re-anthesis dry matter remobilization
(kg·hm-2)
花前干物质转运效率
<BOLD>P</BOLD>re-anthesis dry matter remobilization efficiency (%)
2022 CK 2834.66±176.88d 64.22±4.93a 1579.42±140.33bc 13.77±1.33b
S1 2103.05±163.81c 47.06±2.59b 2365.84±174.48a 22.68±1.59a
S2 3366.13±225.67b 65.07±5.54a 1807.20±121.28b 14.79±1.11b
S3 4048.32±324.76a 73.86±4.71a 1432.42±135.64bc 11.21±0.91c
S4 3240.61±312.98bc 66.18±6.39a 1655.69±137.46c 13.28±1.16bc
2023 CK 1969.51±153.98c 59.96±5.26b 1315.21±106.40a 12.96±0.69a
S1 1867.43±151.75c 69.49±5.32ab 820.08±65.37d 8.83±0.75bc
S2 2811.26±166.29b 72.99±7.07a 1040.13±72.31bc 9.56±0.76bc
S3 3351.09±257.87a 74.45±5.58a 1150.30±77.46b 9.75±0.84b
S4 3254.26±303.20a 78.18±4.47a 908.24±54.42cd 8.15±0.78c
两年平均
Average for two years
CK 2402.08±165.43c 62.09±5.09b 1447.32±123.37ab 13.37±1.01b
S1 1985.24±157.78d 58.27±3.95b 1592.95±119.92a 15.76±1.17a
S2 3088.70±159.98b 69.03±6.30a 1423.66±96.80ab 12.17±0.93bc
S3 3699.70±291.31a 74.16±5.14a 1291.36±106.55b 10.48±0.87c
S4 3247.43±308.09b 72.18±5.43a 1281.96±95.94b 10.72±0.97c
增碳方式
Carbon returning method (C)
** ** ** **
年份 Year (Y) ** ** ** **
增碳方式×年份
Carbon returning method×Year (C×Y)
* ** ** **

Table 4

Effects of different carbon returning methods on maize yield factors, grain yield and water use efficiency"

年份
Year
处理
Treatment
耗水量
ETc
(mm)
生物产量
Biomass yield
(kg·hm-2)
穗粒数
Number of grain per spikes
穗粒重
Grain weight per spike
(g)
百粒重
100-grain weight
(g)
籽粒产量
Grain yield
(kg·hm-2)
收获指数
Harvest index
(%)
生物量水分
利用效率
WUEb
(kg·hm-2·mm-1)
籽粒产量水分利用效率
WUEg
(kg·hm-2·mm-1)
2022 CK 358±30ab 14557±417c 531.13±73.19b 102.67±8.22b 23.94±2.26ab 4414±178c 30.35±1.87c 40.79±2.84a 12.37±1.00a
S1 300±76b 14458±97c 477.83±65.23b 91.81±5.43b 22.15±2.15b 4469±93c 30.91±0.84c 50.98±15.06a 15.64±4.50a
S2 376±57ab 15160±880bc 540.60±46.64b 138.64±9.28a 25.84±1.96ab 5173±217ab 34.15±0.87a 40.74±4.33a 13.92±1.67a
S3 385±46ab 16367±189a 699.25±17.01a 153.42±11.56a 26.91±1.78a 5481±215a 33.49±1.50ab 42.97±5.56a 14.43±2.41a
S4 421±58a 15599±158ab 647.69±55.11a 143.95±8.47a 26.73±1.68a 4896±171b 31.39±1.07bc 37.55±5.46a 11.82±2.64a
2023 CK 316±31ab 12106±560c 424.42±62.06bc 97.40±9.69b 22.36±1.70a 3285±118d 27.14±0.50c 38.62±5.08b 10.47±1.20b
S1 258.58±12b 11501±546c 359.94±81.20c 84.85±8.19b 21.28±1.23a 2688±188e 23.43±2.46b 44.57±3.67ab 10.41±0.92b
S2 296±51ab 13638±552b 462.63±29.78bc 129.70±11.79a 23.98±2.36a 3851±191c 28.24±0.96ab 47.12±9.51ab 13.63±2.21a
S3 327±27a 15057±261a 586.23±13.20a 143.63±8.60a 24.75±2.29a 4501±25a 29.90±0.68a 46.27±4.75ab 13.81±1.13a
S4 268±29ab 14327±508ab 517.40±62.43ab 132.40±10.42a 24.70±1.53a 4163±170b 29.10±1.15ab 53.88±7.61a 15.60±1.61a
两年平均
Average
for two years
CK 337±30ab 13331±73d 477.78±84.26bc 100.03±8.95b 23.15±1.98ab 3849±141c 28.87±0.97bc 39.71±3.68a 11.49±1.09b
S1 279±32b 12979±307d 418.88±92.33c 88.33±6.81b 21.72±1.68b 3578±138d 27.59±1.56c 47.78±5.89a 12.99±2.07ab
S2 336±54ab 14399±369c 501.62±55.22b 134.17±10.54a 24.91±2.16ab 4512±180b 31.33±0.49a 43.93±6.88a 13.78±1.93ab
S3 356±19a 15712±116a 642.74±63.38a 148.52±10.08a 25.83±2.03a 4991±118a 31.77±0.98a 44.62±2.04a 14.20±1.07a
S4 345±44ab 14963±1071b 582.54±88.69a 138.17±9.44a 25.72±1.60a 4529±134b 30.27±0.33ab 45.72±6.53a 13.64±1.86ab
增碳方式
Carbon returning method (C)
ns ** ** ** ** ** ** ns ns
年份Year (Y) ** ** ** * * ** ** ns ns
增碳方式×年份
Carbon returning method×Year (C×Y)
ns * ns ns * ** * ns *

Table 5

Effects of different carbon returning methods on grain quality of maize"

年份 Year 处理 Treatment 蛋白 Protein (%) 脂肪 Fat (%) 淀粉 Starch (%) 纤维 Cellulose (%)
2022 CK 9.74±0.86ab 2.34±0.16a 56.10±5.38a 2.17±0.19a
S1 10.11±0.99ab 2.54±0.21a 60.16±4.17a 1.60±0.14b
S2 8.58±0.50b 2.53±0.25a 61.54±4.80a 1.25±0.09c
S3 10.29±0.97a 2.38±0.14a 62.81±5.66a 1.25±0.09c
S4 9.68±0.88ab 2.28±0.15a 61.17±3.54a 1.31±0.09c
2023 CK 10.18±0.43a 2.39±0.22a 60.57±0.45c 1.26±0.22c
S1 9.81±0.07a 2.56±0.03a 56.48±0.07b 2.18±0.08a
S2 8.64±0.49b 2.54±0.33a 63.24±2.50a 1.61±0.12b
S3 10.36±0.32a 2.35±0.09a 61.97±0.77ab 1.26±0.08c
S4 9.75±0.17a 2.29±0.10a 61.59±0.83ab 1.32±0.11c
两年平均
Average for two years
CK 9.96±0.66a 2.37±0.17ab 58.34±4.20a 1.72±0.53b
S1 9.96±0.65a 2.55±0.13a 58.32±3.31a 1.89±0.34a
S2 8.61±0.44b 2.53±0.26a 62.39±3.54a 1.43±0.22c
S3 10.33±0.65a 2.37±0.11ab 62.39±3.60a 1.26±0.08d
S4 9.72±0.57a 2.29±0.17a 61.38±2.31a 1.32±0.09cd
增碳方式Carbon returning method (C) ** ns ns **
年份Year (Y) ns ns ns ns
增碳方式×年份
Carbon returning method×Year (C×Y)
ns ns ns **

Fig. 5

Relative importance of various growth parameters in explaining grain yield (GY) and water use efficiency for grain yield (WUEg) of maize from random forest analysis"

[1]
山仑, 张岁岐. 能否实现大量节约灌溉用水?—我国节水农业现状与展望. 自然杂志, 2006, 28(2): 71-74.
SHAN L, ZHANG S Q. Is possible to save large irrigation water?—The situation and prospect of water-saving agriculture in China. Chinese Journal of Nature, 2006, 28(2): 71-74. (in Chinese)
[2]
康钦俊. 黄土高原区土壤养分空间变异及其耕地质量评价[D]. 杨凌: 西北农林科技大学, 2019.
KANG Q J. Spatial variability of soil nutrients and evaluation of cultivated land quality in the Loess Plateau[D]. Yangling: Northwest A&F University, 2019. (in Chinese)
[3]
李荣. 我国耕地质量现状及提升建议. 中国农业综合开发, 2020, (7): 7-12.
LI R. Current situation of China's arable land quality and suggestions for improving it. Agricultural Comprehensive Development in China, 2020, (7): 7-12. (in Chinese)
[4]
孟晗宇, 文杨, 艾力库提·艾沙, 魏占波, 张彬. 秸秆还田条件下减施氮肥影响稻田土壤氧化亚氮排放的微生物机制. 应用生态学报, 2024, 35 (12): 1-12.
MENG H Y, WEN Y, EYSA A, WEI Z B, ZHANG B. Microbial mechanism of effect of nitrogen fertilizer reduction in combination with straw addition on nitrous oxide emission from a paddy soil. Chinese Journal of Applied Ecology, 2024, 35 (12): 1-12. (in Chinese)
[5]
PENG Z K, WANG L L, XIE J H, LI L L, COULTER J A, ZHANG R Z, LUO Z Z, CAI L Q, CARBERRY P, WHITBREAD A. Conservation tillage increases yield and precipitation use efficiency of wheat on the semi-arid Loess Plateau of China. Agricultural Water Management, 2020, 231: 106024.
[6]
张鹏, 陈国亮, 武正全. 浅析天水花牛苹果果园土壤有机质现状及提升对策. 果树资源学报, 2024, 5(5): 92-95.
ZHANG P, CHEN G L, WU Z Q. Analysis of the current status and improvement strategies of soil organic matter in Tianshui Huaniu apple orchard. Journal of Fruit Resources, 2024, 5(5): 92-95. (in Chinese)
[7]
刘志平, 马晓楠, 解文艳, 杨振兴, 周怀平, 徐明岗. 山西典型旱地玉米产量及水分利用效率对长期不同施肥模式的响应. 干旱地区农业研究, 2023, 41(4): 61-70.
LIU Z P, MA X N, XIE W Y, YANG Z X, ZHOU H P, XU M G. Responses of maize yield and water use efficiency to long-term fertilization patterns in dryland of Shanxi Province. Agricultural Research in the Arid Areas, 2023, 41(4): 61-70. (in Chinese)
[8]
何如, 王立, 杨彩红, 孟小伟. 绿洲灌区种植模式对土壤物理性质与有机碳的影响. 草原与草坪, 2020, 40(4): 96-102.
HE R, WANG L, YANG C H, MENG X W. Effect of rotation on soil physical properties and soil organic matter content in oasis irrigation area. Grassland and Turf, 2020, 40(4): 96-102. (in Chinese)
[9]
徐明岗, 张旭博, 孙楠, 张文菊. 农田土壤固碳与增产协同效应研究进展. 植物营养与肥料学报, 2017, 23(6): 1441-1449.
XU M G, ZAHNG X B, SUN N, ZHANG W J. Advance in research of synergistic effects of soil carbon sequestration on crop yields improvement in croplands. Journal of Plant Nutrition and Fertilizers, 2017, 23(6): 1441-1449. (in Chinese)
[10]
WANG L L, WANG S W, CHEN W, LI H B, DENG X P. Physiological mechanisms contributing to increased water-use efficiency in winter wheat under organic fertilization. PLoS ONE, 2017, 12(6): e0180205.
[11]
MA Y Q, WOOLF D, FAN M S, QIAO L, LI R, LEHMANN J. Global crop production increase by soil organic carbon. Nature Geoscience, 2023, 16(12): 1159-1165.
[12]
姜珊, 李衍素, 王娟娟, 贺超兴, 于贤昌, 王君. 我国秸秆还田技术发展现状. 中国蔬菜, 2021, (11): 27-32.
JIANG S, LI Y S, WANG J J, HE C X, YU X C, WANG J. Development status of straw return technology in China. China Vegetables, 2021, (11): 27-32. (in Chinese)
[13]
王亚楠. 秸秆还田模式与氮肥用量对玉米氮素利用及产量的影响[D]. 沈阳: 沈阳农业大学, 2023.
WANG Y N. Effect of straw return pattern and nitrogen fertilizer dosage on nitrogen utilization and yield of maize[D]. Shenyang: Shenyang Agricultural University, 2023. (in Chinese)
[14]
白伟, 张立祯, 逄焕成, 孙占祥, 牛世伟, 蔡倩, 安景文. 秸秆还田配施氮肥对东北春玉米光合性能和产量的影响. 作物学报, 2017, 43(12): 1845-1855.

doi: 10.3724/SP.J.1006.2017.01845
BAI W, ZHANG L Z, PANG H C, SUN Z X, NIU S W, CAI Q, AN J W. Effects of straw returning combined with nitrogen fertilizer on photosynthetic performance and yield of spring maize in Northeast China. Acta Agronomica Sinica, 2017, 43(12): 1845-1855. (in Chinese)

doi: 10.3724/SP.J.1006.2017.01845
[15]
郑金玉, 刘武仁, 罗洋, 郑洪兵, 李瑞平, 李伟堂. 秸秆还田对玉米生长发育及产量的影响. 吉林农业科学, 2014, 39(2): 42-46.
ZHENG J Y, LIU W R, LUO Y, ZHENG H B, LI R P, LI W T. Effects of straws returned into field on growth and development and yield of maize. Journal of Jilin Agricultural Sciences, 2014, 39(2): 42-46. (in Chinese)
[16]
赵凌霄, 姜丽娜, 马建辉, 魏继拓, 赵冬阳. 秸秆过腹还田配施氮肥对小麦-玉米周年产量及土壤理化性质的影响. 河南农业科学, 2020, 49(11): 26-36.
ZHAO L X, JIANG L N, MA J H, WEI J T, ZHAO D Y. Effects of returning straw to field through cow’s belly and applying nitrogen on annual yield of wheat and maize and soil physical and chemical properties. Journal of Henan Agricultural Sciences, 2020, 49(11): 26-36. (in Chinese)
[17]
HU Y J, SUN B H, WU S F, FENG H, GAO M X, ZHANG B B, LIU Y Y. After-effects of straw and straw-derived biochar application on crop growth, yield, and soil properties in wheat (Triticum aestivum L.)-maize (Zea mays L.) rotations: A four-year field experiment. Science of The Total Environment, 2021, 780: 146560.
[18]
CHEN S T, XIA X, DING Y J, FENG X, LIN Q M, LI T Y, BIAN R J, LI L Q, CHENG K, ZHENG J F, ZHANG X H, XIA S P, WANG Y, LIU X Y, PAN G X. Changes in aggregate-associated carbon pools and chemical composition of topsoil organic matter following crop residue amendment in forms of straw, manure and biochar in a paddy soil. Geoderma, 2024, 448: 116967.
[19]
SI J A, WANG L L, ZHANG K, LI L L, FUDJOE S K, LUO Z Z. Irrigation as an effective way to increase potato yields in northern China: A meta-analysis. Agronomy, 2024, 14(3): 448.
[20]
PAN G X, SMITH P, PAN W N. The role of soil organic matter in maintaining the productivity and yield stability of cereals in China. Agriculture, Ecosystems & Environment, 2009, 129(1-3): 344-348.
[21]
刘卉, 周清明, 黎娟, 向德明, 张黎明. 长期定位连续施用生物炭对植烟土壤物理性状的影响. 华北农学报, 2018, 33(3): 182-188.

doi: 10.7668/hbnxb.2018.03.027
LIU H, ZHOU Q M, LI J, XIANG D M, ZHANG L M. Effects of long-term located continuous application of biochar on soil physical properties of planting tobacco. Acta Agriculturae Boreali-Sinica, 2018, 33(3): 182-188. (in Chinese)

doi: 10.7668/hbnxb.2018.03.027
[22]
朱真令, 陈德, 叶雪珠. 秸秆炭化还田标准化发展现状. 浙江农业科学, 2024, 65(7): 1709-1713.
ZHU Z L, CHEN D, YE X Z. Current status of standardization development of biochar from straw carbonization and field application. Journal of Zhejiang Agricultural Sciences, 2024, 65(7): 1709-1713. (in Chinese)
[23]
ZOU Y P, AN Z F, CHEN X L, ZHENG X, ZHANG B, ZHANG S Y, CHANG S X, JIA J L. Effects of co-applied biochar and plant growth-promoting bacteria on soil carbon mineralization and nutrient availability under two nitrogen addition rates. Ecotoxicology and Environmental Safety, 2023, 266: 115579.
[24]
杨艳, 杜丹, 杨雪芳, 原向阳, 宋喜娥, 孙大生. 等碳量配施玉米秸秆和生物炭对玉米生长及氮、磷、钾吸收的影响. 中国土壤与肥料, 2024, (8): 180-187, 266.
YANG Y, DU D, YANG X F, YUAN X Y, SONG X E, SUN D S. The combined effects of organic amendment with equal maize-straw and biochar carbon content on the growth and nitrogen,phosphorus and potassium uptake of maize. Soil and Fertilizer Sciences in China, 2024, (8): 180-187, 266. (in Chinese)
[25]
LI S L, SHANGGUAN Z P. Positive effects of apple branch biochar on wheat yield only appear at a low application rate, regardless of nitrogen and water conditions. Journal of Soils and Sediments, 2018, 18(11): 3235-3243.
[26]
李帅霖. 生物炭对旱作农田土壤生态功能的影响机制研究[D]. 北京: 中国科学院大学(中国科学院教育部水土保持与生态环境研究中心), 2019.
LI S L. Effects of biochar on soil ecological function under dryland farming[D]. Beijing: Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 2019. (in Chinese)
[27]
李洋洋. 生物炭对苹果产量、品质及土壤养分有效性的研究[D]. 泰安: 山东农业大学, 2018.
LI Y Y. Effects of biochar on apple yield, quality and soil nutrient availability[D]. Taian: Shandong Agricultural University, 2018. (in Chinese)
[28]
WANG L L, PALTA J A, CHEN W, CHEN Y L, DENG X P. Nitrogen fertilization improved water-use efficiency of winter wheat through increasing water use during vegetative rather than grain filling. Agricultural Water Management, 2018, 197: 41-53.
[29]
田磊, 屈佳伟, 于晓芳, 高聚林, 胡树平, 白雨, 李文博. 秸秆还田配施氮肥对河套平原砂壤土的物理特性和春玉米氮效率的影响. 中国土壤与肥料, 2022(12): 17-26.
TIAN L, QU J W, YU X F, GAO J L, HU S P, BAI Y, LI W B. Effects of straw returning combined with nitrogen fertilizer on physical properties of sandy loam and nitrogen efficiency of spring maize in Hetao plain. Soil and Fertilizer Sciences in China, 2022(12): 17-26. (in Chinese)
[30]
齐翔鲲, 李怿聪, 谢家闯, 黄凤麟, 李影, 陈若彤, 付健, 杨克军. 耕作和秸秆还田方式对土壤物理性状和酶活性及产量的影响[C]// 第二十届中国作物学会学术年会论文摘要集. 2023: 384.
QI X K, LI Y C, XIE J C, HUANG F L, LI Y, CHEN RUO TONG, FU J, YANG K J. Effect of tillage and straw return practices on soil physical properties and enzyme activity and yield[C]// Abstracts of the 20th Annual Conference of the Crop Society of China. 2023: 384. (in Chinese)
[31]
许兰梅, 王明友. 施用有机肥对土壤物理性状和玉米生长的影响. 安徽农学通报, 2020, 26(7): 116-118.
XU L M, WANG M Y. Effect of organic fertiliser application on soil physical properties and maize growth. Anhui Agricultural Science Bulletin, 2020, 26(7): 116-118. (in Chinese)
[32]
杨封科, 高世铭, 崔增团, 郭贤仕, 张绪成. 甘肃省黄绵土耕地质量特征及其调控的关键技术. 西北农业学报, 2011, 20(3): 67-74.
YANG F K, GAO S M, CUI Z T, GUO X S, ZHANG X C. Characteristics and key regulation techniques of loessial soil tilling quality in Gansu. Acta Agriculturae Boreali-Occidentalis Sinica, 2011, 20(3): 67-74. (in Chinese)
[33]
李泽毅, 马玉洁, 付鑫, 彭正萍, 李旭. 秸秆还田方式配施氮肥对玉米秸秆腐解特征及土壤有机碳的影响. 中国土壤与肥料, 2024(10): 1-14.
LI Z Y, MA Y J, FU X, PENG Z P, LI X. Effects of straw returning methods combined with nitrogen fertilizer on decomposition characteristics of maize straw and soil organic carbon. Soil and Fertilizer Sciences in China, 2024(10): 1-14. (in Chinese)
[34]
马凌云. 生物炭添加对黄绵土水热变化的影响[D]. 杨凌: 西北农林科技大学, 2023.
MA L Y. Effect of biochar addition on hydrothermal changes in loessial soil[D]. Yangling: Northwest A & F University, 2023. (in Chinese)
[35]
李慧欣阁, 陈士超, 段鹏程, 蔺方春. 微藻肥对土默川平原盐渍土理化性质及玉米产量的影响. 水土保持通报, 2025, 45(2): 12-21.
LI H X G, CHEN S C, DUAN P C, LIN F C. Effects of microalgal fertilizer on physical and chemical properties of saline soil sand maize yield in Tumochuan Plain. Bulletin of Soil and Water Conservation, 2025, 45(2): 12-21. (in Chinese)
[36]
高鹏, 孙继颖, 高聚林, 刘剑, 王志刚, 胡树平, 于晓芳, 包海柱, 纪楠. 深松对春玉米田土壤贮水性能及玉米子粒水分利用效率的影响. 玉米科学, 2022, 30(4): 90-96.
GAO P, SUN J Y, GAO J L, LIU J, WANG Z G, HU S P, YU X F, BAO H Z, JI N. Response mechanism of soil moisture storage characteristics and kernel water use efficiency to subsoiling regulation in spring maize. Journal of Maize Sciences, 2022, 30(4): 90-96. (in Chinese)
[37]
王小林. 密度和有机肥提高覆膜春玉米水分利用效率的生理基础[D]. 北京: 中国科学院大学, 2016.
WANG X L. Physiological basis of planting density and orgainc manure increased water use efficiency of film mulched spring maize[D]. Beijing: University of Chinese Academy of Sciences, 2016. (in Chinese)
[38]
张贵芹, 王洪章, 郭新送, 朱福军, 高涵, 张吉旺, 赵斌, 任佰朝, 刘鹏, 任昊. 有机物料投入对滨海盐碱地土壤理化性状和夏玉米产量形成的影响. 作物学报, 2024, 50(9): 2323-2334.

doi: 10.3724/SP.J.1006.2024.43002
ZHANG G Q, WANG H Z, GUO X S, ZHU F J, GAO H, ZAHNG J W, ZHAO B, REN B C, LIU P, REN H. Effects of organic material inputs on soil physicochemical properties and summer maize yield formation in coastal saline-alkali land. Acta Agronomica Sinica, 2024, 50(9): 2323-2334. (in Chinese)
[39]
张影, 刘星, 焦瑞锋, 李东方, 任秀娟, 吴大付, 陈锡岭. 生物质炭与有机物料配施的土壤培肥效果及对玉米生长的影响. 中国生态农业学报, 2017, 25(9): 1287-1297.
ZHANG Y, LIU X, JIAO R F, LI D F, REN X J, WU D F, CHEN X L. Effects of combined biochar and organic matter on soil fertility and maize growth. Chinese Journal of Eco-Agriculture, 2017, 25(9): 1287-1297. (in Chinese)
[40]
于博, 王钰艳, 任琴, 党玉蕾, 张志鹏, 王宇. 秸秆还田对土壤结构和春玉米生长的影响. 浙江农业学报, 2023, 35(10): 2446-2455.

doi: 10.3969/j.issn.1004-1524.20221624
YU B, WANG Y Y, REN Q, DANG Y L, ZHANG Z P, WANG Y. Effects of straw returning on soil structure and spring maize growth. Acta Agriculturae Zhejiangensis, 2023, 35(10): 2446-2455. (in Chinese)

doi: 10.3969/j.issn.1004-1524.20221624
[41]
郭书亚, 尚赏, 张艳, 汤其宁, 卢广远. 生物炭施用五年后对土壤生物化学特性及夏玉米产量的影响. 土壤与作物, 2022, 11(3): 290-297.
GUO S Y, SHANG S, ZHANG Y, TANG Q N, LU G Y. Effects of biochar application after five years on soil biochemical properties and summer maize yield. Soils and Crops, 2022, 11(3): 290-297. (in Chinese)
[42]
孙向春, 冯涛, 殷晓燕, 邓喜明, 吕铎, 许文霞, 张美珍, 吴晓婷. 生物炭对土壤理化性质及玉米产量的影响. 陕西农业科学, 2022, 68(9): 5-9.
SUN X C, FENG T, YIN X Y, DENG X M, D, XU W X, ZHANG M Z, WU X T. Effect of biochar on soil physical and chemical properties and corn yield. Shaanxi Journal of Agricultural Sciences, 2022, 68(9): 5-9. (in Chinese)
[43]
王鸣腾, 曾冲, 杨东霞, 李帅, 王梓萌, 周明远, 秦丁, 王宜伦, 盛开, 李刚, 李岚涛. 不同发酵方式有机肥配施化肥对夏玉米产量、光温及养分吸收积累特性的影响. 农业资源与环境学报, 2024. https://doi.org/10.13254/j.jare.2024.0342.
WANG M T, ZENG C, YANG D X, LI S, WANG Z M, ZHOU M Y, QIN D, WANG Y L, SHENG K, LI G, LI L T. Effects of various fermentation methods for organic fertilizer combined with chemical fertilizer on the yield, light-temperature, and nutrient absorption and accumulation characteristics of summer maize. Journal of Agricultural Resources and Environment, 2024. https://doi.org/10.13254/j.jare.2024.0342. (in Chinese)
[44]
周怀平, 解文艳, 关春林, 杨振兴, 李红梅. 长期秸秆还田对旱地玉米产量、效益及水分利用的影响. 植物营养与肥料学报, 2013, 19(2): 321-330.
ZHOU H P, XIE W Y, GUAN C L, YANG Z X, LI H M. Effects of long-term straw-returning on corn yield, economic benefit and water use in arid farming areas. Journal of Plant Nutrition and Fertilizers, 2013, 19(2): 321-330. (in Chinese)
[45]
刘熙明, 袁静超, 梁尧, 刘剑钊, 任军, 高强, 冯国忠, 蔡红光. 还田方式对玉米秸秆腐解特征及其节肥潜力的影响. 农业资源与环境学报, 2025, 42(2): 404-411.
LIU X M, YUAN J C, LIAO Y, LIU J Z, REN J, GAO Q, FENG G Z, CAI H G. Effects of returning method on decomposition characteristics of corn straw and its fertilizer-saving potential. Journal of Agricultural Resources and Environment, 2025, 42(2): 404-411. (in Chinese)
[46]
殷启杰, 姜建武, 殷汉琴, 杨宗坤, 龚冬琴, 李桂芳, 褚先尧, 刘文波, 张敏. 有机物料投入对新垦耕地土壤养分和微生物代谢的影响. 应用生态学报, 2025, 36(4): 969-983.

doi: 10.13287/j.1001-9332.202504.007
YIN Q J, JIANG J W, YIN H Q, YANG Z K, GONG D Q, LI G F, CHU X Y, LIU W B, ZHANG M. Effects of organic inputs on soil nutrients and microbial metabolism in newly reclaimed farmlands. Chinese Journal of Applied Ecology, 2025, 36(4): 969-983. (in Chinese)

doi: 10.13287/j.1001-9332.202504.007
[47]
刘婷. 不同有机物料腐解特征及对酶化学计量的影响[D]. 西宁: 青海大学, 2024.
LIU T. Decomposition characteristics of different organic materials and their effects on enzyme stoichiometry[D]. Xining: Qinghai University, 2024. (in Chinese)
[48]
王长军, 李凤霞, 吴霞. 不同有机物料对银北灌区盐碱地土壤养分含量及氮有效性的影响. 现代农业科技, 2021(23): 141-142, 153.
WANG C J, LI F X, WU X. Effects of different organic materials on soil nutrient content and nitrogen availability in saline alkali land of Yinbei irrigation area. Modern Agricultural Science and Technology, 2021(23): 141-142, 153. (in Chinese)
[49]
仇鹏. 种植密度对玉米植株和产量性状及籽粒品质的影响[D]. 太谷: 山西农业大学, 2022.
QIU P. Effects of different planting density on physiological indexes and grain quality of maize[D]. Taigu: Shanxi Agricultural University, 2022. (in Chinese)
[1] PU LiXia, ZHANG JiaRui, YE JianPing, HUANG XiuLan, FAN GaoQiong, YANG HongKun. The Combined Effects of 16, 17-Dihydro Gibberellin A5 and Straw Mulching on Tillering and Grain Yield of Dryland Wheat [J]. Scientia Agricultura Sinica, 2025, 58(9): 1735-1748.
[2] GUO ChenLi, LIU Yang, CHEN Yan, HU Wei, WANG YouHua, ZHOU ZhiGuo, ZHAO WenQing. Effects of Phosphorus Fertilizer Postpone Under Nitrogen Reduction Condition on Yield, Phosphorus Fertilizer Utilization Efficiency of Drip-Irrigated Cotton [J]. Scientia Agricultura Sinica, 2025, 58(9): 1749-1766.
[3] TUDI YIMITI, YU HongLiang, WANG Xu, PING XiaoYan, WU YiQian, WANG ChongWei. Effects of Fairy Rings on Carbon and Water Fluxes in Hulunbuir Meadow Steppe [J]. Scientia Agricultura Sinica, 2025, 58(9): 1804-1815.
[4] LIU JinSong, WU LongMei, BAO XiaoZhe, LIU ZhiXia, ZHANG Bin, YANG TaoTao. Effects of a Short-Term Reduction in Nitrogen Fertilizer Application Rates on the Grain Yield and Rice Quality of Early and Late-Season Dual-Use Rice in South China [J]. Scientia Agricultura Sinica, 2025, 58(8): 1508-1520.
[5] WEI WenHua, LI Pan, SHAO GuanGui, FAN ZhiLong, HU FaLong, FAN Hong, HE Wei, CHAI Qiang, YIN Wen, ZHAO LianHao. Response of Silage Maize Yield and Quality to Reduced Irrigation and Combined Organic-Inorganic Fertilizer in Northwest Irrigation Areas [J]. Scientia Agricultura Sinica, 2025, 58(8): 1521-1534.
[6] XUE YuQi, ZHAO JiYu, SUN WangSheng, REN BaiZhao, ZHAO Bin, LIU Peng, ZHANG JiWang. Effects of Different Nitrogen Forms on Yield and Quality of Summer Maize [J]. Scientia Agricultura Sinica, 2025, 58(8): 1535-1549.
[7] LI ShaoXing, SONG WenFeng, WEI ZeYu, ZHOU YuLing, SONG LiXia, REN Ke, MA Qun, WANG LongChang. Effects of Straw and Milk Vetch Mulching on Soil Fertility and Sweet Potato Yield [J]. Scientia Agricultura Sinica, 2025, 58(8): 1591-1603.
[8] YIN Bo, YU AiZhong, WANG PengFei, YANG XueHui, WANG YuLong, SHANG YongPan, ZHANG DongLing, LIU YaLong, LI Yue, WANG Feng. Effects of Green Manure Returning Combined with Nitrogen Fertilizer Reduction on Hydrothermal Characteristics of Wheat Field and Grain Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2025, 58(7): 1366-1380.
[9] CHEN GuiPing, LI Pan, SHAO GuanGui, WU XiaYu, YIN Wen, ZHAO LianHao, FAN ZhiLong, HU FaLong. The Regulatory Effect of Reduced Irrigation and Combined Organic- Inorganic Fertilizer Application on Stay-Green Characteristics in Silage Maize Leaves After Tasseling Stage [J]. Scientia Agricultura Sinica, 2025, 58(7): 1381-1396.
[10] YUE RunQing, LI WenLan, DING ZhaoHua, MENG ZhaoDong. Molecular Characteristics and Resistance Evaluation of Transgenic Maize LD05 with Stacked Insect and Herbicide Resistance Traits [J]. Scientia Agricultura Sinica, 2025, 58(7): 1269-1283.
[11] ZHAO Yao, CHENG Qian, XU TianJun, LIU Zheng, WANG RongHuan, ZHAO JiuRan, LU DaLei, LI CongFeng. Effects of Plant Type Improvement on Root-Canopy Characteristics and Grain Yield of Spring Maize Under High Density Condition [J]. Scientia Agricultura Sinica, 2025, 58(7): 1296-1310.
[12] TIAN LiWen, LOU ShanWei, ZHANG PengZhong, DU MingWei, LUO HongHai, LI Jie, PAHATI MaiMaiTi, MA TengFei, ZHANG LiZhen. Analysis of Problems and Pathways for Increasing Cotton Yield per Unit Area in Xinjiang Under Green and Efficient Production Mode [J]. Scientia Agricultura Sinica, 2025, 58(6): 1102-1115.
[13] ZOU XiaoWei, XIA Lei, ZHU XiaoMin, SUN Hui, ZHOU Qi, QI Ji, ZHANG YaFeng, ZHENG Yan, JIANG ZhaoYuan. Analysis of Disease Resistance Induced by Ustilago maydis Strain with Overexpressed UM01240 Based on Transcriptome Sequencing [J]. Scientia Agricultura Sinica, 2025, 58(6): 1116-1130.
[14] ZHANG HongCheng, XING ZhiPeng, ZHANG RuiHong, SHAN Xiang, XI XiaoBo, CHENG Shuang, WENG WenAn, HU Qun, CUI PeiYuan, WEI HaiYan. Characteristics and Technical Approaches of Integrated Unmanned High-Yield Cultivation of Wheat [J]. Scientia Agricultura Sinica, 2025, 58(5): 864-876.
[15] ZHANG Han, ZHANG YuQi, LI JingLai, XU Hong, LI WeiHuan, LI Tao. Effects of LED Supplementary Lighting on Production and Leaf Physiological Properties of Substrate-Cultivated Strawberry in Chinese Solar Greenhouse [J]. Scientia Agricultura Sinica, 2025, 58(5): 975-990.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!