Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (12): 2467-2482.doi: 10.3864/j.issn.0578-1752.2024.12.015

• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles     Next Articles

Dietary Addition of Cordyceps Militaris Can Alleviate Lipopolysaccharide- Induced Liver Damage and Skeletal Muscle Protein Degradation in Early Weaning Piglets

CAI RuiJie(), CHU YiXin, SHI XinE, JIN JianJun, YANG GongShe()   

  1. Shannxi Provincial Key Laboratory of Animal Genetics/Animal Fat Deposition and Muscle Development Laboratory, College of Animal Technology, Northwest A&F University, Yangling 712100, Shaanxi
  • Received:2023-12-21 Accepted:2024-05-14 Online:2024-06-16 Published:2024-06-25
  • Contact: YANG GongShe

Abstract:

【Objective】 This study aims to explore the effect of cordyceps militaris on the growth and immune performance of early weaned piglets and the mechanism of regulating immune stress. 【Method】A total of Duroc × Landrace × large 144 early-weaned piglets of the same age and similar initial weight were randomly divided into 4 groups: NC (basal diet), LPS (LPS+ basal diet), LPS+500CM (LPS+ basal diet+ 500 mg·kg-1 CM) and LPS+1000CM (LPS+ basal diet+ 1 000 mg·kg-1 CM). Group NC and group LPS were fed with basal diet, while group LPS+500CM and group LPS+1000CM were fed by fully mixed basal diet with cordyceps militaris (CM) powder according to the proportion. After feeding, 6 piglets in each group (half male and half female) were randomly selected and slaughtered. Group LPS, group LPS+500CM and group LPS+1000CM were intraperitoneally injected with LPS according to body weight 4 hours before slaughter, and group NC was injected with the same amount of normal saline. After slaughtering, the longissimus dorsi, heart, liver, spleen, pancreas and kidney were collected for the next detection. 【Result】Statistical analysis of body weight and feed intake showed that adding Cordyceps militaris to the diet of piglets had no notable effect on the average daily feed intake of piglets, while the weight of piglets supplemented with 500 mg·kg-1 CM and 1 000 mg·kg-1CM was respectively higher than that of the control group. 8.58% (P<0.05) and 9.08% (P<0.05). Compared with the NC group, the spleen index of piglets in the LPS group was significantly lower (P<0.05), while the spleen index of the piglets in the LPS+500CM group and LPS+1000CM group was significantly higher than that in the LPS group (P<0.05). The detection of liver function biomarkers and total bile acids showed that the liver ALT level of piglets in the LPS group was significantly higher than that of the NC group (P<0.05), and the levels of AST, LDH, and total bile acids showed an upward trend. The ALT, AST, LDH and total bile acid levels of the LPS+500CM group and LPS+1000CM group with Cordyceps militaris added to the feed were significantly lower than those of the LPS group. The detection of liver antioxidant indicators and inflammatory factor expression showed that the levels of MDA, LPO, T-AOC and the expression of inflammatory factors in the liver of piglets in the LPS group were significantly increased (P<0.05), while the levels of CAT, GSH-Px and T-SOD were significantly higher. There was a significant decrease (P<0.01), and feeding piglets with Cordyceps militaris could significantly alleviate the increase or decrease in these indicators. The crude protein and amino acid contents of skeletal muscle in the LPS group were significantly reduced (P<0.01), and adding Cordyceps militaris to the diet could significantly alleviate the decrease in protein and amino acid contents caused by LPS (P<0.01). Compared with NC, the expression of inflammatory factors in the LPS group was significantly higher (P<0.05), while the expression of inflammatory factors after feeding Cordyceps militaris in the diet was significantly lower than that in the LPS group (P<0.05). The levels of MDA and LPO in the longissimus dorsi muscle of piglets in the LPS group were significantly higher than those in the NC group (P<0.01), while the levels of T-AOC, CAT, GSH-Px and T-SOD were significantly lower (P<0.01), adding Cordyceps militaris to the diet can alleviate this abnormal increase or decrease. The phosphorylation levels of Akt, t-mTOR, 4EBP1, and FOXO1 were detected and it was found that the LPS group had a decreasing trend compared with the NC group, while the protein expression levels of MAFbx and MuRF1 were significantly increased (P<0.05). After Cordyceps militaris was added to the diet, the phosphorylation levels of Akt and FOXO1 in the longissimus dorsi muscle of piglets were significantly increased (P<0.05), while the protein expression levels of MAFbx and MuRF1 were significantly decreased (P<0.05)【Conclusion】 The results show that adding CM to the diet can improve the growth and immune performance of weaned piglets; CM can inhibit the decrease in crude protein and total amino acid content of longissimus dorsi caused by LPS; CM can inhibit liver inflammation and excessive proliferation and apoptosis and hepatocytes and improve liver antioxidant capacity; CM can inhibit longissimus dorsi inflammation, oxidative stress and protein degradation in weaned piglets. Overall, adding CM to the deit can improve the growth and immune performance of weaned piglets, alleviate liver damage and protein degradation cause by LPS, and provide a theoretical basis for screening new feed additives and preventing immune stress in weaned piglets.

Key words: cordyceps militaris, early-weaned piglets, lipopolysaccharide, immune stress, liver injury, protein metabolism

Fig. 1

Test design-piglet grouping"

Table 1

Ingredients of experimental diets"

饲料成分
Ingredient
含量
Content (%)
营养物质
Nutrient component
对照组
Control
蛹虫草组1
500 CM
蛹虫草组2
1000 CM
玉米Corn 47.62 水分Moisture (%) 11.34 11.64 11.53
挤压玉米Extruded corn 32.30 干物质Dry matter (%) 88.66 88.36 88.47
豆粕Soybean meal 5.00 粗蛋白Crude protein (%) 17.71 17.52 17.54
膨化大豆 Extruded soybean 4.00 粗纤维Crude fiber (%) 2.09 1.98 1.98
豆油Soybean oil 1.50 灰分Crude ash (%) 4.40 4.37 4.36
乳清粉Whey mist 0.64 钙Calcium (%) 0.82 0.82 0.82
鱼粉Fish meal 3.50 磷phosphorus (%) 0.63 0.64 0.63
蔗糖Saccharose 3.00 表观可消化磷 0.18 0.18 0.18
维生素和矿物质预混料
Vitaminsand minerals Premixa
0.60 Available phosphorus (%)
氯化钠NaCl 0.40 消化能DE (kcal·kg-1) 3631.84 3619.00 3623.32
赖氨酸硫酸盐Lysine sulfate (70%) 0.42 净能NE (kcal·kg-1) 2624.98 2606.67 2612.18
苏氨酸Threonine (98%) 0.11
蛋氨酸Methionine (98%) 0.15
色氨酸Tryptophan (98%) 0.02
磷酸氢钙Calcium monophosphate 0.64
植酸酶Phytase 0.10
合计Total 100

Table 2

The content of nutrition and active substances of Cordyceps militaris"

营养成分 Nutrition content 含量 Content (%) 活性物质 active substance composition 含量 Content
粗蛋白CP 15.97 虫草多糖Cordyceps polysaccharide(%) 4.96
粗脂肪CF 2.79 虫草酸Cordycepic acid(%) 3.75
灰分Ash 3.18 总甾醇Total sterols(%) 0.60
钙Ca 0.15 虫草素Cordycepin(mg·kg-1) 1654.56
磷P 0.61 腺苷Adenosine(mg·kg-1) 440.88
肌苷Inosine(mg·kg-1) 83.27

Table 3

Cordyceps militaris grading standard based on cordycepin content"

项目
Item
指标 Index 检验方法
Testing method
特级 Special 一级 Level 1 二级 Level 2
水分 Moisture (g/100g) 12.0 GB 5009.3
灰分 Ash content (g/100g) 10.0 GB 5009.4
虫草素 Cordycepin (mg·kg-1) ≥10000 5000—9999 1000—4999 NY/T 2116
腺苷 Adenosine (mg·kg-1) 550 NY/T 2116
粗多糖 Crude polysaccharide (g/100g) 2.5 NY/T 1676
杂质 Impurities (%) 1.0 GB/T 12533
二氧化碳残留量(以SO2计)
Carbon dioxide residual amount (calculated as S O2,g·kg-1)
0.05 GB 5009.34

Table 4

Primer sequence"

基因Gene 引物序列 Primer sequence (5'-3')
TLR4 F: 5'-TTAGTTCTCACCTTCTCCTG-3'
R: 5'-GTTCATTCCTCACCCAGTCTTC-3'
MyD88 F: 5'-GATGGTAGCGGTTGTCTCTGAT-3'
R: 5'-GATGCTGGGGAACTCTTTCTTC-3'
TRAF6 F: 5'-CAAGAGAATACCCAGTCGCACA-3'
R: 5'-ATCCGAGACAAAGGGGAAGAA-3'
IRAK1 F: 5'-CAAGGCAGGTCAGGTTTCGT-3'
R: 5'-TTCGTGGGGCGTGTAGTGT-3'
NOD1 F: 5'-CTGTCGTCAACACCGATCCA-3'
R: 5'-CCAGTTGGTGACGCAGCTT-3'
NOD2 F: 5'-GAGCGCATCCTCTTAACTTTCG-3'
R: 5'-ACGCTCGTGATCCGTGAAC-3'
RIPK2 F: 5'-CAGTGTCCAGTAAATCGCAGTTG-3'
R: 5'-CAGGCTTCCGTCATCTGGTT-3'
NF-κB F: 5'-AGTACCCTGAGGCTATAACTCGC-3'
R: 5'-TCCGCAATGGAGGAGAAGTC-3'
TNF-α F: 5'-TCCAATGGCAGAGTGGGTATG-3'
R: 5'-AGCTGGTTGTCTTTCAGCTTCAC-3'
Bax F: 5'-GACGCTGGACTTCCTTCGAG-3'
R: 5'-GTGGCCCGAGAGAGGTTTATT-3'
Bcl-2 F: 5'-GCTACTTACTGCCAAAGGGA-3'
R: 5'-TTCAGGCGGAGCTGTAAGAG-3'
Caspase3 F: 5'-GGAATGGCATGTCGATCTGGT-3'
R: 5'-ACTGTCCGTCTCAATCCCAC -3'
Caspase8 F: 5'-TCTGCGGACTGGATGTGATT-3'
R: 5'-TCTGAGGTTGCTGGTCACAC-3'
Caspase9 F: 5'-AATGCCGATTTGGCTTACGT-3'
R: 5'-CATTTGCTTGGCAGTCAGGTT-3'
PCNA F: 5'-ATGCCTTCTGGTGAATTTGC-3'
R: 5'-TCCATTTCCGAGTTCTCCAC-3'

Table 5

Effects of adding Cordyceps militaris to the diet on average daily feed intake of weaned piglets"

项目
Item
NC 500CM 1000CM P P value
P1 P2 P3
第一周 First week 0.57±0.13 0.63±0.17 0.52±0.14 0.450 0.442 0.191
第二周 Second week 0.86±0.18 0.86±0.13 0.80±0.12 0.973 0.458 0.396
第三周 Third week 0.75±0.16 0.72±0.15 0.73±0.13 0.688 0.717 0.882
第四周 Forth week 0.93±0.15 0.89±0.11 0.87±0.15 0.641 0.513 0.772

Table 6

Effects of adding Cordyceps militaris to the diet on body weight of weaned piglets"

项目
Item
NC 500CM 1000CM P P value
P1 P2 P3
初始体重 Initial weight 8.26±0.26 8.89±0.35 8.45±0.21 0.112 0.635 0.261
第一周 First week 12.46±0.50 13.44±0.41 12.72±0.32 0.100 0.658 0.224
第二周 Second week 16.32±0.53 17.61±0.55 15.77±0.29 0.059 0.416 0.008
第三周 Third week 18.15±0.55 19.36±0.66 19.36±0.71 0.313 0.188 0.754
第四周 Forth week 20.04±0.50 21.76±0.77 21.86±0.34 0.035 0.026 0.897

Table 7

Effects of Cordyceps militaris supplementation on organ index of weaned piglets (g·kg-1)"

项目 Item NC LPS LPS+500 M LPS+1000 CM
心脏指数Cardiac index 5.71±0.06aA 5.36±0.08aA 5.33±0.33aA 5.67±0.14aA
肝脏指数Liver index 25.45±0.71aA 27.82±0.73aA 27.23±1.84aA 29.25±1.38aA
脾脏指数Spleen index 2.51±0.05aA 2.13±0.05bA 2.39±0.27aA 2.61±0.15aA
胰脏指数Pancreatic index 2.46±0.16aA 2.45±0.13aA 2.12±0.16aA 1.95±0.21aA
肾脏指数Kidney index 6.04±0.28aA 6.90±0.05bA 6.23±0.31bA 6.54±0.16abA

Fig. 2

Effects of Cordyceps militaris supplementation on liver function biomarkers and total bile acid synthesis in weaned piglets"

Fig. 3

Effects of Cordyceps militaris supplementation on liver antioxidant capacity of weaned piglets"

Fig. 4

Effects of Cordyceps militaris supplementation on mRNA levels of liver inflammatory cytokines in weaned piglets"

Fig. 5

Effects of Cordyceps militaris on mRNA levels of genes related to liver proliferation and apoptosis in weaned piglets stimulated by LPS a: proliferating cell nuclear antigen; b: B lymphoma-2 related protein; c: Caspase 3; d: Caspase 8; e: Caspase 9"

Table 8

Effect of Cordyceps militaris on organ index of weaned piglets stimulated by LPS"

项目
Item
NC LPS LPS+500CM LPS+1000CM PP value
P1 P2 P3
粗蛋白Crude protein 19.52±0.03 17.69±0.23 18.59±0.10 18.39±0.22 <0.01 0.022 0.089

Table 9

Effects of Cordyceps militaris supplementation on amino acid composition of Longissimus dorsi muscle of weaned piglets"

项目Item NC LPS LPS+500 CM LPS+1000 CM
Asp 0.5±0.05aA 0.14±0.03cB 0.39±0.04bA 0.54±0.09aA
Glu 2.66±0.1aA 1.88±0.04cB 2.35±0.16abAB 1.99±0.1bcB
Ser 1.55±0.07aA 1.5±0.02aAB 1.53±0.09aAB 1.31±0.08bB
Gly 1.64±0.09aA 1.37±0.03aA 1.56±0.11aA 1.63±0.12aA
His 1.4±0.05aA 1.58±0.19aA 1.38±0.26aA 1.61±0.1aA
Arg 1.43±0.12aA 1.38±0.09aA 1.51±0.12aA 1.46±0.18aA
Thr 0.95±0.01aA 0.37±0.04cC 0.95±0.06aA 0.76±0.04bB
Ala 1.54±0.19aA 1.56±0.27aA 1.51±0.22aA 1.57±0.15aA
Pro 1.59±0.16aA 1.48±0.24aA 1.38±0.14aA 1.19±0.09aA
Tyr 1.11±0aA 0.48±0.01cC 0.97±0.07bAB 0.89±0.03bB
Val 1.12±0.02aA 0.41±0.02cC 1.01±0.07aAB 0.87±0.05bB
Met 0.96±0.01aA 0.4±0.02cC 0.74±0.06bB 0.69±0.02bB
Cys 0.12±0.01aA 0.07±0cC 0.1±0.01bAB 0.09±0bBC
Ile 1.22±0aA 0.64±0.03cC 1.09±0.06bAB 1±0.02bB
Leu 1.59±0.03aA 0.57±0.03cC 1.3±0.12bB 1.23±0.05bB
Phe 1.76±0.03aA 0.83±0.03dC 1.26±0.11bB 1.09±0.05cB
Lys 1.52±0.02aA 0.7±0.03cC 1.35±0.1aAB 1.1±0.08bB
EAA 10.99±0.09aA 6.51±0.38cC 9.65±0.35bB 9.04±0.2bB
FAA 9.21±0.21aA 6.26±0.15cC 8.04±0.27bAB 7.71±0.16bB
TAA 22.65±0.15aA 15.36±0.49dC 20.38±0.63bB 19.01±0.35cB

Fig. 6

Effects of Cordyceps militaris supplementation on mRNA levels of inflammatory cytokines in Longissimus dorsi muscle of weaned piglets"

Fig. 7

Effects of Cordyceps militaris supplementation on antioxidant capacity of Longissimus dorsi muscle of weaned piglets"

Fig. 8

Effects of Cordyceps militaris supplementation in diet on protein metabolism in Longissimus dorsi muscle of weaned piglets"

[1]
KONG Y W, YAN T C, TONG Y Q, DENG H T, TAN C, WAN M Z, WANG M Y, MENG X J, WANG Y H. Gut microbiota modulation by polyphenols from Aronia melanocarpa of LPS-induced liver diseases in rats. Journal of Agricultural and Food Chemistry, 2021, 69(11): 3312-3325.
[2]
FOUNTAIN W A, NARUSE M, CLAIBORNE A, TRAPPE S, TRAPPE T A. Controlling inflammation improves aging skeletal muscle health. Exercise and Sport Sciences Reviews, 2023, 51(2): 51-56.

doi: 10.1249/JES.0000000000000313 pmid: 36722844
[3]
安勇, 秦士贞, 史兆国, 龚莉媛, 张帅, 计峰. 种鸽饲粮磷水平对乳鸽血清生化指标、非靶向代谢物及组织中磷转运载体基因表达的影响. 中国农业科学, 2023, 56(23): 4772-4788.

doi: 10.3864/j.issn.0578-1752.2023.23.017
AN Y, QIN S Z, SHI Z G, GONG L Y, ZHANG S, JI F. Influences of phosphorus level in diet of parent pigeons on biochemical index, untargeted metabolomics profile of serum, and gene expression of phosphate transporters in squabs. Scientia Agricultura Sinica, 2023, 56(23): 4772-4788. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2023.23.017
[4]
陶文静, 张子婷, 刘媛, 宋丹, 李向臣. N-乙酰半胱氨酸对双酚A诱导的猪肾细胞凋亡和炎症反应的抑制作用. 中国农业科学, 2023, 56(3): 549-558.

doi: 10.3864/j.issn.0578-1752.2023.03.012
TAO W J, ZHANG Z T, LIU Y, SONG D, LI X C. Inhibitory effect of N-acetylcysteine on bisphenol A-induced apoptosis and inflammatory response in porcine kidney cells. Scientia Agricultura Sinica, 2023, 56(3): 549-558. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2023.03.012
[5]
卢猛, 胡凤明, 屠焰, 刁其玉. 白头翁皂苷B4对犊牛生长性能、消化代谢和瘤胃发酵的影响. 中国农业科学, 2023, 56(4): 754-765.

doi: 10.3864/j.issn.0578-1752.2023.04.013
LU M, HU F M, TU Y, DIAO Q Y. Effects of anemoside B4 on growth performance, nutrition digestion and rumen fermentation of calves. Scientia Agricultura Sinica, 2023, 56(4): 754-765. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2023.04.013
[6]
郗蒙雪, 沈丹, 石一凡, 李春梅. TBHQ对鸡舍PM2.5诱导鸡胚肺组织细胞焦亡、坏死和炎症损伤的影响. 中国农业科学, 2023, 56(4): 779-787.

doi: 10.3864/j.issn.0578-1752.2023.04.015
XI M X, SHEN D, SHI Y F, LI C M. Effects of TBHQ on pyroptosis, necroptosis and inflammatory damage of chicken embryonic lung tissues induced by PM2.5 from chicken houses. Scientia Agricultura Sinica, 2023, 56(4): 779-787. (in Chinese)
[7]
魏婧洁, 蒋宁波, 梁燕, 张倩, 孙英健, 胡格. 苦参碱对H9N2 AIV感染小鼠NLRP3炎性体信号通路的影响. 中国农业科学, 2022, 55(21): 4315-4326.

doi: 10.3864/j.issn.0578-1752.2022.21.017
WEI J J, JIANG N B, LIANG Y, ZHANG Q, SUN Y J, HU G. Effect of matrine on NLRP3 inflammasome signaling pathway in H9N2 AIV infected mice. Scientia Agricultura Sinica, 2022, 55(21): 4315-4326. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2022.21.017
[8]
HUSSAIN T, TAN B, YIN Y L, BLACHIER F, TOSSOU M C B, RAHU N. Oxidative stress and inflammation: what polyphenols can do for us? Oxidative Medicine and Cellular Longevity, 2016, 2016: 7432797.
[9]
PHULL A R, AHMED M, PARK H J. Cordyceps militaris as a bio functional food source: pharmacological potential, anti-inflammatory actions and related molecular mechanisms. Microorganisms, 2022, 10(2): 405.
[10]
JĘDREJKO K, KAŁA K, SUŁKOWSKA-ZIAJA K, KRAKOWSKA A, ZIĘBA P, MARZEC K, SZEWCZYK A, SĘKARA A, PYTKO-POLOŃCZYK J, MUSZYŃSKA B. Cordyceps militaris- fruiting bodies, Mycelium, and supplements: valuable component of daily diet. Antioxidants, 2022, 11(10): 1861.
[11]
王佳妮, 于凯雯, 徐方旭, 王升厚, 王泽. 蛹虫草对LPS诱导的小鼠氧化应激的保护作用. 安徽农业科学, 2023, 51(3): 171-175.
WANG J N, YU K W, XU F X, WANG S H, WANG Z. Protective effect of Cordyceps militaris on LPS-induced oxidative stress in mice. Journal of Anhui Agricultural Sciences, 2023, 51(3): 171-175. (in Chinese)
[12]
陈刘欣, 于凤秀, 朱文君, 贾修滨, 李宝华, 赵上, 张颖, 田华, 司艳红, 秦树存. 蛹虫草多糖对ApoE-/-小鼠非酒精性脂肪性肝病的保护效应及机制. 中国动脉硬化杂志, 2022, 30(3): 219-224.
CHEN L X, YU F X, ZHU W J, JIA X B, LI B H, ZHAO S, ZHANG Y, TIAN H, SI Y H, QIN S C. Protective effect and mechanism of cordycepsmilitaris polysaccharide on nonalcoholic fatty liver disease in ApoE-/- mice. Chinese Journal of Arteriosclerosis, 2022, 30(3): 219-224. (in Chinese)
[13]
LI M Y, CHEN L, ZHAO Y R, SUN H, ZHAO L. Research on the mechanism of HRP relieving IPEC-J2 cells immunological stress based on transcriptome sequencing analysis. Frontiers in Nutrition, 2022, 9: 944390.
[14]
ZHENG H M, CAO H G, ZHANG D M, HUANG J H, LI J S, WANG S Y, LU J F, LI X, YANG G S, SHI X E. Cordyceps militaris modulates intestinal barrier function and gut microbiota in a pig model. Frontiers in Microbiology, 2022, 13: 810230.
[15]
WANG T, YU M Y, LI H Z, QIN S G, REN W J, MA Y X, BO W Y, XI Y, CAI M X, TIAN Z J. FNDC5/irisin inhibits the inflammatory response and mediates the aerobic exercise-induced improvement of liver injury after myocardial infarction. International Journal of Molecular Sciences, 2023, 24(4): 4159.
[16]
ZHOU Z Y, WANG B H, PAN X X, LV J W, LOU Z Q, HAN Y Q, YAO Y Y, CHEN J, WANG Q Q, LI L J. Microbial metabolites indole derivatives sensitize mice to D-GalN/LPS induced-acute liver failure via the Tlr2/NF-κB pathway. Frontiers in Microbiology, 2023, 13: 1103998.
[17]
郭俊. 脂肪因子ZAG对脂多糖诱导的肝脏炎症和脂代谢紊乱的影响及机制[D]. 南京: 南京农业大学, 2019.
GUO J. Effects of adipokine ZAG on LPS-induced hepatic inflammation and lipid metabolism disorders and its mechanisms[D]. Nanjing: Nanjing Agricultural University, 2019. (in Chinese)
[18]
KUÇI O, VERLAAN D, VICENTE C, NUBRET E, LE PLENIER S, DE BANDT J P, CYNOBER L. Citrulline and muscle protein homeostasis in three different models of hypercatabolism. Clinical Nutrition, 2020, 39(3): 917-927.

doi: S0261-5614(19)30150-5 pmid: 31010700
[19]
SU W F, GONG T, JIANG Z P, LU Z Q, WANG Y Z. The role of probiotics in alleviating postweaning diarrhea in piglets from the perspective of intestinal barriers. Frontiers in Cellular and Infection Microbiology, 2022, 12: 883107.
[20]
QIN P, LI X K, YANG H, WANG Z Y, LU D X. Therapeutic potential and biological applications of cordycepin and metabolic mechanisms in cordycepin-producing fungi. Molecules, 2019, 24(12): 2231.
[21]
JESCHKE M G, LOW J F, SPIES M, VITA R, HAWKINS H K, HERNDON D N, BARROW R E. Cell proliferation, apoptosis, NF-kappaB expression, enzyme, protein, and weight changes in livers of burned rats. American Journal of Physiology Gastrointestinal and Liver Physiology, 2001, 280(6): G1314-G1320.
[22]
陈逢. 鱼油通过TLR4和NOD信号通路对脂多糖诱导的仔猪肠道、肝脏损伤和肌肉蛋白质降解的调控作用[D]. 武汉: 武汉轻工大学, 2013.
CHEN F. Regulative role of fish oil on intestinal and liver injury, and muscle protein degradation of piglets after lipopolysaccharide challenge through TLR4and NOD signaling pathway[D]. Wuhan: Wuhan Polytechnic University, 2013. (in Chinese)
[23]
RUSSELL S T, SIREN P M A, SIREN M J, TISDALE M J. Mechanism of attenuation of protein loss in murine C2C12 myotubes by d-myo-inositol 1, 2, 6-triphosphate. Experimental Cell Research, 2010, 316(2): 286-295.
[24]
WANG L, JIAO X F, WU C, LI X Q, SUN H X, SHEN X Y, ZHANG K Z, ZHAO C, LIU L, WANG M, BU Y L, LI J W, XU F, CHANG C L, LU X, GAO W. Trimetazidine attenuates dexamethasone-induced muscle atrophy via inhibiting NLRP3/GSDMD pathway-mediated pyroptosis. Cell Death Discovery, 2021, 7: 251.

doi: 10.1038/s41420-021-00648-0 pmid: 34537816
[25]
JEPSON M M, PELL J M, BATES P C, MILLWARD D J. The effects of endotoxaemia on protein metabolism in skeletal muscle and liver of fed and fasted rats. Biochemical Journal, 1986, 235(2): 329-336.

pmid: 3527153
[26]
郑红梅. 蛹虫草对育肥猪肠道形态和屏障功能的影响[D]. 杨凌: 西北农林科技大学, 2020.
ZHENG H M. Effects of Cordyceps militaris on the internal morphology and barrier function of finishing pigs[D]. Yangling: Northwest A & F University, 2020. (in Chinese)
[27]
YOON S Y, PARK S J, PARK Y J. The anticancer properties of cordycepin and their underlying mechanisms. International Journal of Molecular Sciences, 2018, 19(10): 3027.
[28]
樊桂灵. 蛹虫草多糖泡腾片的制备及其对CCl4所致小鼠急性肝损伤的保护作用[D]. 成都: 西华大学, 2020.
FAN G L. Preparation of Cordyceps militaris polysaccharide effervescent tablets and its protective effect on acute liver injury induced by CCl4 in mice[D]. Chengdu: Xihua University, 2020. (in Chinese)
[29]
王少英. 蛹虫草饲料添加剂对育肥猪生长性能和肉品质的影响[D]. 杨凌: 西北农林科技大学, 2021.
WANG S Y. Effects of Cordyceps militaris feed additive on growth performance and meat quality of finishing pig[D]. Yangling: Northwest A & F University, 2021. (in Chinese)
[30]
ROOT-BERNSTEIN R. Synergistic activation of toll-like and NOD receptors by complementary antigens as facilitators of autoimmune disease: review, model and novel predictions. International Journal of Molecular Sciences, 2020, 21(13): 4645.
[31]
NGUYEN T U, HECTOR H, PEDERSON E N, LIN J N, OUYANG Z Q, WENDEL H G, SINGH K. Rapamycin-induced feedback activation of eIF4E-EIF4A dependent mRNA translation in pancreatic cancer. Cancers, 2023, 15(5): 1444.
[32]
ROM O, REZNICK A Z. The role of E3 ubiquitin-ligases MuRF-1 and MAFbx in loss of skeletal muscle mass. Free Radical Biology & Medicine, 2016, 98: 218-230.
[33]
YIN S S, LIU L, GAN W J. The roles of post-translational modifications on mTOR signaling. International Journal of Molecular Sciences, 2021, 22(4): 1784.
[1] SONG MeiJie,OU AiQun,XUE XiaoFeng,WU LiMing,SHOU QiYang,WANG Kai. Protective Effects of Chinese Propolis Extract Against Lipopolysaccharide- Induced Acute Mastitis and Mammary Barrier Functions in Mice [J]. Scientia Agricultura Sinica, 2021, 54(12): 2675-2688.
[2] LIN XiaJing,CHEN Fang,JIANG ShouQun,JIANG ZongYong. Effects of Soybean Isoflavones on Growth Performance, Antioxidant Performance and Intestinal Morphology of Early-Weaned Piglets [J]. Scientia Agricultura Sinica, 2020, 53(10): 2101-2111.
[3] YING ShiJia, DAI ZiChun, GUO JiaJia, SHI ZhenDan. Time Course Effect of Lipopolysaccharide on Toll-Like Receptors Expression in the Goose Follicular Stroma [J]. Scientia Agricultura Sinica, 2017, 50(6): 1147-1156.
[4] HU Qiu-hui, ZHONG Lei, YANG Wen-jian, PEI Fei, FANG Yong, MA Ning, TANG Xiao-zhi, ZHAO Li-yan, YANG Fang-mei. Properties of the Extruded Products of Cereal Grains Compounded with Cordyceps militaris [J]. Scientia Agricultura Sinica, 2016, 49(24): 4772-4784.
[5] WANG Lin-feng, JIA Shao-dan, YANG Gai-qing, ZHU He-shui, LIU Ru-yi, YAN Ping, LI Ming, YANG Guo-yu. Study on the Effect of Lipopolysaccharide on Hepatic Metabolism in Dairy Goat Liver [J]. Scientia Agricultura Sinica, 2015, 48(18): 3701-3710.
[6] YING Shi-jia, XU Ai-hong, DAI Zi-chun, XI Zheng-lin, HE Zong-liang, KUANG Wei, ZHAO Wei, WU Yun-liang, SHI Zhen-dan . Effects of Pro-Biotic Microbes on Living Water and Laying Performance in Layer Ducks and Molecular Mechanisms [J]. Scientia Agricultura Sinica, 2015, 48(11): 2262-2269.
[7] SUN Yao-gui, CHENG Jia, LI Hong-quan, WANG Jun-dong. Effects of CZKJKL on Stress-Related Factors of Nerve - Endocrine - Immune System of Rats After Immunological Induction [J]. Scientia Agricultura Sinica, 2014, 47(23): 4718-4725.
[8] GUO Fan-Xi, LIU Teng-Fei, GENG Zhi-Xia, JIANG Fan, YU Zu-Gong. Immunoregulatory Effects of Compound Ammonium Glycyrrhizin Soluble Powder on Liver Injury Induced by Enrofloxacin and LPS in Chickens [J]. Scientia Agricultura Sinica, 2013, 46(12): 2576-2583.
[9] FU Da-bo,WANG You-wei,HOU Yong-qing,DING Bin-ying,WANG Lei,LIU Yu-lan,ZHU Hui-ling
.

Effects of α-Ketoglutarate on Muscle Energy Metabolism in Weanling Pigs Chronically Challenged with Lipopolysaccharide

[J]. Scientia Agricultura Sinica, 2011, 44(4): 814-822 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!