Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (21): 4221-4237.doi: 10.3864/j.issn.0578-1752.2024.21.005

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Interactive Effects of Planting Density and Nitrogen Application Rate on Plant Grain Yield and Water Use Efficiency of Two Maize Cultivars

TIAN LongBing(), SHEN ZhaoYin, ZHAO XiaoTian, ZHANG Fang, HOU WenFeng, GAO Qiang, WANG Yin()   

  1. College of Resources and Environmental Sciences, Jilin Agricultural University/Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education / Key Laboratory of Sustainable Utilization of Soil Resources in the Commodity Grain Bases in Jilin Province, Changchun 130118
  • Received:2024-03-18 Accepted:2024-06-05 Online:2024-11-01 Published:2024-11-10
  • Contact: WANG Yin

Abstract:

【Objective】Reasonably increasing planting density combined with appropriate nitrogen (N) application rate is an important technical approach for increasing maize yield and resource use efficiency. Understanding the interactive effects of planting density and N rate on maize growth, evapotranspiration (ET) and water use efficiency (WUE) during the growing season, could provide a basis for improving its use efficiency when increasing planting density and controlling N input in maize production. 【Method】Field experiments were conducted during 2022 to 2023 in Jilin Province. Two maize cultivars, Liangyu 99 (LY99) and Demeiya 3 (DMY3), were used in this study. Three planting densities of 50 000, 70 000 and 90 000 plants/hm2 and four N application rates of 0, 100, 200 and 300 kg N·hm-2 were designed to investigate the effects of planting density and N application rate on grain yield and water productivity of different maize cultivars, as well as the dry matter (DM), soil water content, ET and WUE at various growth stages. 【Result】Planting density significantly affected DM and grain yield of maize, but the response trends varied between cultivars. Grain yields of LY99 with 70 000 plants/hm2 was 11.1% and 18.3% higher than that with 50 000 and 90 000 plants/hm2, respectively. The average yield of DMY3 planted with 70 000 plants/hm2 and 90 000 plants/hm2 was 10.5% and 9.3% higher than that of 50 000 plants/hm2, respectively. Nitrogen fertilization significantly increased DM and grain yield of maize, and also showed significant interactive effects with cultivar or planting density. Compared with N0, grain yields of LY99 were increased by 38.0% to 60.7% under N1, and the yield increases for DMY3 were 24.4% to 38.2%. Notably, the yield responses to N rates were more pronounced for LY99 compared with DMY3. For both cultivars, the yield differences between low N rate and high N rate enlarged with increasing planting density, with LY99 showing a more distinct performance. The water consumption and utilization of maize plants were also significantly affected by planting density, N rate and their interaction. During the growing season, the total ET of DMY3 continually increased with increasing density, while that of LY99 showed the highest values with 70 000 plants/hm2 among different densities. In each density condition, the ET of both cultivars increased with increasing N application rates. The WUE of maize plants showed complex responses to planting density and N rate at different growth stages, due to the varied annual precipitation and distribution patterns. The average increase of water productivity of LY99 under planting 50 000 and 70 000 plants/hm2 was 8.6% and 10.4% compared with 90 000 plants/hm2 respectively. DMY3 had the highest water productivity when planting 70 000 plants/hm2, which increased by 5.8% and 5.3% compared with 50 000 and 90 000 plants/hm2, respectively. The water productivity showed different responses to N rate among the three densities. In general, the difference of nitrogen application under low density was small, but it increased significantly under medium and high density. Compared wtih DMY3, LY99 showed higher increases for water productivity when N fertilizer was applied under medium and high density conditions. The correlation analysis showed that interactive effects of planting density and N rate significantly affected maize yield and water productivity by influencing the water utilization at various growth stages. 【Conclusion】Planting density and N rate had significant interactive effects on maize yield and water utilization in the rain-fed region of Northeast China. The two maize cultivars used in this study could obtain high grain yield and water productivity under a moderately higher density of 70 000 plants/hm2 combined with 200 kg N·hm-2 rate.

Key words: planting density, nitrogen rate, maize, cultivar, grain yield, water use efficiency

Fig. 1

Growth processes and meteorological conditions for two maize cultivars in 2022 and 2023 The black triangle represents the sowing date for both cultivars, and the following yellow and green triangles represent the growth stages of eight-leaf, silking and maturity for DMY3 and LY99, respectively"

Table 1

Duration and the precipitation of different growth stages for two maize cultivars in 2022 and 2023"

年份
Year
品种
Cultivar
播种天数 Days after sowing (d) 降雨量 Precipitation (mm)
八叶期
V8
吐丝期
R1
成熟期
R6
播种—八叶期
Sowing—V8
八叶期—吐丝期
V8—R1
吐丝期—成熟期
R1—R6
全生育期
Sowing—R6
2022
德美亚3 DMY3 43 63 126 186 148 214 548
良玉99 LY99 48 75 137 203 144 207 554
2023
德美亚3 DMY3 51 76 132 36 210 218 464
良玉99 LY99 53 86 145 36 245 187 468

Fig. 2

Effects of planting density and nitrogen rate on the average water content of 0-100 cm soil layer during maize growing season in 2022 and 2023 *, ** and *** indicate the effect is significant at P<0.05, P<0.01 and P<0.001 levels, respectively, while ns indicates the effect is not significant (P>0.05). The same as below"

Table 2

Effects of planting density and nitrogen rate on soil water storage (mm) at different growth stages for different maize cultivars in 2022 and 2023"

种植
密度
Planting
density
施氮量
Nitrogen
rate
2022 2023
播种
Sowing
八叶期 V8 吐丝期 R1 成熟期 R6 播种Sowing 八叶期 V8 吐丝期 R1 成熟期 R6
良玉99
LY99
德美
亚3
DMY3
良玉99
LY99
德美
亚3
DMY3
良玉99
LY99
德美
亚3
DMY3
良玉99
LY99
德美
亚3
DMY3
良玉99
LY99
德美
亚3
DMY3
良玉99
LY99
德美
亚3
DMY3
良玉99
LY99
德美
亚3
DMY3
D1 N0 251.2 359.2a 364.5a 377.6a 391.5a 327.1a 343.8a 245.1a 247.4a 240.3a 240.7a 292.2a 282.6a 285.6a 271.8a
N1 251.2 352.3ab 344.1b 348.6b 366.9b 293.2b 313.9b 232.8b 239.4ab 222.7b 229.5ab 268.0b 264.8b 256.5b 245.6b
N2 251.2 346.8ab 334.8b 336.0c 353.3bc 272.4c 289.2c 226.0b 233.8b 217.4b 222.3b 259.6bc 253.3bc 240.9c 238.7b
N3 251.2 338.0b 331.2b 323.1c 336.3c 254.2d 269.2d 222.5b 232.9b 212.7b 219.8b 250.1c 243.7c 222.9d 214.5c
D2 N0 251.2 344.4a 339.9a 343.2a 362.9a 282.1a 317.6a 231.2a 232.9a 223.9a 224.2a 260.0a 258.3a 240.9a 246.7a
N1 251.2 333.0ab 333.5ab 318.0b 339.7b 251.9b 279.6b 227.0a 229.2a 216.4b 217.4ab 235.5b 247.8b 206.5b 229.4b
N2 251.2 327.71ab 318.2bc 299.5c 318.2c 218.5c 255.1c 217.6ab 222.4ab 202.2c 206.6b 217.0c 230.9c 181.2c 201.8c
N3 251.2 319.5b 314.5c 289.0c 307.2c 203.2c 245.7d 210.1b 219.1b 192.5c 204.0b 206.4c 221.8c 167.3c 191.8d
D3 N0 251.2 326.7a 327.8a 350.0a 333.3a 301.4a 284.5a 222.7a 224.4a 210.5a 212.4a 273.7a 239.5a 263.1a 215.0a
N1 251.2 319.4a 321.1a 332.1b 312.6b 276.9b 254.6b 217.7a 217.7ab 201.0ab 203.7ab 252.3b 225.5b 253.2a 203.0b
N2 251.2 316.2a 313.7a 320.7c 305.8bc 257.4c 233.3c 213.0ab 213.1b 191.6b 196.8b 232.1c 213.0c 212.2b 181.5c
N3 251.2 313.5a 312.8a 309.0c 297.8c 237.2d 217.7d 208.7b 209.4b 188.1b 191.9b 226.7c 205.1c 198.2c 161.7d
方差分析ANOVA
品种Cultivar (C) ** * *** ns ns ** ***
密度Density (D) *** *** *** *** *** *** ***
氮素N fertilizer (N) *** *** *** ** ** *** ***
C×D ns *** *** ns ns *** ***
C×N ns ns ns ns ns ns ns
D×N ns ns ns ns ns ns ns
C×D×N ns ns ns ns ns ns ns

Fig. 3

Effects of planting density and nitrogen rate on the evapotranspiration during various growth stages for different maize cultivars in 2022 and 2023 Different uppercase letters indicate significant differences among the planting densities at P<0.05 level, and different lowercase letters indicate significant differences among the N rates under the same density at P<0.05 level. The same as below"

Fig. 4

Effects of planting density and nitrogen rate on plant dry matter accumulation at various growth stages for different maize cultivars in 2022 and 2023"

Fig. 5

Effects of planting density and nitrogen rate on grain yields for different maize cultivars in 2022 and 2023"

Fig. 6

Effects of planting density and nitrogen rate on water use efficiency during various growth stages for different maize cultivars in 2022 and 2023"

Fig. 7

Effects of planting density and nitrogen rate on water use efficiency during the entire growing season and water productivity for different maize cultivars in 2022 and 2023"

Fig. 8

Relationship between grain yield, water productivity and water use efficiency during various growth stages for different maize cultivars in 2022 and 2023"

[1]
李少昆, 赵久然, 董树亭, 赵明, 李潮海, 崔彦宏, 刘永红, 高聚林, 薛吉全, 王立春, 王璞, 陆卫平, 王俊河, 杨祁峰, 王子明. 中国玉米栽培研究进展与展望. 中国农业科学, 2017, 50(11): 1941-1959. doi: 10.3864/j.issn.0578-1752.2017.11.001.
LI S K, ZHAO J R, DONG S T, ZHAO M, LI C H, CUI Y H, LIU Y H, GAO J L, XUE J Q, WANG L C, WANG P, LU W P, WANG J H, YANG Q F, WANG Z M. Advances and prospects of maize cultivation in China. Scientia Agricultura Sinica, 2017, 50(11): 1941-1959. doi: 10.3864/j.issn.0578-1752.2017.11.001. (in Chinese)
[2]
王帅, 韩晓日, 战秀梅, 杨劲峰, 王月, 刘轶飞, 李娜. 氮肥水平对玉米灌浆期穗位叶光合功能的影响. 植物营养与肥料学报, 2014, 20(2): 280-289.
WANG S, HAN X R, ZHAN X M, YANG J F, WANG Y, LIU Y F, LI N. Effect of nitrogenous fertilizer levels on photosynthetic functions of maize ear leaves at grain filling stage. Journal of Plant Nutrition and Fertilizer, 2014, 20(2): 280-289. (in Chinese)
[3]
陈传永, 侯玉虹, 孙锐, 朱平, 董志强, 赵明. 密植对不同玉米品种产量性能的影响及其耐密性分析. 作物学报, 2010, 36(7): 1153-1160.
CHEN C Y, HOU Y H, SUN R, ZHU P, DONG Z Q, ZHAO M. Effects of planting density on yield performance and density-tolerance analysis for maize hybrids. Acta Agronomica Sinica, 2010, 36(7): 1153-1160. (in Chinese)
[4]
陈延玲, 吴秋平, 陈晓超, 陈范骏, 张永杰, 李前, 袁力行, 米国华. 不同耐密性玉米品种的根系生长及其对种植密度的响应. 植物营养与肥料学报, 2012, 18(1): 52-59.
CHEN Y L, WU Q P, CHEN X C, CHEN F J, ZHANG Y J, LI Q, YUAN L X, MI G H. Root growth and its response to increasing planting density in different maize hybrids. Plant Nutrition and Fertilizer Science, 2012, 18(1): 52-59. (in Chinese)
[5]
王寅, 冯国忠, 张天山, 茹铁军, 袁勇, 高强. 基于产量、氮效率和经济效益的春玉米控释氮肥掺混比例. 土壤学报, 2015, 52(5): 1153-1165.
WANG Y, FENG G Z, ZHANG T S, RU T J, YUAN Y, GAO Q. Optimizing blending ratio of controlled release n fertilizer for spring maize based on grain yield, N efficiency, and economic benefit. Acta Pedologica Sinica, 2015, 52(5): 1153-1165. (in Chinese)
[6]
WEI J G, CHAI Q, YIN W, FAN H, GUO Y, HU F L, FAN Z L, WANG Q M. Grain yield and N uptake of maize in response to increased plant density under reduced water and nitrogen supply conditions. Journal of Integrative Agriculture, 2024, 23(1): 122-140.

doi: 10.1016/j.jia.2023.05.006
[7]
DONG G, GUO J X, CHEN J Q, SUN G, GAO S, HU L J, WANG Y L. Effects of spring drought on carbon sequestration, evapotranspiration and water use efficiency in the Songnen meadow steppe in Northeast China. Ecohydrology, 2011, 4(2): 211-224.
[8]
魏淑丽, 王志刚, 于晓芳, 孙继颖, 贾琦, 屈佳伟, 苏布达, 高聚林, 张永清. 施氮量和密度互作对玉米产量和氮肥利用效率的影响. 植物营养与肥料学报, 2019, 25(3): 382-391.
WEI S L, WANG Z G, YU X F, SUN J Y, JIA Q, QU J W, SU B D, GAO J L, ZHANG Y Q. Interaction of nitrogen fertilizer rate and plant density on grain yield and nitrogen use efficiency of maize. Journal of Plant Nutrition and Fertilizers, 2019, 25(3): 382-391. (in Chinese)
[9]
BOOMSMA C R, SANTINI J B, TOLLENAAR M, VYN T J. Maize morphophysiological responses to intense crowding and low nitrogen availability: An analysis and review. Agronomy Journal, 2009, 101(6): 1426-1452.
[10]
李广浩, 刘娟, 董树亭, 刘鹏, 张吉旺, 赵斌, 石德杨. 密植与氮肥用量对不同耐密型夏玉米品种产量及氮素利用效率的影响. 中国农业科学, 2017, 50(12): 2247-2258. doi: 10.3864/j.issn.0578-1752.2017.12.006.
LI G H, LIU J, DONG S T, LIU P, ZHANG J W, ZHAO B, SHI D Y. Effects of close planting and nitrogen application rates on grain yield and nitrogen utilization efficiency of different density-tolerance maize hybrids. Scientia Agricultura Sinica, 2017, 50(12): 2247-2258. doi: 10.3864/j.issn.0578-1752.2017.12.006. (in Chinese)
[11]
肖万欣, 刘晶, 史磊, 赵海岩, 王延波. 氮密互作对不同株型玉米形态、光合性能及产量的影响. 中国农业科学, 2017, 50(19): 3690-3701. doi: 10.3864/j.issn.0578-1752.2017.19.006.
XIAO W X, LIU J, SHI L, ZHAO H Y, WANG Y B. Effect of nitrogen and density interaction on morphological traits, photosynthetic property and yield of maize hybrid of different plant types. Scientia Agricultura Sinica, 2017, 50(19): 3690-3701. doi: 10.3864/j.issn.0578-1752.2017.19.006. (in Chinese)
[12]
薛吉全, 梁宗锁, 马国胜, 路海东, 任建宏. 玉米不同株型耐密性的群体生理指标研究. 应用生态学报, 2002, 13(1): 55-59.
XUE J Q, LIANG Z S, MA G S, LU H D, REN J H. Population physiological indices on density-tolerance of maize in different plant type. Chinese Journal of Applied Ecology, 2002, 13(1): 55-59. (in Chinese)
[13]
SHAO H, SHI D F, SHI W J, BAN X B, CHEN Y C, REN W, CHEN F J, MI G H. Genotypic difference in the plasticity of root system architecture of field-grown maize in response to plant density. Plant and Soil, 2019, 439(1): 201-217.
[14]
曹胜彪, 张吉旺, 董树亭, 刘鹏, 赵斌, 杨今胜. 施氮量和种植密度对高产夏玉米产量和氮素利用效率的影响. 植物营养与肥料学报, 2012, 18(6): 1343-1353.
CAO S B, ZHANG J W, DONG S T, LIU P, ZHAO B, YANG J S. Effects of nitrogen rate and planting density on grain yield and nitrogen utilization efficiency of high yield summer maize. Journal of Plant Nutrition and Fertilizers, 2012, 18(6): 1343-1353. (in Chinese)
[15]
胡旦旦, 张吉旺, 刘鹏, 赵斌, 董树亭. 不同密度混播对玉米植株13C同化物分配和产量的影响. 应用生态学报, 2018, 29(10): 3229-3236.

doi: 10.13287/j.1001-9332.201810.021
HU D D, ZHANG J W, LIU P, ZHAO B, DONG S T. Effects of different densities of mixed-cropping on 13C-photosynthate distribution and grain yield of maize. Chinese Journal of Applied Ecology, 2018, 29(10): 3229-3236. (in Chinese)
[16]
韦金贵, 郭瑶, 柴强, 殷文, 樊志龙, 胡发龙. 水氮减量密植玉米的产量及产量构成. 作物学报, 2023, 49(7): 1919-1929.

doi: 10.3724/SP.J.1006.2023.23056
WEI J G, GUO Y, CHAI Q, YIN W, FAN Z L, HU F L. Yield and yield components of maize response to high plant density under reduced water and nitrogen supply. Acta Agronomica Sinica, 2023, 49(7): 1919-1929. (in Chinese)
[17]
王巧梅, 樊志龙, 赵彦华, 殷文, 柴强. 绿洲灌区不同密度玉米群体的耗水特性研究. 作物学报, 2017, 43(9): 1347-1356.
WANG Q M, FAN Z L, ZHAO Y H, YIN W, CHAI Q. Effect of planting density on water consumption characteristics of maize in oasis irrigation area. Acta Agronomica Sinica, 2017, 43(9): 1347-1356. (in Chinese)
[18]
刘战东, 肖俊夫, 于景春, 刘祖贵, 南纪琴. 春玉米品种和种植密度对植株性状和耗水特性的影响. 农业工程学报, 2012, 28(11): 125-131.
LIU Z D, XIAO J F, YU J C, LIU Z G, NAN J Q. Effects of varieties and planting density on plant traits and water consumption characteristics of spring maize. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(11): 125-131. (in Chinese)
[19]
张平良, 郭天文, 刘晓伟, 李书田, 曾骏, 谭雪莲, 董博. 密度和施氮量互作对全膜双垄沟播玉米产量、氮素和水分利用效率的影响. 植物营养与肥料学报, 2019, 25(4): 579-590.
ZHANG P L, GUO T W, LIU X W, LI S T, ZENG J, TAN X L, DONG B. Effect of plant density and nitrogen application rate on yield, nitrogen and water use efficiencies of spring maize under whole plastic-film mulching and double-furrow sowing. Journal of Plant Nutrition and Fertilizers, 2019, 25(4): 579-590. (in Chinese)
[20]
焦智辉, 陈桂平, 范虹, 张金丹, 殷文, 李含婷, 王琦明, 胡发龙, 柴强. 绿洲灌区密植减量施氮玉米的水分利用特征. 中国农业科学, 2023, 56(16): 3088-3099. doi: 10.3864/j.issn.0578-1752.2023.16.004.
JIAO Z H, CHEN G P, FAN H, ZHANG J D, YIN W, LI H T, WANG Q M, HU F L, CHAI Q. Water use characteristics of increased plant density and reduced nitrogen application maize in oasis irrigated area. Scientia Agricultura Sinica, 2023, 56(16): 3088-3099. doi: 10.3864/j.issn.0578-1752.2023.16.004. (in Chinese)
[21]
鲍士旦. 土壤农化分析. 3版. 北京: 中国农业出版社, 2005.
BAO S D. Soil and Agricultural Chemistry Analysis. 3rd ed. Beijing: China Agricultural Press, 2005. (in Chinese)
[22]
LI Y X, CHEN J, TIAN L B, SHEN Z Y, AMBY D B, LIU F L, GAO Q, WANG Y. Seedling-stage deficit irrigation with nitrogen application in three-year field study provides guidance for improving maize yield, water and nitrogen use efficiencies. Plants, 2022, 11(21): 3007.
[23]
SUN T, LI Z Z. Alfalfa-corn rotation and row placement affects yield, water use, and economic returns in Northeast China. Field Crops Research, 2019, 241: 107558.
[24]
陈国平. 玉米的干物质生产与分配. 玉米科学, 1994, 2(1): 48-53.
CHEN G P. Accumulation and distribution of dry matter of maize. Journal of Maize Sciences, 1994, 2(1): 48-53. (in Chinese)
[25]
SHAO H, XIA T T, WU D L, CHEN F J, MI G H. Root growth and root system architecture of field-grown maize in response to high planting density. Plant and Soil, 2018, 430(1): 395-411.
[26]
何长安, 刘兴焱, 杨耿斌, 纪春学, 王辉, 张恒. 黑龙江北部早熟区玉米增密试验. 黑龙江农业科学, 2016(11): 19-22.
HE C A, LIU X Y, YANG G B, JI C X, WANG H, ZHANG H. Maize increasing density experiment in early maturity area of northern of Heilongjiang Province. Heilongjiang Agricultural Sciences, 2016(11): 19-22. (in Chinese)
[27]
ZHAO Y J, XING S, ZHANG Q S, ZHANG F S, MA W Q. Causes of maize density loss in farmers’ fields in Northeast China. Journal of Integrative Agriculture, 2019, 18(8): 1680-1689.
[28]
SHEN D P, WANG K R, ZHOU L L, FANG L, WANG Z, FU J L, ZHANG T T, LIANG Z Y, XIE R Z, MING B, HOU P, XUE J, LI J M, KANG X J, ZHANG G Q, LI S K. Increasing planting density and optimizing irrigation to improve maize yield and water-use efficiency in Northeast China. Agronomy, 2024, 14(2): 400.
[29]
王缘怡, 李晓宇, 王寅, 张馨月, 冯国忠, 焉莉, 李翠兰, 高强. 吉林省农户玉米种植与施肥现状调查. 中国农业资源与区划, 2021, 42(9): 262-271.
WANG Y Y, LI X Y, WANG Y, ZHANG X Y, FENG G Z, YAN L, LI C L, GAO Q. Smallholder investigation on current maize cultivation and fertilization in Jilin province. Chinese Journal of Agricultural Resources and Regional Planning, 2021, 42(9): 262-271. (in Chinese)
[30]
胡聪慧, 石文君, 李梁, 沙野, 钱春荣, 齐华, 米国华. 东北地区玉米氮高效品种筛选及产量组成因素分析. 玉米科学, 2020, 28(5): 67-76.
HU C H, SHI W J, LI L, SHA Y, QIAN C R, QI H, MI G H. Screening for nitrogen-efficient maize cultivars used in Northeast China and analysis of yield components. Journal of Maize Sciences, 2020, 28(5): 67-76. (in Chinese)
[31]
张馨月, 王寅, 陈健, 陈安吉, 王莉颖, 郭晓颖, 牛雅郦, 张星宇, 陈利东, 高强. 水分和氮素对玉米苗期生长、根系形态及分布的影响. 中国农业科学, 2019, 52(1): 34-44. doi: 10.3864/j.issn.0578-1752.2019.01.004.
ZHANG X Y, WANG Y, CHEN J, CHEN A J, WANG L Y, GUO X Y, NIU Y L, ZHANG X Y, CHEN L D, GAO Q. Effects of soil water and nitrogen on plant growth, root morphology and spatial distribution of maize at the seedling stage. Scientia Agricultura Sinica, 2019, 52(1): 34-44. doi: 10.3864/j.issn.0578-1752.2019.01.004. (in Chinese)
[32]
WANG Y, ZHANG X Y, CHEN J, CHEN A J, WANG L Y, GUO X Y, NIU Y L, LIU S R, MI G H, GAO Q. Reducing basal nitrogen rate to improve maize seedling growth, water and nitrogen use efficiencies under drought stress by optimizing root morphology and distribution. Agricultural Water Management, 2019, 212: 328-337.
[33]
张建军, 樊廷录, 党翼, 赵刚, 王磊, 李尚中, 王淑英, 程万莉. 覆膜时期与施氮量对旱地玉米土壤耗水特征及产量的影响. 水土保持学报, 2018, 32(6):72-78.
ZHANG J J, FAN T L, DANG Y, ZHAO G, WANG L, LI S Z, WANG S Y, CHENG W L. Effect of film mulching period and nitrogen application rate on soil water consumption characteristics and maize yield in dryland. Journal of Soil and Water Conservation, 2018, 32(6): 72-78. (in Chinese)
[1] FAN Hong, YIN Wen, HU FaLong, FAN ZhiLong, ZHAO Cai, YU AiZhong, HE Wei, SUN YaLi, WANG Feng, CHAI Qiang. Compensation Potential of Dense Planting on Nitrogen Reduction in Maize Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2024, 57(9): 1709-1721.
[2] HUANG LiQiang, JIANG Ru, ZHU BoZhi, PENG Huan, XU Chong, SONG JiaXiong, CHEN Min, LI YongQing, HUANG WenKun, PENG DeLiang. Identification and Evaluation of Major Potato Cultivars Resistance to Globodera rostochiensis and Detection of Their H1 Resistance Gene Marker [J]. Scientia Agricultura Sinica, 2024, 57(8): 1506-1516.
[3] GAO ChenKai, LIU ShuiMiao, LI YuMing, ZHAO ZhiHeng, SHAO Jing, YU HaoLin, WU PengNian, WANG YanLi, GUAN XiaoKang, WANG TongChao, WEN PengFei. The Related Driving Factors of Water Use Efficiency and Its Prediction Model Construction in Winter Wheat [J]. Scientia Agricultura Sinica, 2024, 57(7): 1281-1294.
[4] REN Qiang, XU Ke, FAN ZhiLong, YIN Wen, FAN Hong, HE Wei, HU FaLong, CHAI Qiang. Nitrogen Fertilizer Postponing Application Benefits Wheat-Maize Intercropping by Reducing Soil Evaporation and Improving Water Use Efficiency [J]. Scientia Agricultura Sinica, 2024, 57(7): 1295-1307.
[5] WANG ChengZe, ZHANG Yan, FU Wei, JIA JingZhe, DONG JinGao, SHEN Shen, HAO ZhiMin. Bioinformatics and Expression Pattern Analysis of Maize ACO Gene Family [J]. Scientia Agricultura Sinica, 2024, 57(7): 1308-1318.
[6] WANG XiaoBin, YAN Xiang, LI XiuYing, SUN ZhaoKai, TU Cheng. Assessment of Application Efficacy for Agro-Forestry Absorbent Polymers and Their Environmental Risks [J]. Scientia Agricultura Sinica, 2024, 57(6): 1117-1136.
[7] GAO ChenXi, HAO LuYang, HU Yue, LI YongXiang, ZHANG DengFeng, LI ChunHui, SONG YanChun, SHI YunSu, WANG TianYu, LI Yu, LIU XuYang. Analysis of Transposable Element Associated Epigenetic Regulation under Drought in Maize [J]. Scientia Agricultura Sinica, 2024, 57(6): 1034-1048.
[8] DANG JianYou, JIANG WenChao, SUN Rui, SHANG BaoHua, PEI XueXia. Response of Wheat Grain Yield and Water Use Efficiency to Ploughing Time and Precipitation and Its Distribution in Dryland [J]. Scientia Agricultura Sinica, 2024, 57(6): 1049-1065.
[9] ZHAO KaiNan, DING Hao, LIU AKang, JIANG ZongHao, CHEN GuangZhou, FENG Bo, WANG ZongShuai, LI HuaWei, SI JiSheng, ZHANG Bin, BI XiangJun, LI Yong, LI ShengDong, WANG FaHong. Nitrogen Fertilizer Reduction and Postponing for Improving Plant Photosynthetic Physiological Characteristics to Increase Wheat- Maize and Annual Yield and Economic Return [J]. Scientia Agricultura Sinica, 2024, 57(5): 868-884.
[10] WANG Yu, ZHANG YuPeng, ZHU GuanYa, LIAO HangXi, HOU WenFeng, GAO Qiang, WANG Yin. Effects of Localized Nitrogen Supply on Plant Growth and Water and Nitrogen Use Efficiencies of Maize Seedling Under Drought Stress [J]. Scientia Agricultura Sinica, 2024, 57(5): 919-934.
[11] GAO ShangJie, LIU XingRen, LI YingChun, LIU XiaoWan. Effects of Biochar and Straw Return on Greenhouse Gas Emissions and Global Warming Potential in the Farmland [J]. Scientia Agricultura Sinica, 2024, 57(5): 935-949.
[12] LI QianChuan, XU ShiWei, ZHANG YongEn, ZHUANG JiaYu, LI DengHua, LIU BaoHua, ZHU ZhiXun, LIU Hao. Stacking Ensemble Learning Modeling and Forecasting of Maize Yield Based on Meteorological Factors [J]. Scientia Agricultura Sinica, 2024, 57(4): 679-697.
[13] MA BiJiao, CHEN GuiPing, GOU ZhiWen, YIN Wen, FAN ZhiLong, HU FaLong, FAN Hong, HE Wei. Water Utilization and Economic Benefit of Wheat Multiple Cropping with Green Manure Under Nitrogen Reduction in Hexi Irrigation Area of Northwest China [J]. Scientia Agricultura Sinica, 2024, 57(4): 740-754.
[14] LI FaJi, CHENG DunGong, YU XiaoCong, WEN WeiE, LIU JinDong, ZHAI ShengNan, LIU AiFeng, GUO Jun, CAO XinYou, LIU Cheng, SONG JianMin, LIU JianJun, LI HaoSheng. Genome-Wide Association Studies for Canopy Activity Related Traits and Its Genetic Effects on Yield-Related Traits [J]. Scientia Agricultura Sinica, 2024, 57(4): 627-637.
[15] CAO WenZhuo, YU ZhenWen, ZHANG YongLi, ZHANG Zhen, SHI Yu, WANG YongJun. The Difference of Grain Starch Accumulation Dynamics and Yield Formation of Spring Maize Under Different Nitrogen Application Rates in Black Soil [J]. Scientia Agricultura Sinica, 2024, 57(22): 4431-4443.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!